Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
BMC Infect Dis ; 24(1): 793, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112975

RESUMEN

BACKGROUND: Sepsis is a life-threatening condition that is characterized by multiorgan dysfunction and caused by dysregulated cytokine networks, which are closely associated with sepsis progression and outcomes. However, currently available treatment strategies that target cytokines have failed. Thus, this study aimed to investigate the interplay between genetically predicted circulating concentrations of cytokines and the outcomes of sepsis and to identify potential targets for sepsis treatment. METHODS: Data related to 35 circulating cytokines in 31,112 individuals (including 11,643 patients with sepsis) were included in genome-wide association studies (GWASs) from the UK Biobank and FinnGen consortia. A bidirectional two-sample Mendelian randomization (MR) analysis was performed using single nucleotide polymorphisms (SNPs) to evaluate the causal effects of circulating cytokines on sepsis outcomes and other cytokines. RESULTS: A total of 35 inflammatory cytokine genes were identified in the GWASs, and 11 cytokines, including Interleukin-1 receptor antagonist (IL-1ra), macrophage inflammatory protein 1 (MIP1α), IL-16, et al., were associated with sepsis outcome pairs according to the selection criteria of the cis-pQTL instrument. Multiple MR methods verified that genetically predicted high circulating levels of IL-1ra or MIP1α were negatively correlated with genetic susceptibility to risk of sepsis, including sepsis (28-day mortality), septicaemia, streptococcal and pneumonia-derived septicaemia (P ≤ 0.01). Furthermore, genetic susceptibility of sepsis outcomes except sepsis (28-day mortality) markedly associated with the circulating levels of five cytokines, including active plasminogen activator inhibitor (PAI), interleukin 7 (IL-7), tumour necrosis factor alpha (TNF-α), beta nerve growth factor (NGF-ß), hepatic growth factor (HGF) (P < 0.05). Finally, we observed that the causal interaction network between MIP1α or IL-1ra and other cytokines (P < 0.05). CONCLUSIONS: This comprehensive MR analysis provides insights into the potential causal mechanisms that link key cytokines, particularly MIP1α, with risk of sepsis, and the findings suggest that targeting MIP1α may be a potential strategy for preventing sepsis.


Asunto(s)
Citocinas , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Sepsis , Humanos , Sepsis/genética , Citocinas/sangre , Citocinas/genética , Masculino , Femenino , Predisposición Genética a la Enfermedad , Persona de Mediana Edad
2.
Inflammation ; 47(3): 891-908, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38240986

RESUMEN

Sepsis-induced acute liver injury (ALI) is common in intensive care units. Angiotensin-converting enzyme 2 (ACE2) plays a vital role in hepatic fibrosis and steatosis; however, its role in sepsis-induced ALI remains unclear. This study found that hepatic ACE2 expression in cecal ligation and puncture (CLP)-treated mice significantly decreased 24 h after CLP. ACE2-transgenic (TG) mice exhibited a significant improvement in CLP-induced ALI, accompanied by the inhibition of hepatocyte apoptosis, oxidative stress, and inflammation, while ACE2-knockout mice demonstrated an opposite trend. During sepsis-induced ALI, ACE2-TG could also elevate the Ang-(1-7) and Mas receptor (MasR) levels in liver tissues. Interestingly, the MasR inhibitor A779 abrogated the favorable effects of ACE2 on CLP-induced ALI. In a bone marrow transplantation experiment, the ACE2-TG transplantation group showed significantly improved inflammation and liver dysfunction, less hepatocyte apoptosis, and reduced oxidative stress after CLP compared with the wild-type transplantation group. In contrast, the ACE2-knockout group showed poor inflammatory response and liver dysfunction, significantly more hepatocyte apoptosis, and elevated oxidative stress than the wild-type transplantation group after CLP. ACE2 protects against sepsis-induced ALI by inhibiting hepatocyte apoptosis, oxidative stress, and inflammation via the Ang-(1-7)-Mas receptor axis. Thus, targeting ACE2 may be a promising novel strategy for preventing and treating sepsis-induced ALI.


Asunto(s)
Angiotensina I , Enzima Convertidora de Angiotensina 2 , Fragmentos de Péptidos , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas , Receptores Acoplados a Proteínas G , Sepsis , Animales , Enzima Convertidora de Angiotensina 2/metabolismo , Sepsis/complicaciones , Sepsis/metabolismo , Angiotensina I/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ratones , Fragmentos de Péptidos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Células Mieloides/metabolismo , Apoptosis , Ratones Noqueados , Estrés Oxidativo , Peptidil-Dipeptidasa A/metabolismo , Ratones Transgénicos , Hepatocitos/metabolismo , Hígado/patología , Hígado/metabolismo
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167048, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38296117

RESUMEN

Persistent pressure overload commonly leads to pathological cardiac hypertrophy and remodeling, ultimately leading to heart failure (HF). Cardiac remodeling is associated with the involvement of immune cells and the inflammatory response in pathogenesis. The macrophage-1 antigen (Mac-1) is specifically expressed on leukocytes and regulates their migration and polarization. Nonetheless, the involvement of Mac-1 in cardiac remodeling and HF caused by pressure overload has not been determined. The Mac-1-knockout (KO) and wild-type (WT) mice were subjected to transverse aortic constriction (TAC) for 6 weeks. Echocardiography and pressure-volume loop assessments were used to evaluate cardiac function, and cardiac remodeling and macrophage infiltration and polarization were estimated by histopathology and molecular techniques. The findings of our study demonstrated that Mac-1 expression was markedly increased in hearts subjected to TAC treatment. Moreover, compared with WT mice, Mac-1-KO mice exhibited dramatically ameliorated TAC-induced cardiac dysfunction, hypertrophy, fibrosis, oxidative stress and apoptosis. The potential positive impacts may be linked to the inhibition of macrophage infiltration and M1 polarization via reductions in NF-kB and STAT1 expression and upregulation of STAT6. In conclusion, this research reveals a new function of Mac-1 deficiency in reducing pathological cardiac remodeling and HF caused by pressure overload. Additionally, inhibiting Mac-1 could be a potential treatment option for patients with HF in a clinical setting.


Asunto(s)
Insuficiencia Cardíaca , Antígeno de Macrófago-1 , Humanos , Ratones , Animales , Antígeno de Macrófago-1/metabolismo , Remodelación Ventricular/genética , Transducción de Señal , Insuficiencia Cardíaca/metabolismo , Cardiomegalia/metabolismo , Ratones Noqueados , Macrófagos/metabolismo
4.
J Adv Res ; 55: 17-31, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36822392

RESUMEN

INTRODUCTION: Leukocyte infiltration is an early event during cardiac remodeling frequently leading to heart failure (HF). Integrins mediate leukocyte infiltration during inflammation. However, the importance of specific integrins in hypertensive cardiac remodeling is still unclear. OBJECTIVES: To elucidate the significance of CD11b in hypertensive cardiac remodeling. METHODS: Angiotensin (Ang II) or deoxycorticosterone acetate (DOCA)-salt was used to induce cardiac remodeling in mice of gene knockout (KO), bone marrow (BM) chimera, and the CD11b neutralizing antibody or agonist leukadherin-1 (LA1) treatment. RESULTS: Our microarray data showed that integrin subunits Itgam (CD11b) and Itgb2 (CD18) were the most highly upregulated in Ang II-infused hearts. CD11b expression and CD11b/CD18+ myelomonocytes were also time-dependently increased. KO or pharmacological blockade of CD11b greatly attenuated cardiac remodeling and macrophage infiltration and M1 polarization induced by Ang II or DOCA-salt. This protection was verified in wild-type mice transplanted with CD11b-deficient BM cells. Conversely, administration of CD11b agonist LA1 showed the opposite effects. Further, CD11b KO reduced Ang II-induced macrophage adhesion and M1 polarization, leading to reduction of cardiomyocyte enlargement and fibroblast differentiation in vitro. The numbers of CD14+CD11b+CD18+ monocytes and CD15+CD11b+CD18+ granulocytes were obviously higher in HF patients than in normal controls. CONCLUSION: Our data demonstrate an important role of CD11b+ myeloid cells in hypertensive cardiac remodeling, and suggest that HF may benefit from targeting CD11b.


Asunto(s)
Acetato de Desoxicorticosterona , Insuficiencia Cardíaca , Hipertensión , Humanos , Animales , Ratones , Remodelación Ventricular/fisiología , Acetato de Desoxicorticosterona/efectos adversos , Macrófagos/metabolismo , Hipertensión/metabolismo , Integrinas
5.
Redox Biol ; 69: 103004, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141575

RESUMEN

Angiotensin converting enzyme 2 (ACE2) is a new identified member of the renin-angiotensin-aldosterone system (RAAS) that cleaves angiotensin II (Ang II) to Ang (1-7), which exerts anti-inflammatory and antioxidative activities via binding with Mas receptor (MasR). However, the functional role of ACE2 in sepsis-related hypotension remains unknown. Our results indicated that sepsis significantly reduced blood pressure and led to disruption between ACE-Ang II and ACE2-Ang (1-7) balance. ACE2 knock-in mice exhibited improved sepsis-induced mortality, hypotension and vascular dysfunction, while ACE2 knockout mice exhibited the opposite effects. Bone marrow transplantation and in vitro experiments confirmed that myeloid ACE2 exerted a protective role by suppressing oxidative stress, NO production and macrophage polarization via the Ang (1-7)-MasR-NF-κB and STAT1 pathways. Thus, ACE2 on myeloid cells could protect against sepsis-mediated hypotension and vascular dysfunction, and upregulating ACE2 may represent a promising therapeutic option for septic patients with hypotension.


Asunto(s)
Hipotensión , Sepsis , Humanos , Ratones , Animales , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Proto-Oncogenes Mas , Angiotensina II/farmacología , Fragmentos de Péptidos/farmacología , Hipotensión/etiología , Sepsis/complicaciones , Macrófagos/metabolismo
6.
Eur J Pharmacol ; 957: 176011, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37633323

RESUMEN

The proteasome is the main complex responsible for maintaining intracellular protein homeostasis, impairment of which is associated with cardiac ischaemia/reperfusion (I/R) injury. The small molecule TCH-165 has been found to activate the 20S proteasome to remove disordered proteins in multiple myeloma and glioblastoma. However, the preventive effect of TCH-165 against I/R-mediated cardiac impairment in mice remains largely unknown. Here, a cardiac I/R model was established in mice. Heart function was assessed with echocardiography. Cardiac infarction, myocyte death, and superoxide level were evaluated by 2,3,5-triphenyltetrazolium chloride (TTC)-Evans blue staining, terminal deoxynucleotidyl transferase-mediated dUTP nick and labelling (TUNEL) assay and immunostaining, respectively. Our results showed that TCH-165 treatment markedly ameliorated I/R-mediated cardiac dysfunction and decreased the infarct size, apoptosis, and superoxide levels. Mechanistically, TCH-165 increased immunoproteasome subunit expression/activity, increasing pro-fission protein dynamin-1-like protein (DNM1L, also known as DRP1) degradation and the expression of the pro-fusion proteins mitofusin 1/2 (Mfn1/2) and thereby leading to mitochondrial fission/fusion balance. In vitro experiments confirmed that inhibition of proteasome activity by epoxomicin abolished the protective effect of TCH-165 against hypoxia/reoxygenation (H/R)-induced increases in cardiomyocyte apoptosis, superoxide production and mitochondrial fission. In summary, TCH-165 is a newly discovered inducer of immunoproteasome activity that exerts a preventive effect against cardiac I/R damage by targeting Drp1 degradation, indicating that it may be as a potential therapeutic candidate for ischaemic heart disease.


Asunto(s)
Enfermedad de la Arteria Coronaria , Infarto del Miocardio , Isquemia Miocárdica , Animales , Ratones , Complejo de la Endopetidasa Proteasomal , Dinámicas Mitocondriales , Superóxidos , Corazón , Infarto del Miocardio/prevención & control
7.
Cell Mol Life Sci ; 80(8): 231, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37501008

RESUMEN

Mitochondrial dynamics are critical for maintaining mitochondrial morphology and function during cardiac ischemia and reperfusion (I/R). The immunoproteasome complex is an inducible isoform of the proteasome that plays a key role in modulating inflammation and some cardiovascular diseases, but the importance of immunoproteasome catalytic subunit ß2i (also known as LMP10 or MECL1) in regulating mitochondrial dynamics and cardiac I/R injury is largely unknown. Here, using ß2i-knockout (KO) mice and rAAV9-ß2i-injected mice, we discovered that ß2i expression and its trypsin-like activity were significantly attenuated in the mouse I/R myocardium and in patients with myocardial infarction (MI). Moreover, ß2i-KO mice exhibited greatly enhanced I/R-mediated cardiac dysfunction, infarct size, myocyte apoptosis and oxidative stress accompanied by excessive mitochondrial fission due to Mfn1/2 and Drp1 imbalance. Conversely, cardiac overexpression of ß2i in mice injected with recombinant adeno-associated virus 9 (rAAV9)-ß2i ameliorated cardiac I/R injury. Mechanistically, I/R injury reduced ß2i expression and activity, which increased the expression of the E3 ligase Parkin protein and promoted the degradation of mitofusin 1/2 (Mfn1/2), leading to excessive mitochondrial fission. In conclusion, our data suggest for the first time that ß2i exerts a protective role against cardiac I/R injury and that increasing ß2i expression may be a new therapeutic option for cardiac ischemic disease in clinical practice. Graphical abstract showing how the immunoproteasome subunit ß2i ameliorates myocardial I/R injury by regulating Parkin-Mfn1/2-mediated mitochondrial fusion.


Asunto(s)
Daño por Reperfusión Miocárdica , Ratones , Animales , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Dinámicas Mitocondriales/fisiología , Corazón , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Apoptosis , Ratones Noqueados , Hidrolasas/metabolismo , Miocitos Cardíacos/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo
8.
Int Immunopharmacol ; 115: 109716, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36652759

RESUMEN

Sepsis-induced cardiomyopathy (SIC) is the main complication and a leading cause of death in intensive care units. S100a8/a9 is a calcium-binding protein that participates in various inflammatory diseases; however, its role in sepsis-induced cardiomyopathy and the underlying mechanism remains to be explored. Here, septic cardiomyopathy was induced with cecal ligation and puncture (CLP) in S100a9-knockout (KO) mice lacking the heterodimer S100a8/a9 or wild-type (WT) mice administered with an S100a9-specific inhibitor Paquinimod (Paq), which prevents the binding of S100a9 toTLR4. Our results showed that S100a8/a9 expression in the heart peaked 24 h following the CLP operation, declined at 48 h and returned to baseline at 72 h. Loss of S100a9 by knockout in mice protected against CLP-induced mortality, cardiac dysfunction, myocyte apoptosis, recruitment of Mac-2+ macrophages, superoxide production, and the expression of pro-inflammatory cytokines genes compared with WT mice. Moreover, S100a9-KO significantly attenuated CLP-induced activation of the ERK1/2-Drp1 (S616) pathway, excessive mitochondrial fission, and mitochondrial respiration dysfunction. In contrast, activation of ERK1/2 with its agonist tBHQ reversed the inhibitory effects of S100a9-knockout on CLP-induced cardiomyopathy and mitochondrial dysfunction. Finally, administration of Paq to WT mice markedly prevented the CLP-induced cardiomyopathy mitochondrial fission and dysfunction compared with vehicle control. In summary, our data reveal, for the first time, that S100a8/a9 plays a critical role in mediating SIC, presumably by activating TLR4-ERK1/2-Drp1-dependent mitochondrial fission and dysfunction and highlight that blockage of S100a8/a9 may be a promising therapeutic strategy to prevent SIC in patients with sepsis.


Asunto(s)
Cardiomiopatías , Sepsis , Animales , Ratones , Calgranulina A/metabolismo , Calgranulina B/genética , Cardiomiopatías/etiología , Sistema de Señalización de MAP Quinasas , Ratones Noqueados , Dinámicas Mitocondriales , Sepsis/complicaciones
9.
Hypertension ; 80(1): 57-69, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36377602

RESUMEN

BACKGROUND: Leukocyte adhesion to endothelium is an early inflammatory response and is mainly controlled by the ß2-integrins. However, the role of integrin CD11b/CD18 in the pathogenesis of hypertension and vascular dysfunction is unclear. METHODS: Hypertension was established by angiotensin II (490 ng/kg·per min) or deoxycorticosterone acetate salt. Hypertensive responses were studied in CD11b-deficient (CD11b-/-) mice, bone marrow transplanted and wild-type (WT) mice that were administered anti-CD11b neutralizing antibody or agonist leukadherin-1. Blood pressure was monitored with tail-cuff method and radiotelemetry. Blood and vascular inflammatory cells were assessed by flow cytometry. Aortic remodeling and function were examined using histology and aortic ring analysis. Cell adhesion and migration were evaluated in vitro. The relationship between circulating CD11b+ immune cells and hypertension was analyzed in patients with hypertension. RESULTS: We found that CD11b and CD18 expression as well as the CD45+CD11b+CD18+ myeloid cells were highly increased in the aorta of angiotensin II-infused mice. Ablation or pharmacological inhibition of CD11b in mice significantly alleviated hypertension, aortic remodeling, superoxide generation, vascular dysfunction, and the infiltration of CD11b+ macrophages through reducing macrophage adhesion and migration. These effects were confirmed in WT mice reconstituted with CD11b-deficient bone marrow cells. Conversely, angiotensin II-induced hypertensive response was exacerbated by CD11b agonist leukadherin-1. Notably, circulating CD45+CD11b+CD18+ myeloid cells and the ligand levels in hypertensive patients were significantly higher than in normotensive controls. CONCLUSIONS: We demonstrated a critical significance of CD11b+ myeloid cells in hypertension and vascular dysfunction. Targeting CD11b may represent a novel therapeutic option for hypertension.


Asunto(s)
Hipertensión , Integrinas , Ratones , Animales , Angiotensina II/farmacología , Macrófagos
10.
Cell Biol Toxicol ; 39(5): 2113-2131, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-35218467

RESUMEN

Persistent myocardial hypertrophy frequently leads to heart failure (HF). Intramyocardial triacylglycerol (TAG) accumulation is closely related with cardiac remodeling and abnormal contractile function. Adipose triglyceride lipase (ATGL), a key enzyme in TAG metabolism, regulates cardiac function. However, its associated molecular pathways have not been fully defined. Here, cardiac hypertrophy and HF were induced in wild-type (WT) or ATGL knockout (KO) mice through transverse aortic constriction (TAC) for up to 4 weeks. TAC in WT mice significantly reduced cardiac function and autophagy while enhancing left ventricular hypertrophy, interstitial fibrosis, inflammatory response, superoxide generation, and cardiomyocyte apoptosis, accompanied with upregulation of the proteasome activity, reduction of PTEN level and activation of AKT-mTOR signaling, and these effects were further aggravated in ATGL KO mice. Interestingly, ATGL KO-mediated cardiac dysfunction and remodeling were markedly reversed by proteasome inhibitor (epoxomicin) or autophagic activator (rapamycin), but accelerated by PTEN inhibitor (VO-OHpic) or autophagy inhibitor 3-MA. Mechanistically, ATGL KO upregulated proteasome expression and activity, which in turn mediates PTEN degradation leading to activation of AKT-mTOR signaling and inhibition of autophagy, thereby enhancing hypertrophic remodeling and HF. In conclusion, ATGL KO contributes to TAC-induced cardiac dysfunction and adverse remodeling probably associated with the proteasome-PTEN-mTOR-autophagy pathway. Therefore, modulation of this pathway may have a therapeutic effect potential for hypertrophic heart disease. TAC-induced downregulation of ATGL results in increased proteasome (ß1i/ß2i/ß5i) activity, which in turn promotes degradation of PTEN and activation of AKT-mTOR signaling and then inhibits autophagy and ATP production, thereby leading to cardiac hypertrophic remodeling and dysfunction. Conversely, blocking proteasome activity or activating autophagy attenuates these effects.


Asunto(s)
Insuficiencia Cardíaca , Complejo de la Endopetidasa Proteasomal , Ratones , Animales , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Ratones Noqueados , Autofagia , Miocitos Cardíacos/metabolismo , Ratones Endogámicos C57BL
11.
Front Pharmacol ; 13: 1021361, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386139

RESUMEN

Hypertension is one of the common causes of pathological cardiac hypertrophy and a major risk for morbidity and mortality of cardiovascular diseases worldwide. Ubiquitin-Specific Protease 7 (USP7), the first identified deubiquitinating enzymes, participated in a variety of biological processes, such as cell proliferation, DNA damage response, tumourigenesis, and apoptosis. However, its role and mechanism in cardiac remodeling remain unclear. Here, our data indicated that USP7 expression was increased during Ang II-induced cardiac hypertrophy and remodeling in mice and humans with heart failure, while the administration of its inhibitor p22077 attenuated cardiac hypertrophy, cardiac fibrosis, inflammation, and oxidase stress. Mechanistically, the administration of p22077 inhibited the multiple signaling pathways, including AKT/ERK, TGF-ß/SMAD2/Collagen I/Collagen III, NF-κB/NLRP3, and NAPDH oxidases (NOX2 and NOX4). Taken together, these findings demonstrate that USP7 may be a new therapeutic target for hypertrophic remodeling and HF.

12.
Front Cardiovasc Med ; 9: 957903, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36304536

RESUMEN

Atrial fibrosis and atrial inflammation are associated with the pathogenesis of atrial fibrillation (AF). Basic helix-loop-helix family member E40 (Bhlhe40) is an important transcription factor, which is involved in tumors, inflammation, apoptosis, viral infection, and hypoxia. However, its role and molecular mechanism in AF remain unclear. In this study, a mouse model of AF was induced by Ang II infusion. The atrial diameter was evaluated using echocardiography. Induction and duration of AF were measured by programmed electrical stimulation. Atrial structural remodeling was detected using routine histologic examinations. Our results showed that Bhlhe40 was significantly upregulated in angiotensin II (Ang II)-stimulated atrial cardiomyocytes and atrial tissues and in tissues from patients with AF. Cardiac-specific knockdown of Bhlhe40 in mice by a type 9 recombinant adeno-associated virus (rAAV9)-shBhlhe40 significantly ameliorated Ang II-induced atrial dilatation, atrial fibrosis, and atrial inflammation, as well as the inducibility and duration of AF. Mechanistically, cardiac-specific knockdown of Bhlhe40 attenuated Ang II-induced activation of NF-κB/NLRP3, TGF-1ß/Smad2 signals, the increased expression of CX43, and the decreased expression of Kv4.3 in the atria. This is the first study to suggest that Bhlhe40 is a novel regulator of AF progression, and identifying Bhlhe40 may be a new therapeutic target for hypertrophic remodeling and heart failure.

13.
Redox Biol ; 56: 102438, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35981418

RESUMEN

Inflammation plays an important role in hypertensive retinal vascular injury and subsequent retinopathy. Monocyte chemotaxis via CXCL1-CXCR2 binding has been implicated in various cardiovascular diseases, but the function of CXCL1-CXCR2 signalling involved in retinopathy, which was investigated as angiotensin II (Ang II)-induced retinopathy, is unclear. In our study, we established a hypertensive retinopathy (HR) model by Ang II infusion (3000 ng/min/kg) for 3 weeks. To determine the involvement of CXCR2 signalling, we used CXCR2 knockout (KO) mice or C57BL/6J wild-type (WT) mice as experimental subjects. The mice were treated with a CXCL1 neutralizing antibody or SB225002 (the specific CXCR2 inhibitor). Our results showed that after Ang II treatment, the mRNA levels of CXCL1 and CXCR2 and the number of CXCR2+ inflammatory cells were significantly elevated. Conversely, unlike in the IgG control group, the CXCL1 neutralizing antibody greatly reduced the increase in central retinal thickness induced by Ang II infusion, arteriolar remodelling, superoxide production, and retinal dysfunction in WT mice. Furthermore, Ang II infusion induced arteriolar remodelling, infiltration of Iba1+ macrophages, the production of oxidative stress, and retinal dysfunction, but the symptoms were ameliorated in CXCR2 KO mice and SB225002-treated mice. These protective effects were related to the reduction in the number of CXCR2+ immune cells, particularly macrophages, and the decrease in proinflammatory cytokine (IL-1ß, IL-6, TNF-ɑ, and MCP-1) expression in Ang II-treated retinas. Notably, serum CXCL1 levels and the number of CXCR2+ monocytes/neutrophils were higher in HR patients than in healthy controls. In conclusion, this study provides new evidence that the CXCL1-CXCR2 axis plays a vital role in the pathogenesis of hypertensive retinopathy, and selective blockade of CXCL1-CXCR2 activation may be a potential treatment for HR.


Asunto(s)
Angiotensina II , Retinopatía Hipertensiva , Angiotensina II/farmacología , Animales , Anticuerpos Neutralizantes , Quimiocina CXCL1 , Citocinas/metabolismo , Retinopatía Hipertensiva/inducido químicamente , Inmunoglobulina G , Interleucina-6 , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Compuestos de Fenilurea , ARN Mensajero , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Superóxidos , Factor de Necrosis Tumoral alfa
14.
Front Physiol ; 13: 903164, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721566

RESUMEN

Septic cardiomyopathy is the main complication and cause of death of severe sepsis with limited therapeutic strategy. However, the molecular mechanism of sepsis-induced cardiac injury remains unclear. The present study was designed to investigate differentially expressed genes (DEGs) involved in the pathogenesis of septic cardiomyopathy induced by cecal ligation and puncture (CLP) in mice. Male C57BL/6J mice (8-10 weeks old) were subjected to CLP with 21-gauge needles for 24, 48, and 72 h. Myocardial function was assessed by echocardiography. The pathological changes of the heart were evaluated by hematoxylin and eosin as well as immunohistochemical staining. Time series RNA sequencing was utilized to investigate the gene expression profiles. CLP surgery resulted in a significant decrease of animal survival rate and left ventricle contractile function, and an increase in cardiac dilation and infiltration of proinflammatory cells including Mac-2+ macrophages in a time-dependent manner. RNA sequencing identified 5,607 DEGs in septic myocardium at 24, 48, and 72 h after CLP operation. Moreover, gene ontology analysis revealed that these DEGs were mainly associated with the biological processes, including cell adhesion, immune system process, inflammatory response, and positive regulation of cell migration. KEGG pathway enrichment analysis indicated that Staphylococcus aureus infection, osteoclast differentiation, leishmaniasis, and ECM-receptor interaction were significantly altered in septic hearts. Notably, Pik3r1 and Pik3r5 were localized in the center of the gene co-expression network, and were markedly upregulated in CLP-induced septic myocardium. Further, blocking PI3Kγ by the specific inhibitor CZC24832 significantly protected against sepsis-induced cardiac impairment. The present study uncovers the gene expression signatures of CLP-induced myocardial injury and sheds light on the role of Pik3r5 in septic cardiomyopathy.

15.
Oxid Med Cell Longev ; 2022: 6196173, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35602095

RESUMEN

Myocardial ischemia/reperfusion injury (I/RI) is closely associated with energy substrate metabolism. Fibronectin 1 (Fn1) was markedly elevated in the heart of I/R pigs and ischemic patients, but its role in myocardial I/RI is controversial and the precise mechanism involved remains elusive. Herein, we tested whether blockage of Fn1 with its inhibitor (fibronectin tetrapeptide, RGDS) would alleviate myocardial I/RI. Wild-type (WT) mice were administered with RGDS once 3 h before I/R operation and once at 24 or 48 h postreperfusion, and sacrificed at 24 or 72 h post-I/R, respectively. Cardiac function was evaluated by echocardiography. Myocardial infarction size, apoptosis, fibrosis, and inflammation were examined via histological staining. Uptake of glucose and fatty acids were detected by positron emission tomography (PET) and computer tomography (CT) with [18F]-2-fluoro-2-deoxy-D-glucose (FDG) and [18F]-fluoro-6-thia-heptadecanoic acid (FTHA), respectively. Our results showed that administration of RGDS to mice remarkably limited the I/R-induced myocardial infarct size, myocyte apoptosis, inflammation, oxidative stress, and fibrosis and improved cardiac contractile dysfunction. These protective effects were associated with upregulation of the AMP/ATP ratio and the activation of LKB1-AMPK signaling, which subsequently increased AS160-GLUT4-mediated glucose and fatty acid uptake, improved mitochondrial dynamic imbalance, and inactivated TGF-ß and NF-κB signals in the I/R heart. In conclusion, the current study identified that blocking Fn1 protects against myocardial I/RI likely through activating the LKB1-AMPK-dependent signals and highlights that inhibition of Fn1 may be a novel therapeutic option for treating ischemic heart diseases.


Asunto(s)
Infarto del Miocardio , Daño por Reperfusión Miocárdica , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Monofosfato/uso terapéutico , Animales , Fibronectinas , Fibrosis , Glucosa/metabolismo , Inflamación , Ratones , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/metabolismo , Transducción de Señal
16.
BMC Public Health ; 21(1): 2237, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34886821

RESUMEN

OBJECTIVE: To evaluate cognitive impairment and risk factors of elders in high fluoride drinking water areas and investigate whether DKK1 is involved in this disorder. METHODS: MoCA-B and AD-8 were used to measure the cognitive functions of 272 and 172 subjects over the age of 60 came from the high and normal fluoride drinking water areas respectively, general information and peripheral blood were collected, the level of SOD, GSH and MDA were measured, mRNA level of DKK1, the concentration of blood fluoride and the polymorphism of APOE were tested. RESULTS: The blood fluoride concentration, mRNA level of DKK1 and ratio of abnormal cognitive function of subjects in high fluorine drinking water areas were higher than those in normal areas. The level of SOD of subjects in high fluorine drinking water was low compared with those in normal areas. The level of MDA and GSH had no difference between the two crowds in different fluorine drinking water areas. There were differences in cigarette smoking, education, dental status, hypertension, hyperlipidaemia and APOE results between the two crowds in different fluorine drinking water areas. The mRNA level of DKK1 and the level of cognitive function showed a positive correlation and DKK1 was one of five risk factors involved in cognitive impairment of older people living in high fluorosis areas. CONCLUSIONS: The cognitive functions could be impaired in the older people living in high fluoride drinking water areas, and DKK1 may as a potential intervention point of this brain damage process need attention.


Asunto(s)
Disfunción Cognitiva , Agua Potable , Fluorosis Dental , Anciano , Atención , Disfunción Cognitiva/epidemiología , Fluoruros/efectos adversos , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Prevalencia , Factores de Riesgo , Abastecimiento de Agua
17.
J Thorac Oncol ; 16(8): 1349-1358, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33975004

RESUMEN

INTRODUCTION: Programmed cell death protein-1 (PD-1) and programmed death-ligand 1 (PD-L1) blockade is currently widely used in the treatment of metastatic NSCLC. Despite available biomarker stratification, clinical responses vary. Thus, the search for novel biomarkers with improved response prediction is ongoing. Previously, using mass cytometry or cytometry by time-of-flight (CyTOF), our group demonstrated that CD39+CD8+ immune cells represent tumor antigen-specific, cytotoxic T cells in treatment-naive NSCLC. We hypothesized that accurate quantitation of this T cell subset would predict immunotherapy outcome. METHODS: To translate this to a clinical setting, the present study compared CyTOF data with a range of clinically relevant methods, including conventional immunohistochemistry (IHC), multiplex IHC or immunofluorescence (mIHC), and gene expression assay by NanoString. RESULTS: Quantification using mIHC but not conventional IHC or NanoString correlated with the CyTOF results. The specificity and sensitivity of mIHC were then evaluated in a separate retrospective NSCLC cohort. CD39+CD8+ T cell proportion, as determined by mIHC, successfully stratified responders and nonresponders to PD-1 or PD-L1 inhibitors (objective response rate of 63.6%, compared with 0% for the negative group). This predictive capability was independent from other confounding factors, such as total CD8+ T cell proportion, CD39+ lymphocyte proportion, PD-L1 positivity, EGFR mutation status, and other clinicopathologic parameters. CONCLUSIONS: Our results suggest that the mIHC platform is a clinically relevant method to evaluate CD39+CD8+ T cell proportion and that this marker can serve as a potential biomarker that predicts response to PD-1 or PD-L1 blockade in patients with NSCLC. Further validation in additional NSCLC cohorts is warranted.


Asunto(s)
Antígeno B7-H1 , Neoplasias Pulmonares , Proteínas Reguladoras de la Apoptosis , Biomarcadores de Tumor/genética , Linfocitos T CD8-positivos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Receptor de Muerte Celular Programada 1 , Estudios Retrospectivos
18.
Sci Rep ; 11(1): 404, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33432117

RESUMEN

Up-regulation of long non-coding RNAs (lncRNAs), colon-cancer associated transcript (CCAT) 1 and 2, was associated with worse prognosis in colorectal cancer (CRC). Nevertheless, their role in predicting metastasis in early-stage CRC is unclear. We measured the expression of CCAT1, CCAT2 and their oncotarget, c-Myc, in 150 matched mucosa-tumour samples of early-stage microsatellite-stable Chinese CRC patients with definitive metastasis status by multiplex real-time RT-PCR assay. Expression of CCAT1, CCAT2 and c-Myc were significantly up-regulated in the tumours compared to matched mucosa (p < 0.0001). The expression of c-Myc in the tumours was significantly correlated to time to metastasis [hazard ratio = 1.47 (1.10-1.97)] and the risk genotype (GG) of rs6983267, located within CCAT2. Expression of c-Myc and CCAT2 in the tumour were also significantly up-regulated in metastasis-positive compared to metastasis-negative patients (p = 0.009 and p = 0.04 respectively). Nevertheless, integrating the expression of CCAT1 and CCAT2 by the Random Forest classifier did not improve the predictive values of ColoMet19, the mRNA-based predictor for metastasis previously developed on the same series of tumours. The role of these two lncRNAs is probably mitigated via their oncotarget, c-Myc, which was not ranked high enough previously to be included in ColoMet19.


Asunto(s)
Adenocarcinoma/diagnóstico , Neoplasias Colorrectales/diagnóstico , ARN Largo no Codificante/genética , Adenocarcinoma/genética , Adenocarcinoma/patología , Biomarcadores de Tumor/genética , Estudios de Casos y Controles , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Progresión de la Enfermedad , Elementos de Facilitación Genéticos/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis de la Neoplasia , Estadificación de Neoplasias , Polimorfismo de Nucleótido Simple , Pronóstico
19.
Aging (Albany NY) ; 12(21): 21959-21970, 2020 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-33161394

RESUMEN

BACKGROUND: The association between cigarette smoking and multiple system atrophy (MSA) has been debated. We conducted a systematic review and a meta-analysis to investigate this link. RESULTS: We identified 161 articles from database searching and bibliographic review. Five case-control studies satisfied the inclusion and exclusion criteria, and 435 and 352 healthy controls and MSA patients were examined. The prevalence of MSA amongst ever smokers was lower compared to never smokers (aOR=0.57; 95% CI, 0.29-1.14), although this result did not reach statistical significance. This was also observed for current and former smokers, with a stronger association for current smokers (aOR=0.63 vs aOR=0.96). CONCLUSIONS: There is a suggestion that smoking protects against MSA. Prospective studies in larger patient cohorts are required to further evaluate the cause-effect relationship and functional studies in cellular and animal models will provide mechanistic insights on their potential etiologic links. METHODS: PubMed and Cochrane Library were searched from inception to July 7, 2019 to identify case-control studies that analyzed smoking as an environmental risk or protective factor for MSA. Two authors independently extracted data and performed risk-of-bias and quality assessment. The random-effects model was assumed to account for between-study variance when pooling the crude and adjusted odds ratios.


Asunto(s)
Atrofia de Múltiples Sistemas/epidemiología , Fumar , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Prevalencia
20.
BMJ Open ; 10(9): e039422, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32998928

RESUMEN

INTRODUCTION: Diabetes has an increasing worldwide prevalence. It is known to be a predisposing factor for postoperative complications. Preoperative glycaemic control strategies should be pursued as glycaemic control could serve as a modifiable risk factor. Glycated haemoglobin (HbA1c), a marker of 3-month average glycaemic control, has been shown in meta-analyses to predict postoperative complications in cardiothoracic, bariatric and orthopaedic surgery. However, there is no meta-analysis in the major abdominal surgery population, in whom morbidity may be higher due to the nature of the surgery. Understanding the association between HbA1c and postoperative complications could help in preoperative risk prognostication, counselling and glycaemic target selection. The aim of this systematic review and meta-analysis is to evaluate all evidence on the association between preoperative HbA1c and postoperative complications in elective major abdominal surgery, and to investigate the threshold HbA1c level before postoperative complication rates increase. METHODS AND ANALYSIS: This review will be performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols guidelines. PubMed, Embase, Cochrane Central Register of Controlled Trials, Google Scholar and China National Knowledge Infrastructure will be searched for all original studies. Study selection, data extraction, risk of bias and quality assessment will be conducted by two independent reviewers. The primary outcome is the association between preoperative HbA1c and major postoperative complications (Clavien Dindo 3-5), and the secondary outcome is the association between HbA1c and overall postoperative complications. Data management and synthesis will be performed using Microsoft Excel and Stata to derive pool estimates. ETHICS AND DISSEMINATION: No ethics approval is required as only secondary data will be used. Findings will be disseminated through peer-reviewed journals and conference presentations. PROSPERO REGISTRATION NUMBER: CRD42020167347.


Asunto(s)
Glucemia , Procedimientos Quirúrgicos Electivos , China , Hemoglobina Glucada , Humanos , Metaanálisis como Asunto , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Revisiones Sistemáticas como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA