Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Exp Parasitol ; 251: 108569, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37330107

RESUMEN

Malaria is transmitted by infected female Anopheles mosquitoes, and An. arabiensis is a main malaria vector in arid African countries. Like other anophelines, its life cycle comprises of three aquatic stages; egg, larva, and pupa, followed by a free flying adult stage. Current vector control interventions using synthetic insecticides target these stages using adulticides or less commonly, larvicides. With escalating insecticide resistance against almost all conventional insecticides, identification of agents that simultaneously act at multiple stages of Anopheles life cycle presents a cost-effective opportunity. A further cost-effective approach would be the discovery of such insecticides from natural origin. Interestingly, essential oils present as potential sources of cost-effective and eco-friendly bioinsecticides. This study aimed to identify essential oil constituents (EOCs) with potential toxic effects against multiple stages of An. arabiensis life cycle. Five EOCs were assessed for inhibition of Anopheles egg hatching and ability to kill larvae, pupae and adult mosquitoes of An. arabiensis species. One of these EOCs, namely methyleugenol, exhibited potent Anopheles egg hatchability inhibition with an IC50 value of 0.51 ± 0.03 µM compared to propoxur (IC50: 5.13 ± 0.62 µM). Structure-activity relationship study revealed that methyleugenol and propoxur share a 1,2-dimethoxybenze moiety that may be responsible for the observed egg-hatchability inhibition. On the other hand, all five EOCs exhibited potent larvicidal activity with LC50 values less than 5 µM, with four of them; cis-nerolidol, trans-nerolidol, (-)-α-bisabolol, and farnesol, also possessing potent pupicidal effects (LC50 < 5 µM). Finally, all EOCs showed only moderate lethality against adult mosquitoes. This study reports for the first time, methyleugenol, (-)-α-bisabolol and farnesol as potent bioinsecticides against early life stages of An. arabiensis. This synchronized activity against Anopheles aquatic stages shows a prospect to integrate EOCs into existing adulticide-based vector control interventions.


Asunto(s)
Anopheles , Insecticidas , Malaria , Aceites Volátiles , Animales , Femenino , Insecticidas/farmacología , Aceites Volátiles/farmacología , Propoxur/farmacología , Farnesol/farmacología , Mosquitos Vectores , Larva , Estadios del Ciclo de Vida
2.
Parasitol Int ; 95: 102749, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36898498

RESUMEN

Malaria vector control relies on the use of insecticides for indoor residual spraying and long-lasting bed nets. However, insecticide resistance to pyrethroids among others, has escalated. Anopheles funestus, one of the major African malaria vectors, has attained significant levels of resistance to pyrethroids. Overexpressed P450 monooxygenases have been previously identified in pyrethroid resistant An. funestus. The escalating resistance against conventional insecticides signals an urgent need for identification of novel insecticides. Essential oils have gained recognition as promising sources of alternative natural insecticides. This study investigated six essential oil constituents, farnesol, (-)-α-bisabolol, cis-nerolidol, trans-nerolidol, methyleugenol, santalol (α and ß isomers) and essential oil of sandalwood, for the adulticidal effects against pyrethroid-resistant An. funestus strain. The susceptibility against these terpenoids were evaluated on both pyrethroid-susceptible and resistant An. funestus. Furthermore, the presence of overexpressed monooxygenases in resistant An. funestus was confirmed. Results showed that both the pyrethroid-susceptible and resistant An. funestus were susceptible to three EOCs; cis-nerolidol, trans-nerolidol and methyleugenol. On the other hand, the pyrethroid-resistant An. funestus survived exposure to both farnesol and (-)-α-bisabolol. This study however does not show any direct association of the overexpressed Anopheles monooxygenases and the efficacy of farnesol and (-)-α-bisabolol. The enhanced activity of these terpenoids against resistant An. funestus that has been pre-exposed to a synergist, piperonyl butoxide, suggests their potential effectiveness in combination with monooxygenase inhibitors. This study proposes that cis-nerolidol, trans-nerolidol and methyleugenol are potential agents for further investigation as novel bioinsecticides against pyrethroid-resistant An. funestus strain.


Asunto(s)
Anopheles , Insecticidas , Malaria , Aceites Volátiles , Piretrinas , Animales , Insecticidas/farmacología , Piretrinas/farmacología , Aceites Volátiles/farmacología , Farnesol/farmacología , Control de Mosquitos , Mosquitos Vectores , Oxigenasas de Función Mixta
3.
PLoS One ; 17(11): e0277363, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36350894

RESUMEN

Current studies on Anopheles anticholinesterase insecticides are focusing on identifying agents with high selectivity towards Anopheles over mammalian targets. Acetylcholinesterase (AChE) from electric eel is often used as the bioequivalent enzyme to study ligands designed for activity and inhibition in human. In this study, previously identified derivatives of a potent AChE, donepezil, that have exhibited low activity on electric eel AChE were assessed for potential AChE-based larvicidal effects on four African malaria vectors; An. funestus, An. arabiensis, An. gambiae and An. coluzzii. This led to the identification of four larvicidal agents with a lead molecule, 1-benzyl-N-(thiazol-2-yl) piperidine-4-carboxamide 2 showing selectivity for An. arabiensis as a larvicidal AChE agent. Differential activities of this molecule on An. arabiensis and electric eel AChE targets were studied through molecular modelling. Homology modelling was used to generate a three-dimensional structure of the An. arabiensis AChE for this binding assay. The conformation of this molecule and corresponding interactions with the AChE catalytic site was markedly different between the two targets. Assessment of the differences between the AChE binding sites from electric eel, human and Anopheles revealed that the electric eel and human AChE proteins were very similar. In contrast, Anopheles AChE had a smaller cysteine residue in place of bulky phenylalanine group at the entrance to the catalytic site, and a smaller aspartic acid residue at the base of the active site gorge, in place of the bulky tyrosine residues. Results from this study suggest that this difference affects the ligand orientation and corresponding interactions at the catalytic site. The lead molecule 2 also formed more favourable interactions with An. arabiensis AChE model than other Anopheles AChE targets, possibly explaining the observed selectivity among other assessed Anopheles species. This study suggests that 1-benzyl-N-(thiazol-2-yl) piperidine-4-carboxamide 2 may be a lead compound for designing novel insecticides against Anopheles vectors with reduced toxic potential on humans.


Asunto(s)
Anopheles , Insecticidas , Animales , Humanos , Acetilcolinesterasa/metabolismo , Donepezilo/farmacología , Insecticidas/farmacología , Mosquitos Vectores , Mamíferos/metabolismo
4.
Sci Transl Med ; 14(667): eabo7219, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36260689

RESUMEN

Compounds acting on multiple targets are critical to combating antimalarial drug resistance. Here, we report that the human "mammalian target of rapamycin" (mTOR) inhibitor sapanisertib has potent prophylactic liver stage activity, in vitro and in vivo asexual blood stage (ABS) activity, and transmission-blocking activity against the protozoan parasite Plasmodium spp. Chemoproteomics studies revealed multiple potential Plasmodium kinase targets, and potent inhibition of Plasmodium phosphatidylinositol 4-kinase type III beta (PI4Kß) and cyclic guanosine monophosphate-dependent protein kinase (PKG) was confirmed in vitro. Conditional knockdown of PI4Kß in ABS cultures modulated parasite sensitivity to sapanisertib, and laboratory-generated P. falciparum sapanisertib resistance was mediated by mutations in PI4Kß. Parasite metabolomic perturbation profiles associated with sapanisertib and other known PI4Kß and/or PKG inhibitors revealed similarities and differences between chemotypes, potentially caused by sapanisertib targeting multiple parasite kinases. The multistage activity of sapanisertib and its in vivo antimalarial efficacy, coupled with potent inhibition of at least two promising drug targets, provides an opportunity to reposition this pyrazolopyrimidine for malaria.


Asunto(s)
Antimaláricos , Plasmodium , Animales , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Plasmodium falciparum , Inhibidores mTOR , 1-Fosfatidilinositol 4-Quinasa , Guanosina Monofosfato , Estadios del Ciclo de Vida , Serina-Treonina Quinasas TOR , Sirolimus , Mamíferos
5.
Molecules ; 27(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36296618

RESUMEN

The insect nervous system is critical for its functional integrity. The cholinergic system, of which acetylcholinesterase (AChE) is a key enzyme, is essential to the Anopheles (consisting of major malaria vector species) nervous system. Furthermore, the nervous system is also the primary target site for insecticides used in malaria vector control programs. Insecticides, incorporated in insecticide-treated nets and used for indoor residual spraying, are a core intervention employed in malaria vector control. However, Anopheles resistance against these insecticides has grown rapidly. Due to this major setback, novel agents with potential activity against resistant Anopheles and/or capacity to overcome resistance against current WHO-approved insecticides are urgently needed. The essential oils have the potential to be natural sources of novel insecticides with potential to inhibit the Anopheles AChE target. In the current review, the scientific evidence highlights the ability of essential oils and specific essential oil constituents to serve as anticholinesterase insecticides. For this reason, the published data from scientific databases on the essential oils and essential oil constituents on anticholinesterase, ovicidal, larvicidal, pupicidal and adulticidal activities were analyzed. The identification of major constituents in active essential oils and their possible influence on the biological activity have also been critically evaluated. Furthermore, the toxicity to mammals as well as potential activity against the mammalian AChE target has also been reviewed. The importance of identifying novel potent insecticides from essential oils has been discussed, in relation to human safety and cost-effectiveness. Finally, the critical insights from this review can be used to inform future researchers towards potent and safe anticholinesterase insecticides for the management of Anopheles malaria vectors.


Asunto(s)
Anopheles , Insecticidas , Malaria , Aceites Volátiles , Animales , Humanos , Insecticidas/farmacología , Inhibidores de la Colinesterasa/farmacología , Acetilcolinesterasa , Aceites Volátiles/farmacología , Mosquitos Vectores , Malaria/prevención & control , Control de Mosquitos , Mamíferos
6.
Nat Commun ; 12(1): 269, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33431834

RESUMEN

Chemical matter is needed to target the divergent biology associated with the different life cycle stages of Plasmodium. Here, we report the parallel de novo screening of the Medicines for Malaria Venture (MMV) Pandemic Response Box against Plasmodium asexual and liver stage parasites, stage IV/V gametocytes, gametes, oocysts and as endectocides. Unique chemotypes were identified with both multistage activity or stage-specific activity, including structurally diverse gametocyte-targeted compounds with potent transmission-blocking activity, such as the JmjC inhibitor ML324 and the antitubercular clinical candidate SQ109. Mechanistic investigations prove that ML324 prevents histone demethylation, resulting in aberrant gene expression and death in gametocytes. Moreover, the selection of parasites resistant to SQ109 implicates the druggable V-type H+-ATPase for the reduced sensitivity. Our data therefore provides an expansive dataset of compounds that could be redirected for antimalarial development and also point towards proteins that can be targeted in multiple parasite life cycle stages.


Asunto(s)
Antimaláricos/uso terapéutico , Descubrimiento de Drogas , Malaria/tratamiento farmacológico , Malaria/transmisión , Pandemias , Aedes/parasitología , Animales , Antimaláricos/química , Antimaláricos/farmacología , Análisis por Conglomerados , Relación Dosis-Respuesta a Droga , Células Hep G2 , Humanos , Concentración 50 Inhibidora , Estadios del Ciclo de Vida/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/parasitología , Malaria/epidemiología , Masculino , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo
7.
Proc Natl Acad Sci U S A ; 117(50): 31583-31590, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33262284

RESUMEN

Advances in genomics have led to an appreciation that introgression is common, but its evolutionary consequences are poorly understood. In recent species radiations the sharing of genetic variation across porous species boundaries can facilitate adaptation to new environments and generate novel phenotypes, which may contribute to further diversification. Most Anopheles mosquito species that are of major importance as human malaria vectors have evolved within recent and rapid radiations of largely nonvector species. Here, we focus on one of the most medically important yet understudied anopheline radiations, the Afrotropical Anopheles funestus complex (AFC), to investigate the role of introgression in its diversification and the possible link between introgression and vector potential. The AFC comprises at least seven morphologically similar species, yet only An. funestus sensu stricto is a highly efficient malaria vector with a pan-African distribution. Based on de novo genome assemblies and additional whole-genome resequencing, we use phylogenomic and population genomic analyses to establish species relationships. We show that extensive interspecific gene flow involving multiple species pairs has shaped the evolutionary history of the AFC since its diversification. The most recent introgression event involved a massive and asymmetrical movement of genes from a distantly related AFC lineage into An. funestus, an event that predated and plausibly facilitated its subsequent dramatic geographic range expansion across most of tropical Africa. We propose that introgression may be a common mechanism facilitating adaptation to new environments and enhancing vectorial capacity in Anopheles mosquitoes.


Asunto(s)
Anopheles/genética , Flujo Génico , Introgresión Genética , Malaria/transmisión , Mosquitos Vectores/genética , Adaptación Fisiológica/genética , África , Distribución Animal , Animales , Anopheles/parasitología , Genoma de los Insectos/genética , Geografía , Humanos , Malaria/parasitología , Mosquitos Vectores/parasitología , Filogenia
8.
Trans R Soc Trop Med Hyg ; 111(1): 38-40, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28371834

RESUMEN

Background: In a mosquito sterile insect technique programme the ideal scenario is to release male mosquitoes only. However, because there are currently no sex separation strategies which guarantee total female elimination, this study investigated the effect of irradiation on physiological and reproductive fitness of females of an Anopheles arabiensis genetic sexing strain. Methods: Female pupae were irradiated at 70 Gy and the effects of irradiation on adult emergence, longevity, blood-feeding capability, mating ability, fecundity and fertility were assessed. Results and conclusion: Irradiation reduced adult emergence and fecundity but did not affect adult survivorship, mating and blood feeding ability, which suggests that irradiated female mosquitoes can transmit disease pathogens.


Asunto(s)
Anopheles/efectos de la radiación , Rayos gamma , Insectos Vectores/efectos de la radiación , Control de Mosquitos/métodos , Pupa/efectos de la radiación , Animales , Anopheles/crecimiento & desarrollo , Conducta Animal/efectos de la radiación , Conducta Alimentaria/efectos de la radiación , Femenino , Fertilidad/efectos de la radiación , Humanos , Insectos Vectores/crecimiento & desarrollo , Estadios del Ciclo de Vida/efectos de la radiación , Pupa/crecimiento & desarrollo , Reproducción/efectos de la radiación , Conducta Sexual Animal/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA