Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nat Commun ; 15(1): 3631, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684731

RESUMEN

Idiopathic Parkinson's disease (iPD) is believed to have a heterogeneous pathophysiology, but molecular disease subtypes have not been identified. Here, we show that iPD can be stratified according to the severity of neuronal respiratory complex I (CI) deficiency, and identify two emerging disease subtypes with distinct molecular and clinical profiles. The CI deficient (CI-PD) subtype accounts for approximately a fourth of all cases, and is characterized by anatomically widespread neuronal CI deficiency, a distinct cell type-specific gene expression profile, increased load of neuronal mtDNA deletions, and a predilection for non-tremor dominant motor phenotypes. In contrast, the non-CI deficient (nCI-PD) subtype exhibits no evidence of mitochondrial impairment outside the dopaminergic substantia nigra and has a predilection for a tremor dominant phenotype. These findings constitute a step towards resolving the biological heterogeneity of iPD with implications for both mechanistic understanding and treatment strategies.


Asunto(s)
ADN Mitocondrial , Complejo I de Transporte de Electrón , Complejo I de Transporte de Electrón/deficiencia , Mitocondrias , Enfermedades Mitocondriales , Enfermedad de Parkinson , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Humanos , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Masculino , ADN Mitocondrial/genética , Femenino , Mitocondrias/metabolismo , Mitocondrias/genética , Anciano , Sustancia Negra/metabolismo , Sustancia Negra/patología , Persona de Mediana Edad , Fenotipo , Neuronas/metabolismo
2.
EMBO Rep ; 23(8): e54825, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35699132

RESUMEN

The mitochondrial respiratory chain (MRC) is composed of four multiheteromeric enzyme complexes. According to the endosymbiotic origin of mitochondria, eukaryotic MRC derives from ancestral proteobacterial respiratory structures consisting of a minimal set of complexes formed by a few subunits associated with redox prosthetic groups. These enzymes, which are the "core" redox centers of respiration, acquired additional subunits, and increased their complexity throughout evolution. Cytochrome c oxidase (COX), the terminal component of MRC, has a highly interspecific heterogeneous composition. Mammalian COX consists of 14 different polypeptides, of which COX7B is considered the evolutionarily youngest subunit. We applied proteomic, biochemical, and genetic approaches to investigate the COX composition in the invertebrate model Drosophila melanogaster. We identified and characterized a novel subunit which is widely different in amino acid sequence, but similar in secondary and tertiary structures to COX7B, and provided evidence that this object is in fact replacing the latter subunit in virtually all protostome invertebrates. These results demonstrate that although individual structures may differ the composition of COX is functionally conserved between vertebrate and invertebrate species.


Asunto(s)
Drosophila melanogaster , Complejo IV de Transporte de Electrones , Secuencia de Aminoácidos , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Mamíferos/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteómica
3.
STAR Protoc ; 3(2): 101322, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35479112

RESUMEN

Mitochondrial respiratory chain (MRC) dysfunction is linked to mitochondrial disease as well as other common conditions such as diabetes, neurodegeneration, cancer, and aging. Thus, the evaluation of MRC enzymatic activities is fundamental for diagnostics and research purposes on experimental models. Here, we provide a verified and reliable protocol for mitochondria isolation from various D. melanogaster samples and subsequent measurement of the activity of MRC complexes I-V plus citrate synthase (CS) through UV-VIS spectrophotometry. For complete details on the use and execution of this protocol, please refer to Brischigliaro et al. (2021).


Asunto(s)
Drosophila melanogaster , Mitocondrias , Animales , Citrato (si)-Sintasa/metabolismo , Drosophila melanogaster/metabolismo , Transporte de Electrón , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo
4.
Front Cell Dev Biol ; 9: 720656, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34557489

RESUMEN

Mitochondria are double-membrane organelles that contain their own genome, the mitochondrial DNA (mtDNA), and reminiscent of its endosymbiotic origin. Mitochondria are responsible for cellular respiration via the function of the electron oxidative phosphorylation system (OXPHOS), located in the mitochondrial inner membrane and composed of the four electron transport chain (ETC) enzymes (complexes I-IV), and the ATP synthase (complex V). Even though the mtDNA encodes essential OXPHOS components, the large majority of the structural subunits and additional biogenetical factors (more than seventy proteins) are encoded in the nucleus and translated in the cytoplasm. To incorporate these proteins and the rest of the mitochondrial proteome, mitochondria have evolved varied, and sophisticated import machineries that specifically target proteins to the different compartments defined by the two membranes. The intermembrane space (IMS) contains a high number of cysteine-rich proteins, which are mostly imported via the MIA40 oxidative folding system, dependent on the reduction, and oxidation of key Cys residues. Several of these proteins are structural components or assembly factors necessary for the correct maturation and function of the ETC complexes. Interestingly, many of these proteins are involved in the metalation of the active redox centers of complex IV, the terminal oxidase of the mitochondrial ETC. Due to their function in oxygen reduction, mitochondria are the main generators of reactive oxygen species (ROS), on both sides of the inner membrane, i.e., in the matrix and the IMS. ROS generation is important due to their role as signaling molecules, but an excessive production is detrimental due to unwanted oxidation reactions that impact on the function of different types of biomolecules contained in mitochondria. Therefore, the maintenance of the redox balance in the IMS is essential for mitochondrial function. In this review, we will discuss the role that redox regulation plays in the maintenance of IMS homeostasis as well as how mitochondrial ROS generation may be a key regulatory factor for ETC biogenesis, especially for complex IV.

5.
PLoS Biol ; 19(4): e3001166, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33826607

RESUMEN

Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho0 cells rescued mitochondrial function and increased Rho0 cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases.


Asunto(s)
Vesículas Extracelulares/metabolismo , Mitocondrias/metabolismo , Células-Madre Neurales/metabolismo , Animales , Transporte Biológico , Células Cultivadas , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células-Madre Neurales/ultraestructura
6.
Cell Rep ; 35(3): 109002, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33882309

RESUMEN

Complex I (CI) is the largest enzyme of the mitochondrial respiratory chain, and its defects are the main cause of mitochondrial disease. To understand the mechanisms regulating the extremely intricate biogenesis of this fundamental bioenergetic machine, we analyze the structural and functional consequences of the ablation of NDUFS3, a non-catalytic core subunit. We show that, in diverse mammalian cell types, a small amount of functional CI can still be detected in the complete absence of NDUFS3. In addition, we determine the dynamics of CI disassembly when the amount of NDUFS3 is gradually decreased. The process of degradation of the complex occurs in a hierarchical and modular fashion in which the ND4 module remains stable and bound to TMEM126A. We, thus, uncover the function of TMEM126A, the product of a disease gene causing recessive optic atrophy as a factor necessary for the correct assembly and function of CI.


Asunto(s)
Complejo I de Transporte de Electrón/genética , Proteínas de la Membrana/genética , Mitocondrias/genética , NADH Deshidrogenasa/genética , Atrofia Óptica/genética , Animales , Sitios de Unión , Sistemas CRISPR-Cas , Línea Celular Tumoral , Complejo I de Transporte de Electrón/deficiencia , Edición Génica , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Células HCT116 , Humanos , Melanocitos/metabolismo , Melanocitos/patología , Proteínas de la Membrana/metabolismo , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Modelos Moleculares , NADH Deshidrogenasa/deficiencia , Atrofia Óptica/metabolismo , Atrofia Óptica/patología , Osteoblastos/metabolismo , Osteoblastos/patología , Unión Proteica , Conformación Proteica , Proteómica
7.
FEBS Lett ; 595(8): 1062-1106, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33159691

RESUMEN

Mitochondrial disorders are among the most frequent inborn errors of metabolism, their primary cause being the dysfunction of the oxidative phosphorylation system (OXPHOS). OXPHOS is composed of the electron transport chain (ETC), formed by four multimeric enzymes and two mobile electron carriers, plus an ATP synthase [also called complex V (cV)]. The ETC performs the redox reactions involved in cellular respiration while generating the proton motive force used by cV to synthesize ATP. OXPHOS biogenesis involves multiple steps, starting from the expression of genes encoded in physically separated genomes, namely the mitochondrial and nuclear DNA, to the coordinated assembly of components and cofactors building each individual complex and eventually the supercomplexes. The genetic cause underlying around half of the diagnosed mitochondrial disease cases is currently known. Many of these cases result from pathogenic variants in genes encoding structural subunits or additional factors directly involved in the assembly of the ETC complexes. Here, we review the historical and most recent findings concerning the clinical phenotypes and the molecular pathological mechanisms underlying this particular group of disorders.


Asunto(s)
Adenosina Trifosfato , ADN Mitocondrial , Proteínas del Complejo de Cadena de Transporte de Electrón , Mitocondrias , Enfermedades Mitocondriales , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología
8.
Neurobiol Dis ; 141: 104880, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32344152

RESUMEN

Mitochondrial ribosomal protein large 24 (MRPL24) is 1 of the 82 protein components of mitochondrial ribosomes, playing an essential role in the mitochondrial translation process. We report here on a baby girl with cerebellar atrophy, choreoathetosis of limbs and face, intellectual disability and a combined defect of complexes I and IV in muscle biopsy, caused by a homozygous missense mutation identified in MRPL24. The variant predicts a Leu91Pro substitution at an evolutionarily conserved site. Using human mutant cells and the zebrafish model, we demonstrated the pathological role of the identified variant. In fact, in fibroblasts we observed a significant reduction of MRPL24 protein and of mitochondrial respiratory chain complex I and IV subunits, as well a markedly reduced synthesis of the mtDNA-encoded peptides. In zebrafish we demonstrated that the orthologue gene is expressed in metabolically active tissues, and that gene knockdown induced locomotion impairment, structural defects and low ATP production. The motor phenotype was complemented by human WT but not mutant cRNA. Moreover, sucrose density gradient fractionation showed perturbed assembly of large subunit mitoribosomal proteins, suggesting that the mutation leads to a conformational change in MRPL24, which is expected to cause an aberrant interaction of the protein with other components of the 39S mitoribosomal subunit.


Asunto(s)
Proteínas Mitocondriales/genética , Trastornos del Movimiento/genética , Proteínas Ribosómicas/genética , Animales , Cerebelo/patología , Femenino , Humanos , Lactante , Leviviridae , Masculino , Trastornos del Movimiento/patología , Músculo Cuádriceps/patología , Pez Cebra
9.
Nat Commun ; 10(1): 3280, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31337756

RESUMEN

Somatic mutations in the mitochondrial genome (mtDNA) have been linked to multiple disease conditions and to ageing itself. In Drosophila, knock-in of a proofreading deficient mtDNA polymerase (POLG) generates high levels of somatic point mutations and also small indels, but surprisingly limited impact on organismal longevity or fitness. Here we describe a new mtDNA mutator model based on a mitochondrially-targeted cytidine deaminase, APOBEC1. mito-APOBEC1 acts as a potent mutagen which exclusively induces C:G>T:A transitions with no indels or mtDNA depletion. In these flies, the presence of multiple non-synonymous substitutions, even at modest heteroplasmy, disrupts mitochondrial function and dramatically impacts organismal fitness. A detailed analysis of the mutation profile in the POLG and mito-APOBEC1 models reveals that mutation type (quality) rather than quantity is a critical factor in impacting organismal fitness. The specificity for transition mutations and the severe phenotypes make mito-APOBEC1 an excellent mtDNA mutator model for ageing research.


Asunto(s)
Desaminasas APOBEC-1/fisiología , ADN Mitocondrial/química , Drosophila/genética , Desaminasas APOBEC-1/genética , Desaminasas APOBEC-1/metabolismo , Animales , Drosophila/fisiología , Mitocondrias/metabolismo , Mitocondrias/fisiología , Modelos Genéticos , Mutación , Organismos Modificados Genéticamente
10.
Mol Cell ; 67(1): 96-105.e4, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28673544

RESUMEN

Loss-of-function mutations in TTC19 (tetra-tricopeptide repeat domain 19) have been associated with severe neurological phenotypes and mitochondrial respiratory chain complex III deficiency. We previously demonstrated the mitochondrial localization of TTC19 and its link with complex III biogenesis. Here we provide detailed insight into the mechanistic role of TTC19, by investigating a Ttc19?/? mouse model that shows progressive neurological and metabolic decline, decreased complex III activity, and increased production of reactive oxygen species. By using both the Ttc19?/? mouse model and a range of human cell lines, we demonstrate that TTC19 binds to the fully assembled complex III dimer, i.e., after the incorporation of the iron-sulfur Rieske protein (UQCRFS1). The in situ maturation of UQCRFS1 produces N-terminal polypeptides, which remain bound to holocomplex III. We show that, in normal conditions, these UQCRFS1 fragments are rapidly removed, but when TTC19 is absent they accumulate within complex III, causing its structural and functional impairment.


Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Proteínas Hierro-Azufre/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Animales , Conducta Animal , Modelos Animales de Enfermedad , Complejo III de Transporte de Electrones/deficiencia , Complejo III de Transporte de Electrones/genética , Femenino , Genotipo , Células HeLa , Humanos , Proteínas Hierro-Azufre/genética , Cinética , Masculino , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades Mitocondriales , Proteínas Mitocondriales/genética , Actividad Motora , Degeneración Nerviosa , Sistema Nervioso/metabolismo , Sistema Nervioso/patología , Sistema Nervioso/fisiopatología , Fenotipo , Unión Proteica , Estabilidad Proteica , Proteolisis , Especies Reactivas de Oxígeno/metabolismo
11.
Cell Rep ; 18(7): 1727-1738, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28199844

RESUMEN

The biogenesis of human cytochrome c oxidase (COX) is an intricate process in which three mitochondrial DNA (mtDNA)-encoded core subunits are assembled in a coordinated way with at least 11 nucleus-encoded subunits. Many chaperones shared between yeast and humans are involved in COX assembly. Here, we have used a MT-CO3 mutant cybrid cell line to define the composition of assembly intermediates and identify new human COX assembly factors. Quantitative mass spectrometry analysis led us to modify the assembly model from a sequential pathway to a module-based process. Each module contains one of the three core subunits, together with different ancillary components, including HIGD1A. By the same analysis, we identified the short isoform of the myofibrillogenesis regulator 1 (MR-1S) as a new COX assembly factor, which works with the highly conserved PET100 and PET117 chaperones to assist COX biogenesis in higher eukaryotes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Musculares/metabolismo , Línea Celular Tumoral , Núcleo Celular/metabolismo , Células Cultivadas , ADN Mitocondrial/genética , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Subunidades de Proteína/metabolismo
12.
Biochim Biophys Acta Mol Basis Dis ; 1863(4): 961-967, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28132884

RESUMEN

The mitochondrial Elongation Factor Tu (EF-Tu), encoded by the TUFM gene, is a highly conserved GTPase, which is part of the mitochondrial protein translation machinery. In its activated form it delivers the aminoacyl-tRNAs to the A site of the mitochondrial ribosome. We report here on a baby girl with severe infantile macrocystic leukodystrophy with micropolygyria and a combined defect of complexes I and IV in muscle biopsy, caused by a novel mutation identified in TUFM. Using human mutant cells and the yeast model, we demonstrate the pathological role of the novel variant. Moreover, results of a molecular modeling study suggest that the mutant is inactive in mitochondrial polypeptide chain elongation, probably as a consequence of its reduced ability to bind mitochondrial aa-tRNAs. Four patients have so far been described with mutations in TUFM, and, following the first description of the disease in a single patient, we describe similar clinical and neuroradiological features in an additional patient.


Asunto(s)
Secuencia de Bases , ADN Mitocondrial/genética , Leucoencefalopatías/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Extensión de la Cadena Peptídica de Translación , Factor Tu de Elongación Peptídica/genética , Eliminación de Secuencia , ADN Mitocondrial/metabolismo , Femenino , Humanos , Leucoencefalopatías/metabolismo , Masculino , Mitocondrias/patología , Proteínas Mitocondriales/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
13.
J Proteomics ; 75(9): 2563-75, 2012 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-22402057

RESUMEN

Squalene, a hydrocarbon involved in cholesterol biosynthesis, is an abundant component in virgin olive oil. Previous studies showed that its administration decreased atherosclerosis and steatosis in male apoE knock-out mice. To study the effect of squalene on mitochondrial proteins in fatty liver, 1 g/kg/day of this isoprenoid was administered to those mice. After 10 weeks, hepatic fat was assessed and protein extracts from mitochondria enriched fractions from control and squalene-treated animals were analyzed by 2D-DIGE. Spots exhibiting significant differences were identified by MS analysis. Squalene administration modified the expression of eighteen proteins involved in different metabolic processes, 12 associated with hepatic fat content. Methionine adenosyltransferase I alpha (Mat1a) and short-chain specific acyl-CoA dehydrogenase (Acads) showed significant increased and decreased transcripts, respectively, consistent with their protein changes. These mRNAs were also studied in wild-type mice receiving squalene, where Mat1a was found increased and Acads decreased. However, this mRNA was significantly increased in the absence of apolipoprotein E. These results suggest that squalene action may be executed through a complex regulation of mitochondrial protein expression, including changes in Mat1a and Acads levels. Indeed, Mat1a is a target of squalene administration while Acads reflects the anti-steatotic properties of squalene.


Asunto(s)
Apolipoproteínas E/deficiencia , Butiril-CoA Deshidrogenasa/metabolismo , Hígado Graso/metabolismo , Metionina Adenosiltransferasa/metabolismo , Animales , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Mitocondrias Hepáticas/metabolismo , Enfermedad del Hígado Graso no Alcohólico , Proteómica , ARN Mensajero/metabolismo , Escualeno/farmacología , Electroforesis Bidimensional Diferencial en Gel
14.
Neuromuscul Disord ; 22(1): 50-5, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22227277

RESUMEN

An 80-year-old woman (PI) has been suffering of late onset progressive weakness and wasting of lower-limb muscles, accompanied by high creatine kinase levels in blood. A muscle biopsy, performed at 63 years, showed myopathic features with partial deficiency of cytochrome c oxidase. A second biopsy taken 7 years later confirmed the presence of a mitochondrial myopathy but also of vacuolar degeneration and other morphological features resembling inclusion body myopathy. Her 46-year-old daughter (PII) and 50-year-old son (PIII) are clinically normal, but the creatine kinase levels were moderately elevated and the EMG was consistently myopathic in both. Analysis of mitochondrial DNA sequence revealed in all three patients a novel, homoplasmic 15 bp tandem duplication adjacent to the 5' end of mitochondrial tRNA(Phe) gene, encompassing the first 11 nucleotides of this gene and the four terminal nucleotides of the adjacent D-loop region. Both mutant fibroblasts and cybrids showed low oxygen consumption rate, reduced mitochondrial protein synthesis, and decreased mitochondrial tRNA(Phe) amount. These findings are consistent with an unconventional pathogenic mechanism causing the tandem duplication to interfere with the maturation of the mitochondrial tRNA(Phe) transcript.


Asunto(s)
ADN Mitocondrial/química , Miopatías Mitocondriales/genética , Biosíntesis de Proteínas , ARN de Transferencia de Fenilalanina/genética , Anciano de 80 o más Años , Biopsia , Análisis Mutacional de ADN , Electromiografía , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/genética , Mitocondrias/metabolismo , Miopatías Mitocondriales/metabolismo , Miopatías Mitocondriales/patología , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología
15.
PLoS One ; 4(5): e5713, 2009 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-19492094

RESUMEN

BACKGROUND: Mitochondrial biogenesis is under the control of two different genetic systems: the nuclear genome (nDNA) and the mitochondrial genome (mtDNA). The mtDNA is a circular genome of 16.6 kb encoding 13 of the approximately 90 subunits that form the respiratory chain, the remaining ones being encoded by the nDNA. Eukaryotic cells are able to monitor and respond to changes in mitochondrial function through alterations in nuclear gene expression, a phenomenon first defined in yeast and known as retrograde regulation. To investigate how the cellular transcriptome is modified in response to the absence of mtDNA, we used Affymetrix HG-U133A GeneChip arrays to study the gene expression profile of two human cell lines, 143BTK(-) and A549, which had been entirely depleted of mtDNA (rho(o) cells), and compared it with that of corresponding undepleted parental cells (rho(+) cells). RESULTS: Our data indicate that absence of mtDNA is associated with: i) a down-regulation of cell cycle control genes and a reduction of cell replication rate, ii) a down-regulation of nuclear-encoded subunits of complex III of the respiratory chain and iii) a down-regulation of a gene described as the human homolog of ELAC2 of E. coli, which encodes a protein that we show to also target to the mitochondrial compartment. CONCLUSIONS: Our results indicate a strong correlation between mitochondrial biogenesis and cell cycle control and suggest that some proteins could have a double role: for instance in controlling both cell cycle progression and mitochondrial functions. In addition, the finding that ELAC2 and maybe other transcripts that are located into mitochondria, are down-regulated in rho(o) cells, make them good candidates for human disorders associated with defective replication and expression of mtDNA.


Asunto(s)
ADN Mitocondrial/genética , Western Blotting , Ciclo Celular , Línea Celular , Proliferación Celular , Regulación hacia Abajo , Complejo III de Transporte de Electrones/metabolismo , Perfilación de la Expresión Génica , Humanos , Mitocondrias/genética , Proteínas de Neoplasias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
Am J Hum Genet ; 80(1): 44-58, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17160893

RESUMEN

Mitochondrial protein translation is a complex process performed within mitochondria by an apparatus composed of mitochondrial DNA (mtDNA)-encoded RNAs and nuclear DNA-encoded proteins. Although the latter by far outnumber the former, the vast majority of mitochondrial translation defects in humans have been associated with mutations in RNA-encoding mtDNA genes, whereas mutations in protein-encoding nuclear genes have been identified in a handful of cases. Genetic investigation involving patients with defective mitochondrial translation led us to the discovery of novel mutations in the mitochondrial elongation factor G1 (EFG1) in one affected baby and, for the first time, in the mitochondrial elongation factor Tu (EFTu) in another one. Both patients were affected by severe lactic acidosis and rapidly progressive, fatal encephalopathy. The EFG1-mutant patient had early-onset Leigh syndrome, whereas the EFTu-mutant patient had severe infantile macrocystic leukodystrophy with micropolygyria. Structural modeling enabled us to make predictions about the effects of the mutations at the molecular level. Yeast and mammalian cell systems proved the pathogenic role of the mutant alleles by functional complementation in vivo. Nuclear-gene abnormalities causing mitochondrial translation defects represent a new, potentially broad field of mitochondrial medicine. Investigation of these defects is important to expand the molecular characterization of mitochondrial disorders and also may contribute to the elucidation of the complex control mechanisms, which regulate this fundamental pathway of mtDNA homeostasis.


Asunto(s)
Antígenos de Neoplasias/genética , ADN Mitocondrial/genética , Encefalomiopatías Mitocondriales/patología , Proteínas Mitocondriales/genética , Factor G de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/genética , Secuencia de Aminoácidos , Antígenos de Neoplasias/biosíntesis , Encéfalo/anomalías , Células Cultivadas , Preescolar , ADN Mitocondrial/biosíntesis , Femenino , Fibroblastos/metabolismo , Humanos , Lactante , Recién Nacido , Encefalomiopatías Mitocondriales/congénito , Encefalomiopatías Mitocondriales/genética , Proteínas Mitocondriales/biosíntesis , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Factor G de Elongación Peptídica/biosíntesis , Factor Tu de Elongación Peptídica/biosíntesis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
17.
Methods ; 26(4): 292-7, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12054919

RESUMEN

This article describes a quick basic method adapted for the purification of mammalian mitochondria from different sources. The organelles obtained using this protocol are suitable for the investigation of biogenetic activities such as enzyme activity, mtDNA, mtRNA, mitochondrial protein synthesis, and mitochondrial tRNA aminoacylation. In addition, these mitochondria are capable of efficient protein import and the investigation of mtDNA/protein interactions by DNA footprinting is also possible.


Asunto(s)
Técnicas Citológicas , Mitocondrias/patología , Adenosina Trifosfato/metabolismo , Animales , Células Cultivadas , ADN Mitocondrial/aislamiento & purificación , ADN Mitocondrial/metabolismo , Masculino , Mitocondrias/metabolismo , Unión Proteica , ARN de Transferencia/metabolismo , Ratas , Ratas Wistar , Sinapsis/metabolismo , Sinaptosomas/metabolismo , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA