Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Immunol ; 15: 1360063, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38558809

RESUMEN

Hepatocellular carcinoma (HCC) and solid cancers with liver metastases are indications with high unmet medical need. Interleukin-12 (IL-12) is a proinflammatory cytokine with substantial anti-tumor properties, but its therapeutic potential has not been realized due to severe toxicity. Here, we show that orthotopic liver tumors in mice can be treated by targeting hepatocytes via systemic delivery of adeno-associated virus (AAV) vectors carrying the murine IL-12 gene. Controlled cytokine production was achieved in vivo by using the tetracycline-inducible K19 riboswitch. AAV-mediated expression of IL-12 led to STAT4 phosphorylation, interferon-γ (IFNγ) production, infiltration of T cells and, ultimately, tumor regression. By detailed analyses of efficacy and tolerability in healthy and tumor-bearing animals, we could define a safe and efficacious vector dose. As a potential clinical candidate, we characterized vectors carrying the human IL-12 (huIL-12) gene. In mice, bioactive human IL-12 was expressed in a vector dose-dependent manner and could be induced by tetracycline, suggesting tissue-specific AAV vectors with riboswitch-controlled expression of highly potent proinflammatory cytokines as an attractive approach for vector-based cancer immunotherapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Riboswitch , Ratones , Humanos , Animales , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patología , Terapia Genética , Interleucina-12/genética , Interleucina-12/metabolismo , Tetraciclina/farmacología
2.
Front Mol Neurosci ; 15: 1061257, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36568275

RESUMEN

The leukodystrophy Canavan disease is a fatal white matter disorder caused by loss-of-function mutations of the aspartoacylase-encoding ASPA gene. There are no effective treatments available and experimental gene therapy trials have failed to provide sufficient amelioration from Canavan disease symptoms. Preclinical studies suggest that Canavan disease-like pathology can be addressed by either ASPA gene replacement therapy or by lowering the expression of the N-acetyl-L-aspartate synthesizing enzyme NAT8L. Both approaches individually prevent or even reverse pathological aspects in Canavan disease mice. Here, we combined both strategies and assessed whether intracranial adeno-associated virus-mediated gene delivery to a Canavan disease mouse model at 12 weeks allows for reversal of existing pathology. This was enabled by a single vector dual-function approach. In vitro and in vivo biopotency assessment revealed significant knockdown of neuronal Nat8l paired with robust ectopic aspartoacylase expression. Following nomination of the most efficient cassette designs, we performed proof-of-concept studies in post-symptomatic Aspa-null mice. Late-stage gene therapy resulted in a decrease of brain vacuoles and long-term reversal of all pathological hallmarks, including loss of body weight, locomotor impairments, elevated N-acetyl-L-aspartate levels, astrogliosis, and demyelination. These data suggest feasibility of a dual-function vector combination therapy, directed at replacing aspartoacylase with concomitantly suppressing N-acetyl-L-aspartate production, which holds potential to permanently alleviate Canavan disease symptoms and expands the therapeutic window towards a treatment option for adult subjects.

3.
Mol Ther Methods Clin Dev ; 20: 508-519, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33614825

RESUMEN

Oligodendrocyte dysfunction has been implicated in the pathophysiology of amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder characterized by progressive motor neuron loss. The failure of trophic support provided by oligodendrocytes is associated with a concomitant reduction in oligodendroglial monocarboxylate transporter 1 (MCT1) expression and is detrimental for the long-term survival of motor neuron axons. Therefore, we established an adeno-associated virus 9 (AAV9)-based platform by which MCT1 was targeted mostly to white matter oligodendrocytes to investigate whether this approach could provide a therapeutic benefit in the SOD1G93A mouse model of ALS. Despite good oligodendrocyte transduction and AAV-mediated MCT1 transgene expression, the disease outcome of SOD1G93A mice was not altered. Our study further increases our current understanding about the complex nature of oligodendrocyte pathology in ALS and provides valuable insights into the future development of therapeutic strategies to efficiently modulate these cells.

4.
Mol Ther Methods Clin Dev ; 19: 486-495, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33313336

RESUMEN

One important limitation for achieving therapeutic expression of human factor VIII (FVIII) in hemophilia A gene therapy is inefficient secretion of the FVIII protein. Substitution of five amino acids in the A1 domain of human FVIII with the corresponding porcine FVIII residues generated a secretion-enhanced human FVIII variant termed B-domain-deleted (BDD)-FVIII-X5 that resulted in 8-fold higher FVIII activity levels in the supernatant of an in vitro cell-based assay system than seen with unmodified human BDD-FVIII. Analysis of purified recombinant BDD-FVIII-X5 and BDD-FVIII revealed similar specific activities for both proteins, indicating that the effect of the X5 alteration is confined to increased FVIII secretion. Intravenous delivery in FVIII-deficient mice of liver-targeted adeno-associated virus (AAV) vectors designed to express BDD-FVIII-X5 or BDD-FVIII achieved substantially higher plasma FVIII activity levels for BDD-FVIII-X5, even when highly efficient codon-optimized F8 nucleotide sequences were employed. A comprehensive immunogenicity assessment using in vitro stimulation assays and various in vivo preclinical models of hemophilia A demonstrated that the BDD-FVIII-X5 variant does not exhibit an increased immunogenicity risk compared to BDD-FVIII. In conclusion, BDD-FVIII-X5 is an effective FVIII variant molecule that can be further developed for use in gene- and protein-based therapeutics for patients with hemophilia A.

5.
Br J Pharmacol ; 176(18): 3649-3665, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30817847

RESUMEN

Alzheimer's disease (AD) is a highly prevalent neurodegenerative condition that presents with cognitive decline. The current understanding of underlying disease mechanisms remains incomplete. Genetically modified mouse models have been instrumental in deciphering pathomechanisms in AD. While these models were typically generated by classical transgenesis and genome editing, the use of adeno-associated viruses (AAVs) to model and investigate AD in mice, as well as to develop novel gene-therapy approaches, is emerging. Here, we reviewed literature that used AAVs to study and model AD and discuss potential gene therapy strategies. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.


Asunto(s)
Enfermedad de Alzheimer , Dependovirus , Modelos Animales de Enfermedad , Enfermedad de Alzheimer/terapia , Animales , Terapia Genética , Humanos , Ratones
6.
Hum Gene Ther ; 30(2): 211-224, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30032660

RESUMEN

Naked plasmid DNA electrotransfer offers advantages over viral-based gene delivery, including being regulatory permissive, but factors influencing expression efficiency and cell fate impact on translational utility. This study compared co-expression of red and green fluorescence reporter plasmids with differing promoters in HEK293 cells and in vivo in guinea pig cochlear mesenchymal cells using Bionic array-Directed Gene Electrotransfer (BaDGE®). A functional plasmid copy number of ∼64 was established in HEK293 cells by co-transfecting with separate CMV-actin-globin (CAGp) promoter-driven mCherry and green fluorescent protein (GFP) reporters, where cell division diluted plasmids toward discrete red or green channels from 100% co-expression to 10% over 24 days (∼17 cell cycles). Cross-talk between promoters was identified by interchanging a cytomegalovirus promoter (CMVp)-driven GFP plasmid for the CAGp-GFP plasmid. Here, expression of the CMVp-GFP plasmid dominated, while a dual CAGp-based reporter plasmid cocktail showed persistent co-expression beyond 2 weeks. In contrast, in vivo, cochlear mesenchymal cells co-transduced with CAGp-mCherry and CMVp-GFP plasmids showed stable co-expression at ∼50%, while the total transfectant numbers diminished over 2 weeks. This is consistent with a lack of mitosis in the cochlear mesenchymal cells and shows that cell type is a factor in plasmid interaction.


Asunto(s)
Cóclea/metabolismo , Electroporación , Expresión Génica , Técnicas de Transferencia de Gen , Células Madre Mesenquimatosas/metabolismo , Plásmidos , Transgenes , Cóclea/citología , Células HEK293 , Humanos , Células Madre Mesenquimatosas/citología , Plásmidos/genética , Plásmidos/metabolismo
7.
Neurobiol Dis ; 113: 23-32, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29414380

RESUMEN

Neuropeptide Y (NPY) is an important 36 amino acid peptide that is abundantly expressed in the mammalian CNS and is known to be an endogenous modulator of seizure activity, including in rat models of Genetic Generalised Epilepsy (GGE) with absence seizures. Studies have shown that viral-mediated "gene therapy" with overexpression of NPY in the hippocampus can suppress seizures in acquired epilepsy animal models. This study investigated whether NPY gene delivery to the thalamus or somatosensory cortex, using recombinant adeno-associated viral vector (rAAV), could produce sustained seizure suppression in the GAERS model of GGE with absence seizures. Three cohorts of GAERS were injected bilaterally into the thalamus (short term n = 14 and long term n = 8) or the somatosensory cortex (n = 26) with rAAV-NPY or rAAV-empty. EEG recordings were acquired weekly post-treatment and seizure expression was quantified. Anxiety levels were tested using elevated plus maze and open field test. NPY and NPY receptor mRNA and protein expression were evaluated using quantitative PCR, immunohistochemistry and immunofluorescence. Viral overexpression of human NPY in the thalamus and somatosensory cortex in GAERS significantly reduced the time spent in seizure activity and number of seizures, whereas seizure duration was only reduced after thalamic NPY overexpression. Human and rat NPY and rat Y2 receptor mRNA expression was significantly increased in the somatosensory cortex. NPY overexpression in the thalamus was observed in rAAV-NPY treated rats compared to controls in the long term cohort. No effect was observed on anxiety behaviour. We conclude that virally-mediated human NPY overexpression in the thalamus or somatosensory cortex produces sustained anti-epileptic effects in GAERS. NPY gene therapy may represent a novel approach for the treatment of patients with genetic generalised epilepsies.


Asunto(s)
Epilepsia Generalizada/metabolismo , Epilepsia Generalizada/terapia , Terapia Genética/métodos , Neuropéptido Y/biosíntesis , Convulsiones/metabolismo , Convulsiones/terapia , Animales , Modelos Animales de Enfermedad , Epilepsia Generalizada/genética , Expresión Génica , Masculino , Neuropéptido Y/genética , Ratas , Ratas Transgénicas , Convulsiones/genética
8.
Acta Neuropathol ; 135(1): 95-113, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29116375

RESUMEN

N-Acetylaspartate (NAA) is the second most abundant organic metabolite in the brain, but its physiological significance remains enigmatic. Toxic NAA accumulation appears to be the key factor for neurological decline in Canavan disease-a fatal neurometabolic disorder caused by deficiency in the NAA-degrading enzyme aspartoacylase. To date clinical outcome of gene replacement therapy for this spongiform leukodystrophy has not met expectations. To identify the target tissue and cells for maximum anticipated treatment benefit, we employed comprehensive phenotyping of novel mouse models to assess cell type-specific consequences of NAA depletion or elevation. We show that NAA-deficiency causes neurological deficits affecting unconscious defensive reactions aimed at protecting the body from external threat. This finding suggests, while NAA reduction is pivotal to treat Canavan disease, abrogating NAA synthesis should be avoided. At the other end of the spectrum, while predicting pathological severity in Canavan disease mice, increased brain NAA levels are not neurotoxic per se. In fact, in transgenic mice overexpressing the NAA synthesising enzyme Nat8l in neurons, supra-physiological NAA levels were uncoupled from neurological deficits. In contrast, elimination of aspartoacylase expression exclusively in oligodendrocytes elicited Canavan disease like pathology. Although conditional aspartoacylase deletion in oligodendrocytes abolished expression in the entire CNS, the remaining aspartoacylase in peripheral organs was sufficient to lower NAA levels, delay disease onset and ameliorate histopathology. However, comparable endpoints of the conditional and complete aspartoacylase knockout indicate that optimal Canavan disease gene replacement therapies should restore aspartoacylase expression in oligodendrocytes. On the basis of these findings we executed an ASPA gene replacement therapy targeting oligodendrocytes in Canavan disease mice resulting in reversal of pre-existing CNS pathology and lasting neurological benefits. This finding signifies the first successful post-symptomatic treatment of a white matter disorder using an adeno-associated virus vector tailored towards oligodendroglial-restricted transgene expression.


Asunto(s)
Ácido Aspártico/análogos & derivados , Encéfalo/metabolismo , Encéfalo/patología , Enfermedad de Canavan/metabolismo , Enfermedad de Canavan/terapia , Acetiltransferasas/metabolismo , Amidohidrolasas/administración & dosificación , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Animales , Ácido Aspártico/metabolismo , Encéfalo/diagnóstico por imagen , Enfermedad de Canavan/patología , Modelos Animales de Enfermedad , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Potenciales Evocados Visuales/fisiología , Femenino , Terapia Genética , Humanos , Masculino , Ratones Transgénicos , Neuronas/metabolismo , Neuronas/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología , Fenotipo , ARN Mensajero/metabolismo
9.
Mov Disord ; 32(8): 1230-1239, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28556404

RESUMEN

BACKGROUND: MSA is a fatal neurodegenerative disorder characterized by a combination of autonomic dysfunction, cerebellar ataxia, and l-dopa unresponsive parkinsonism. The hallmark of MSA is the accumulation of α-synuclein, forming cytoplasmic inclusions in oligodendrocytes. Adeno-associated viruses allow efficient targeting of disease-associated genes in selected cellular ensembles and have proven efficient for the neuronal overexpression of α-synuclein in the substantia nigra in the context of PD. OBJECTIVES: We aimed to develop viral-based models of MSA. METHODS: Chimeric viral vectors expressing either human wild-type α-synuclein or green fluorescent protein under the control of mouse myelin basic protein were injected in the striatum of rats and monkeys. Rats underwent a longitudinal motor assessment before histopathological analysis at 3 and 6 months. RESULTS: Injection of vectors expressing α-synuclein in the striatum resulted in >80% oligodendroglial selectivity in rats and >60% in monkeys. Rats developed progressive motor deficits that were l-dopa unresponsive when assessed at 6 months. Significant loss of dopaminergic neurons occurred at 3 months, further progressing at 6 months, together with a loss of striatal neurons. Prominent α-synuclein accumulation, including phosphorylated and proteinase-K-resistant α-synuclein, was detected in the striatum and substantia nigra. CONCLUSIONS: Viral-mediated oligodendroglial expression of α-synuclein allows replicating some of the key features of MSA. This flexible strategy can be used to investigate, in several species, how α-synuclein accumulation in selected oligodendroglial populations contributes to the pathophysiology of MSA and offers a new framework for preclinical validation of therapeutic strategies. © 2017 International Parkinson and Movement Disorder Society.


Asunto(s)
Dependovirus/genética , Regulación de la Expresión Génica/genética , Atrofia de Múltiples Sistemas/genética , Atrofia de Múltiples Sistemas/patología , Oligodendroglía/metabolismo , alfa-Sinucleína/metabolismo , Animales , Animales Modificados Genéticamente , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Dopaminérgicos/uso terapéutico , Haplorrinos , Humanos , Levodopa/uso terapéutico , Masculino , Atrofia de Múltiples Sistemas/etiología , Proteína Básica de Mielina/inmunología , Proteínas del Tejido Nervioso/metabolismo , Fosforilación/genética , Desempeño Psicomotor/fisiología , Ratas , Ratas Sprague-Dawley , Sustancia Negra/metabolismo , Sustancia Negra/patología , alfa-Sinucleína/genética
10.
Brain ; 140(3): 599-616, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28100454

RESUMEN

Pelizaeus-Merzbacher-like disease or hypomyelinating leukodystrophy-2 is an autosomal recessively inherited leukodystrophy with childhood onset resulting from mutations in the gene encoding the gap junction protein connexin 47 (Cx47, encoded by GJC2). Cx47 is expressed specifically in oligodendrocytes and is crucial for gap junctional communication throughout the central nervous system. Previous studies confirmed that a cell autonomous loss-of-function mechanism underlies hypomyelinating leukodystrophy-2 and that transgenic oligodendrocyte-specific expression of another connexin, Cx32 (GJB1), can restore gap junctions in oligodendrocytes to achieve correction of the pathology in a disease model. To develop an oligodendrocyte-targeted gene therapy, we cloned the GJC2/Cx47 gene under the myelin basic protein promoter and used an adeno-associated viral vector (AAV.MBP.Cx47myc) to deliver the gene to postnatal Day 10 mice via a single intracerebral injection in the internal capsule area. Lasting Cx47 expression specifically in oligodendrocytes was detected in Cx47 single knockout and Cx32/Cx47 double knockout mice up to 12 weeks post-injection, including the corpus callosum and the internal capsule but also in more distant areas of the cerebrum and in the spinal cord. Application of this oligodendrocyte-targeted somatic gene therapy at postnatal Day 10 in groups of double knockout mice, a well characterized model of hypomyelinating leukodystrophy-2, resulted in significant improvement in motor performance and coordination at 1 month of age in treated compared to mock-treated mice, as well as prolonged survival. Furthermore, immunofluorescence and morphological analysis revealed improvement in demyelination, oligodendrocyte apoptosis, inflammation, and astrogliosis, all typical features of this leukodystrophy model in both brain and spinal cord. Functional dye transfer analysis confirmed the re-establishment of oligodendrocyte gap junctional connectivity in treated as opposed to untreated mice. These results provide a significant advance in the development of oligodendrocyte-cell specific gene therapy. Adeno-associated viral vectors can be used to target therapeutic expression of a myelin gene to oligodendrocytes. We show evidence for the first somatic gene therapy approach to treat hypomyelinating leukodystrophy-2 preclinically, providing a potential treatment for this and similar forms of leukodystrophies.


Asunto(s)
Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Terapia Genética/métodos , Leucoencefalopatías , Oligodendroglía/metabolismo , Animales , Animales Recién Nacidos , Antígenos CD/metabolismo , Apoptosis/genética , Conexinas/deficiencia , Conexinas/genética , Dependovirus/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Leucoencefalopatías/genética , Leucoencefalopatías/terapia , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Trastornos del Movimiento/etiología , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/metabolismo , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Desempeño Psicomotor/fisiología , Proteína beta1 de Unión Comunicante
11.
Front Mol Neurosci ; 9: 13, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26941604

RESUMEN

Leukodystrophies are hereditary central white matter disorders caused by oligodendrocyte dysfunction. Recent clinical trials for some of these devastating neurological conditions have employed an ex vivo gene therapy approach that showed improved endpoints because cross-correction of affected myelin-forming cells occurred following secretion of therapeutic proteins by transduced autologous grafts. However, direct gene transfer to oligodendrocytes is required for the majority of leukodystrophies with underlying mutations in genes encoding non-secreted oligodendroglial proteins. Recombinant adeno-associated viral (AAV) vectors are versatile tools for gene transfer to the central nervous system (CNS) and proof-of-concept studies in rodents have shown that the use of cellular promoters is sufficient to target AAV-mediated transgene expression to glia. The potential of this strategy has not been exploited. The major caveat of the AAV system is its limited packaging capacity of ~5 kb, providing the rationale for identifying small yet selective recombinant promoters. Here, we characterize the human myelin associated glycoprotein (MAG) promoter for reliable targeting of AAV-mediated transgene expression to oligodendrocytes in vivo. A homology screen revealed highly conserved genomic regions among mammalian species upstream of the transcription start site. Recombinant AAV expression cassettes carrying the cDNA encoding enhanced green fluorescent protein (GFP) driven by truncated versions of the recombinant MAG promoter (2.2, 1.5 and 0.3 kb in size) were packaged as cy5 vectors and delivered into the dorsal striatum of mice. At 3 weeks post-injection, oligodendrocytes, neurons and astrocytes expressing the reporter were quantified by immunohistochemical staining. Our results revealed that both 2.2 and 1.5 kb MAG promoters targeted more than 95% of transgene expression to oligodendrocytes. Even the short 0.3 kb fragment conveyed high oligodendroglial specific transgene expression (>90%) in vivo. Moreover, cy5-MAG2.2-GFP delivery to the neonate CNS resulted in selective GFP expression in oligodendrocytes for at least 8 months. Broadly, the characterization of the extremely short yet oligodendrocyte-specific human MAG promoter may facilitate modeling neurological diseases caused by oligodendrocyte pathology and has translational relevance for leukodystrophy gene therapy.

12.
Brain Struct Funct ; 221(4): 2061-74, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-25772509

RESUMEN

The cannabinoid type 1 receptor (Cnr1, CB1R) mediates a plethora of physiological functions in the central nervous system as a presynaptic modulator of neurotransmitter release. The recently identified cannabinoid receptor-interacting protein 1a (Cnrip1a, CRIP1a) binds to the C-terminal domain of CB1R, a region known to be important for receptor desensitization and internalization. Evidence that CRIP1a and CB1R interact in vivo has been reported, but the neuroanatomical distribution of CRIP1a is unknown. Moreover, while alterations of hippocampal CRIP1a levels following limbic seizures indicate a role in controlling excessive neuronal activity, the physiological function of CRIP1a in vivo has not been investigated. In this study, we analyzed the spatial distribution of CRIP1a in the hippocampus and examined CRIP1a as a potential modulator of CB1R signaling. We found that Cnrip1a mRNA is co-expressed with Cnr1 mRNA in pyramidal neurons and interneurons of the hippocampal formation. CRIP1a protein profiles were largely segregated from CB1R profiles in mossy cell terminals but not in hippocampal CA1 region. CB1R activation induced relocalization to close proximity with CRIP1a. Adeno-associated virus-mediated overexpression of CRIP1a specifically in the hippocampus revealed that CRIP1a modulates CB1R activity by enhancing cannabinoid-induced G protein activation. CRIP1a overexpression extended the depression of excitatory currents by cannabinoids in pyramidal neurons of the hippocampus and diminished the severity of chemically induced acute epileptiform seizures. Collectively, our data indicate that CRIP1a enhances hippocampal CB1R signaling in vivo.


Asunto(s)
Proteínas Portadoras/metabolismo , Hipocampo/metabolismo , Receptor Cannabinoide CB1/metabolismo , Transducción de Señal , Animales , Proteínas Portadoras/fisiología , Dronabinol/administración & dosificación , Dronabinol/análogos & derivados , Potenciales Postsinápticos Excitadores , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Hipocampo/fisiología , Ácido Kaínico/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Piramidales/fisiología , ARN Mensajero/metabolismo , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/fisiología , Convulsiones/inducido químicamente , Convulsiones/fisiopatología
13.
Alcohol ; 49(6): 533-42, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26254965

RESUMEN

In murine models of alcoholism, the glutamate receptor scaffolding protein Homer2 bidirectionally regulates alcohol intake. Although chronic alcohol drinking increases Homer2 expression within the core subregion of the nucleus accumbens (NAc) of alcohol-preferring P rats, the relevance of this neuroadaptation for alcohol intake has yet to be determined in rats. Thus, the present study employed an adeno-associated viral vector (AAV) strategy to over-express and knock down the major rodent isoform Homer2b within the NAc of both P and outbred Wistar rats to examine for changes in alcohol preference and intake (0-30% v/v) under continuous-access procedures. The generalization of AAV effects to non-drug, palatable, sweet solutions was also determined in tests of sucrose (0-5% w/v) and saccharin (0-0.125% w/v) intake/preference. No net-flux in vivo microdialysis was conducted for glutamate in the NAc to relate Homer2-dependent changes in alcohol intake to extracellular levels of glutamate. Line differences were noted for sweet solution preference and intake, but these variables were not affected by intra-NAc AAV infusion in either line. In contrast, Homer2b over-expression elevated, while Homer2b knock-down reduced, alcohol intake in both lines, and this effect was greatest at the highest concentration. Strikingly, in P rats there was a direct association between changes in Homer2b expression and NAc extracellular glutamate levels, but this effect was not seen in Wistar rats. These data indicate that NAc Homer2b expression actively regulates alcohol consumption by rats, paralleling this previous observation in mice. Overall, these findings underscore the importance of mesocorticolimbic glutamate activity in alcohol abuse/dependence and suggest that Homer2b and/or its constituents may serve as molecular targets for the treatment of these disorders.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Proteínas Portadoras/fisiología , Núcleo Accumbens/metabolismo , Consumo de Bebidas Alcohólicas/genética , Consumo de Bebidas Alcohólicas/psicología , Animales , Proteínas de Andamiaje Homer , Masculino , Microdiálisis/métodos , Ratas , Ratas Wistar
14.
Int J Neuropsychopharmacol ; 19(2)2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26232789

RESUMEN

BACKGROUND: Postsynaptically generated 2-arachidonoylglycerol activates the presynaptic cannabinoid type-1 receptor, which is involved in synaptic plasticity at both glutamatergic and GABAergic synapses. However, the differential function of 2-arachidonoylglycerol signaling at glutamatergic vs GABAergic synapses in the context of animal behavior has not been investigated yet. METHODS: Here, we analyzed the role of 2-arachidonoylglycerol signaling selectively in hippocampal glutamatergic neurons. Monoacylglycerol lipase, the primary degrading enzyme of 2-arachidonoylglycerol, is expressed at presynaptic sites of excitatory and inhibitory neurons. By adeno-associated virus-mediated overexpression of monoacylglycerol lipase in glutamatergic neurons of the mouse hippocampus, we selectively interfered with 2-arachidonoylglycerol signaling at glutamatergic synapses of these neurons. RESULTS: Genetic modification of monoacylglycerol lipase resulted in a 50% decrease in 2-arachidonoylglycerol tissue levels without affecting the content of the second major endocannabinoid anandamide. A typical electrophysiological read-out for 2-arachidonoylglycerol signaling is the depolarization-induced suppression of excitation and of inhibition. Elevated monoacylglycerol lipase levels at glutamatergic terminals selectively impaired depolarization-induced suppression of excitation, while depolarization-induced suppression of inhibition was not significantly changed. At the behavioral level, mice with impaired hippocampal glutamatergic 2-arachidonoylglycerol signaling exhibited increased anxiety-like behavior but showed no alterations in aversive memory formation and seizure susceptibility. CONCLUSION: Our data indicate that 2-arachidonoylglycerol signaling selectively in hippocampal glutamatergic neurons is essential for the animal's adaptation to aversive situations.


Asunto(s)
Ansiedad/metabolismo , Ácidos Araquidónicos/metabolismo , Endocannabinoides/metabolismo , Ácido Glutámico/metabolismo , Glicéridos/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Convulsiones/metabolismo , Animales , Ansiedad/psicología , Masculino , Ratones , Ratones Endogámicos C57BL , Convulsiones/psicología , Transducción de Señal/fisiología
15.
Addict Biol ; 20(1): 148-57, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24118426

RESUMEN

Withdrawal from a history of extended access to self-administered cocaine produces a time-dependent intensification of drug seeking, which might relate to a cocaine-induced imbalance in the relative expression of constitutively expressed Homer1 versus Homer2 isoforms within the ventromedial aspect of the prefrontal cortex (vmPFC). Thus, we employed immunoblotting to examine the relation between cue-reinforced lever pressing at 3- versus 30-day withdrawal from a 10-day history of extended access (6 hours/day) to intravenous cocaine (0.25 mg/infusion) or saline (Sal6h), and the expression of Homer1b/c and Homer2a/b within the vmPFC versus the more dorsomedial aspect of this structure (dmPFC). Behavioral studies employed adeno-associated virus (AAV) vectors to reverse cocaine-elicited changes in the relative expression of Homer1 versus Homer2 isoforms and tested animals for cocaine prime-, and cue-induced responding following extinction training. Cocaine self-administration elevated both Homer1b/c and Homer2a/b levels within the vmPFC at 3-day withdrawal, and the rise in Homer2a/b persisted for at least 30 days. dmPFC Homer levels did not change as a function of self-administration history. Reversing the relative increase in Homer2 versus Homer1 expression via Homer1c overexpression or Homer2b knockdown failed to influence cue-reinforced lever pressing when animals were tested in a drug-free state, but both AAV treatments prevented cocaine-primed reinstatement of lever-pressing behavior. These data suggest that a cocaine-elicited imbalance in the relative expression of constitutively expressed Homer2 versus Homer1 within the vmPFC is necessary for the capacity of cocaine to reinstate drug-seeking behavior, posing drug-induced changes in vmPFC Homer expression as a molecular trigger contributing to drug-elicited relapse.


Asunto(s)
Proteínas Portadoras/efectos de los fármacos , Trastornos Relacionados con Cocaína/metabolismo , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Animales , Proteínas Portadoras/metabolismo , Comportamiento de Búsqueda de Drogas/fisiología , Proteínas de Andamiaje Homer , Corteza Prefrontal/metabolismo , Ratas , Ratas Sprague-Dawley , Recurrencia
16.
J Neurochem ; 128(5): 686-700, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24117625

RESUMEN

The WWC1 gene has been genetically associated with human episodic memory performance, and its product KIdney/BRAin protein (KIBRA) has been shown to interact with the atypical protein kinase protein kinase M ζ (PKMζ). Although recently challenged, PKMζ remains a candidate postsynaptic regulator of memory maintenance. Here, we show that PKMζ is subject to rapid proteasomal degradation and that KIBRA is both necessary and sufficient to counteract this process, thus stabilizing the kinase and maintaining its function for a prolonged time. We define the binding sequence on KIBRA, a short amino acid motif near the C-terminus. Both hippocampal knock-down of KIBRA in rats and KIBRA knock-out in mice result in decreased learning and memory performance in spatial memory tasks supporting the notion that KIBRA is a player in episodic memory. Interestingly, decreased memory performance is accompanied by decreased PKMζ protein levels. We speculate that the stabilization of synaptic PKMζ protein levels by KIBRA may be one mechanism by which KIBRA acts in memory maintenance. KIBRA/WWC1 has been genetically associated with human episodic memory. KIBRA has been shown to be post-synaptically localized, but its function remained obscure. Here, we show that KIBRA shields PKMζ, a kinase previously linked to memory maintenance, from proteasomal degradation via direct interaction. KIBRA levels in the rodent hippocampus correlate closely both to spatial memory performance in rodents and to PKMζ levels. Our findings support a role for KIBRA in memory, and unveil a novel function for this protein.


Asunto(s)
Proteínas Portadoras/fisiología , Proteínas Co-Represoras/fisiología , Aprendizaje/fisiología , Memoria/fisiología , Proteína Quinasa C/fisiología , Secuencia de Aminoácidos , Animales , Reacción de Prevención/fisiología , Conducta Animal/fisiología , Western Blotting , Proteínas Portadoras/metabolismo , Proteínas Co-Represoras/metabolismo , Dependovirus/genética , Prueba de Complementación Genética , Hipocampo/metabolismo , Hipocampo/fisiología , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Datos de Secuencia Molecular , Fosfoproteínas , Reacción en Cadena de la Polimerasa , Unión Proteica , Proteína Quinasa C/metabolismo , Ratas , Ratas Wistar , Técnicas Estereotáxicas
17.
PLoS One ; 8(6): e65646, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23799030

RESUMEN

Recombinant adeno-associated virus (AAV) vectors are versatile tools for gene transfer to the central nervous system (CNS) and proof-of-concept studies in adult rodents have shown that the use of cell type-specific promoters is sufficient to target AAV-mediated transgene expression to glia. However, neurological disorders caused by glial pathology usually have an early onset. Therefore, modelling and treatment of these conditions require expanding the concept of targeted glial transgene expression by promoter selectivity for gene delivery to the immature CNS. Here, we have investigated the AAV-mediated green fluorescent protein (GFP) expression driven by the myelin basic protein (MBP) or glial fibrillary acidic protein (GFAP) promoters in the developing mouse brain. Generally, the extent of transgene expression after infusion at immature stages was widespread and higher than in adults. The GFAP promoter-driven GFP expression was found to be highly specific for astrocytes following vector infusion to the brain of neonates and adults. In contrast, the selectivity of the MBP promoter for oligodendrocytes was poor following neonatal AAV delivery, but excellent after vector injection at postnatal day 10. To extend these findings obtained in naïve mice to a disease model, we performed P10 infusions of AAV-MBP-GFP in aspartoacylase (ASPA)-deficient mouse mutants presenting with early onset oligodendrocyte pathology. Spread of GFP expression and selectivity for oligodendrocytes in ASPA-mutants was comparable with our observations in normal animals. Our data suggest that direct AAV infusion to the developing postnatal brain, utilising cellular promoters, results in targeted and long-term transgene expression in glia. This approach will be relevant for disease modelling and gene therapy for the treatment of glial pathology.


Asunto(s)
Astrocitos/metabolismo , Dependovirus/genética , Proteína Ácida Fibrilar de la Glía/genética , Proteína Básica de Mielina/genética , Oligodendroglía/metabolismo , Regiones Promotoras Genéticas , Factores de Edad , Animales , Animales Recién Nacidos , Astrocitos/virología , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/virología , Enfermedad de Canavan/patología , Enfermedad de Canavan/terapia , Células Cultivadas , Expresión Génica , Terapia Genética/métodos , Vectores Genéticos , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Ratones Endogámicos C57BL , Oligodendroglía/virología , Especificidad de Órganos , Transgenes
18.
Sci Rep ; 2: 697, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23019518

RESUMEN

We recently reported expression of hematopoietic growth factor GM-CSF and its receptor (GM-CSFR) in CNS neurons. Here we evaluated this system in learning and memory formation using GM-CSF deficient mice. In complementation, GM-CSF signalling was manipulated specifically in adult murine hippocampus by adeno-associated virus (AAV)-mediated GM-CSFR alpha overexpression or knock-down. GM-CSF ablation caused various hippocampus and amygdala-dependent deficits in spatial and fear memory while rendering intact basic parameters like motor function, inherent anxiety, and pain threshold levels. Corroborating these data, spatial memory of AAV-injected mice was positively correlated with GM-CSFRα expression levels. Hippocampal neurons of knock-out mice showed markedly pruned dendritic trees, reduced spine densities, and lower percentages of mature spines. Despite such morphological alterations, long-term potentiation (LTP) was unimpaired in the knock-out hippocampus. Collectively, these results suggest that GM-CSF signalling plays a major role in structural plasticity relevant to learning and memory.


Asunto(s)
Cognición/fisiología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Animales , Ansiedad/genética , Ansiedad/metabolismo , Conducta Animal , Dependovirus/genética , Vectores Genéticos/genética , Hipocampo/metabolismo , Hipocampo/patología , Potenciación a Largo Plazo , Masculino , Aprendizaje por Laberinto , Memoria , Ratones , Ratones Noqueados , Destreza Motora , Neuronas/citología , Neuronas/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Transducción Genética
19.
Endocrinology ; 153(9): 4136-43, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22778221

RESUMEN

Cannabinoid type 1 (CB(1)) receptor activation is generally considered a powerful orexigenic signal and inhibition of the endocannabinoid system is beneficial for the treatment of obesity and related metabolic diseases. The hypothalamus plays a critical role in regulating energy balance by modulating both food intake and energy expenditure. Although CB(1) receptor signaling has been implicated in the modulation of both these mechanisms, a complete understanding of its role in the hypothalamus is still lacking. Here we combined a genetic approach with the use of adeno-associated viral vectors to delete the CB(1) receptor gene in the adult mouse hypothalamus and assessed the impact of such manipulation on the regulation of energy balance. Viral-mediated deletion of the CB(1) receptor gene in the hypothalamus led to the generation of Hyp-CB(1)-KO mice, which displayed an approximately 60% decrease in hypothalamic CB(1) receptor mRNA levels. Hyp-CB(1)-KO mice maintained on a normocaloric, standard diet showed decreased body weight gain over time, which was associated with increased energy expenditure and elevated ß(3)-adrenergic receptor and uncoupling protein-1 mRNA levels in the brown adipose tissue but, surprisingly, not to changes in food intake. Additionally, Hyp-CB(1)-KO mice were insensitive to the anorectic action of the hormone leptin (5 mg/kg) and displayed a time-dependent hypophagic response to the CB(1) inverse agonist rimonabant (3 mg/kg). Altogether these findings suggest that hypothalamic CB(1) receptor signaling is a key determinant of energy expenditure under basal conditions and reveal its specific role in conveying the effects of leptin and pharmacological CB1 receptor antagonism on food intake.


Asunto(s)
Metabolismo Energético/fisiología , Hipotálamo/metabolismo , Receptor Cannabinoide CB1/metabolismo , Animales , Calorimetría Indirecta , Ingestión de Alimentos/efectos de los fármacos , Metabolismo Energético/genética , Vectores Genéticos/genética , Hibridación Fluorescente in Situ , Leptina/farmacología , Masculino , Ratones , Ratones Noqueados , Piperidinas/farmacología , Pirazoles/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor Cannabinoide CB1/genética , Rimonabant
20.
J Vis Exp ; (57): e3348, 2011 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-22143312

RESUMEN

In recent years recombinant adeno-associated viral vectors (AAV) have become increasingly valuable for in vivo studies in animals, and are also currently being tested in human clinical trials. Wild-type AAV is a non-pathogenic member of the parvoviridae family and inherently replication-deficient. The broad transduction profile, low immune response as well as the strong and persistent transgene expression achieved with these vectors has made them a popular and versatile tool for in vitro and in vivo gene delivery. rAAVs can be easily and cheaply produced in the laboratory and, based on their favourable safety profile, are generally given a low safety classification. Here, we describe a method for the production and titering of chimeric rAAVs containing the capsid proteins of both AAV1 and AAV2. The use of these so-called chimeric vectors combines the benefits of both parental serotypes such as high titres stocks (AAV1) and purification by affinity chromatography (AAV2). These AAV serotypes are the best studied of all AAV serotypes, and individually have a broad infectivity pattern. The chimeric vectors described here should have the infectious properties of AAV1 and AAV2 and can thus be expected to infect a large range of tissues, including neurons, skeletal muscle, pancreas, kidney among others. The method described here uses heparin column purification, a method believed to give a higher viral titer and cleaner viral preparation than other purification methods, such as centrifugation through a caesium chloride gradient. Additionally, we describe how these vectors can be quickly and easily titered to give accurate reading of the number of infectious particles produced.


Asunto(s)
Adenoviridae/genética , Adenoviridae/aislamiento & purificación , Vectores Genéticos/genética , Vectores Genéticos/aislamiento & purificación , Cultivo de Virus/métodos , Adenoviridae/clasificación , Vectores Genéticos/clasificación , Células HEK293 , Humanos , Riñón/citología , Plásmidos/genética , Transfección/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA