Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
ACS Omega ; 8(46): 44086-44092, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38027328

RESUMEN

Polyphosphate polymers are chains of phosphate monomers chemically bonded together via phosphoanhydride bonds. They are found in all prokaryotic and eukaryotic organisms and are among the earliest, most anionic, and most mysterious molecules known. They are everywhere, from small cellular components to additives in our food. There is a strong association between hyperphosphatemia and mortality. That is why it is crucial to assess how polyphosphates, as food additives, affect the quality of edible proteins. This study investigated the effect of inexpensive and widely used food additives (hexametaphosphate labeled as E452) on bakery items, meat products, fish, and soft drinks. Using various spectroscopic and microscopic techniques, we examined how hexametaphosphate affected the aggregation propensity, structure, and stability of a commonly used food protein: hen egg white lysozyme (HEWL). The solubility of HEWL is affected in a bimodal fashion by the concentration of hexametaphosphate. The bimodal concentration-dependent effect was also observed in the tertiary and secondary structural changes. Hexametaphosphate-induced HEWL aggregates were amorphous, as evidenced by ThT fluorescence, far-UV CD, and TEM imaging. This study showed that the food additive (hexametaphosphate) may denature and aggregate proteins and may lead to undesirable health issues.

2.
Sci Rep ; 13(1): 5073, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36977734

RESUMEN

The interaction between the stem-loop structure of the Alzheimer's amyloid precursor protein IRE mRNA and iron regulatory protein was examined by employing molecular docking and multi-spectroscopic techniques. A detailed molecular docking analysis of APP IRE mRNA∙IRP1 reveals that 11 residues are involved in hydrogen bonding as the main driving force for the interaction. Fluorescence binding results revealed a strong interaction between APP IRE mRNA and IRP1 with a binding affinity and an average binding sites of 31.3 × 106 M-1 and 1.0, respectively. Addition of Fe2+(anaerobic) showed a decreased (3.3-fold) binding affinity of APP mRNA∙IRP1. Further, thermodynamic parameters of APP mRNA∙IRP1 interactions were an enthalpy-driven and entropy-favored event, with a large negative ΔH (-25.7 ± 2.5 kJ/mol) and a positive ΔS (65.0 ± 3.7 J/mol·K). A negative ΔH value for the complex formation suggested the contribution of hydrogen bonds and van der Waals forces. The addition of iron increased the enthalpic contribution by 38% and decreased the entropic influence by 97%. Furthermore, the stopped-flow kinetics of APP IRE mRNA∙IRP1 also confirmed the complex formation, having the rate of association (kon) and the rate of dissociation (koff) as 341 µM-1 s-1, and 11 s-1, respectively. The addition of Fe2+ has decreased the rate of association (kon) by ~ three-fold, whereas the rate of dissociation (koff) has increased by ~ two-fold. The activation energy for APP mRNA∙IRP1 complex was 52.5 ± 2.1 kJ/mol. The addition of Fe2+ changed appreciably the activation energy for the binding of APP mRNA with IRP1. Moreover, circular dichroism spectroscopy has confirmed further the APP mRNA∙IRP1 complex formation and IRP1 secondary structure change with the addition of APP mRNA. In the interaction between APP mRNA and IRP1, iron promotes structural changes in the APP IRE mRNA∙IRP1 complexes by changing the number of hydrogen bonds and promoting a conformational change in the IRP1 structure when it is bound to the APP IRE mRNA. It further illustrates how IRE stem-loop structure influences selectively the thermodynamics and kinetics of these protein-RNA interactions.


Asunto(s)
Enfermedad de Alzheimer , Hierro , Humanos , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Hierro/metabolismo , Proteína 1 Reguladora de Hierro/metabolismo , Proteína 2 Reguladora de Hierro/genética , Proteínas Reguladoras del Hierro/genética , Simulación del Acoplamiento Molecular , Unión Proteica , Elementos de Respuesta , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis Espectral
3.
J Mol Recognit ; 36(6): e3009, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36841950

RESUMEN

Several proteins and peptides tend to form an amyloid fibril, causing a range of unrelated diseases, from neurodegenerative to certain types of cancer. In the native state, these proteins are folded and soluble. However, these proteins acquired ß-sheet amyloid fibril due to unfolding and aggregation. The conversion mechanism from well-folded soluble into amorphous or amyloid fibril is not well understood yet. Here, we induced unfolding and aggregation of hen egg-white lysozyme (HEWL) by reducing agent dithiothreitol and applied mechanical sheering force by constant shaking (1000 rpm) on the thermostat for 7 days. Our turbidity results showed that reduced HEWL rapidly formed aggregates, and a plateau was attained in nearly 5 h of incubation in both shaking and non-shaking conditions. The turbidity was lower in the shaking condition than in the non-shaking condition. The thioflavin T binding and transmission electron micrographs showed that reduced HEWL formed amorphous aggregates in both conditions. Far-UV circular dichroism results showed that reduced HEWL lost nearly all alpha-helical structure, and ß-sheet secondary structure was not formed in both conditions. All the spectroscopic and microscopic results showed that reduced HEWL formed amorphous aggregates under both conditions.


Asunto(s)
Amiloide , Muramidasa , Animales , Temperatura , Muramidasa/química , Amiloide/química , Dicroismo Circular , Concentración de Iones de Hidrógeno , Pollos/metabolismo
4.
Saudi Pharm J ; 31(2): 228-244, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36540698

RESUMEN

MERS-CoV belongs to the coronavirus group. Recent years have seen a rash of coronavirus epidemics. In June 2012, MERS-CoV was discovered in the Kingdom of Saudi Arabia, with 2,591 MERSA cases confirmed by lab tests by the end of August 2022 and 894 deaths at a case-fatality ratio (CFR) of 34.5% documented worldwide. Saudi Arabia reported the majority of these cases, with 2,184 cases and 813 deaths (CFR: 37.2%), necessitating a thorough understanding of the molecular machinery of MERS-CoV. To develop antiviral medicines, illustrative investigation of the protein in coronavirus subunits are required to increase our understanding of the subject. In this study, recombinant expression and purification of MERS-CoV (PLpro), a primary goal for the development of 22 new inhibitors, were completed using a high throughput screening methodology that employed fragment-based libraries in conjunction with structure-based virtual screening. Compounds 2, 7, and 20, showed significant biological activity. Moreover, a docking analysis revealed that the three compounds had favorable binding mood and binding free energy. Molecular dynamic simulation demonstrated the stability of compound 2 (2-((Benzimidazol-2-yl) thio)-1-arylethan-1-ones) the strongest inhibitory activity against the PLpro enzyme. In addition, disubstitutions at the meta and para locations are the only substitutions that may boost the inhibitory action against PLpro. Compound 2 was chosen as a MERS-CoV PLpro inhibitor after passing absorption, distribution, metabolism, and excretion studies; however, further investigations are required.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 243: 118776, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32829157

RESUMEN

The interaction of ferritin iron responsive element (IRE) mRNA with eIF4F was examined by fluorescence and circular dichroism spectroscopy. Fluorescence quenching data indicated that eIF4F contains one high affinity binding site for ferritin IRE RNA. The Scatchard analysis revealed strong binding affinity (Ka = 11.1 × 107 M-1) and binding capacity (n = 1.0) between IRE RNA and eIF4F. The binding affinity of IRE RNA for eIF4F decreased (~4-fold) as temperature increased (from 5 °C to 30 °C). The van't Hoff analysis revealed that IRE RNA binding to eIF4F is enthalpy-driven (ΔH = -47.1 ± 3.4 kJ/mol) and entropy-opposed (ΔS = -30.1 ± 1.5 J/mol/K). The addition of iron increased the enthalpic, while decreasing the entropic contribution towards the eIF4F•IRE RNA complex, resulting in favorable free energy (ΔG = -49.8 ± 2.8 kJ/mol). Thermodynamic values and ionic strength data suggest that the presence of iron increases hydrogen bonding and decreases hydrophobic interactions, leading to formation of a more stable complex. The interaction of IRE RNA with eIF4F at higher concentrations produced significant changes in the secondary structure of the protein, as revealed from the far-UV CD results, clearly illustrating the structural alterations resulted from formation of the eIF4F•IRE RNA complex. A Lineweaver-Burk plot showed an uncompetitive binding behavior between IRE RNA and m7G cap for the eIF4F, indicating that there are different binding sites on the eIF4F for the IRE RNA and the cap analog; molecular docking analysis further supports this notion. Our findings suggest that the eIF4F•IRE RNA complex formation is accompanied by an elevated hydrogen bonding and weakened hydrophobic interactions, leading to an overall conformational change, favored in terms of its free energy. The conformational change in the eIF4F structure, caused by the IRE RNA binding, provides a more stable platform for effective IRE translation in iron homeostasis.


Asunto(s)
Factor 4F Eucariótico de Iniciación , Ferritinas , Factor 4F Eucariótico de Iniciación/metabolismo , Ferritinas/genética , Hierro/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Termodinámica
6.
Saudi Pharm J ; 28(3): 238-245, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32194324

RESUMEN

Polyphenols has attained pronounced attention due to their beneficial values of health and found to prevent several chronic diseases. Here, we elucidated binding mechanism between frequently consumed polyphenol "tea catechin" and milk protein bovine beta-lactoglobulin (ß-Lg). We investigated the conformational changes of ß-Lg due to interaction with catechin using spectroscopic and in silico studies. Fluorescence quenching data (Stern-Volmer quenching constant) revealed that ß-Lg interacted with catechin via dynamic quenching. Thermodynamic data revealed that the interaction between ß-Lg and catechin is endothermic and spontaneously interacted mainly through hydrophobic interactions. The UV-Vis absorption and far-UV circular dichroism (CD) spectroscopy exhibited that the tertiary as well as secondary structure of ß-Lg distorted after interaction with catechin. Molecular docking and simulation studies also confirm that catechin binds at the central cavity of ß-Lg with high affinity (~105 M-1) and hydrophobic interactions play significant role in the formation of a stable ß-Lg-catechin complex.

7.
RSC Adv ; 10(71): 43751-43761, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-35519682

RESUMEN

Surfactant molecules stimulate amyloid fibrillation and conformational switching in proteins but the mechanisms by which they accomplish these effects are unclear. A cationic gemini surfactant, C16C4C16Br2, with two positively charged heads and two-16C hydrophobic tails induces the amyloid fibrillation of bovine liver catalase (BLC) in vitro at physiological pH. The BLC transformed into amyloid aggregates in the presence of low concentrations (2-150 µM) of C16C4C16Br2 at pH 7.4, as confirmed by the use of several biophysical techniques (Rayleigh light scattering (RLS), intrinsic fluorescence, thioflavin T fluorescence (ThT), far-UV circular dichroism, and transmission electron microscopy). The secondary structure of BLC also changed according to the concentration of C16C4C16Br2: the α-helical structure of BLC decreased in the presence of 2-100 µM of C16C4C16Br2 but at concentrations above 200 µM BLC regained a α-helical structure very similar to the native BLC. In silico molecular docking between BLC and C16C4C16Br2 suggest that the positively charged heads of the surfactant interact with Asp127 through attractive electrostatic interactions. Moreover, a Pi-cation electrostatic interaction and hydrophobic interactions also take place between the tails of the surfactant and BLC. The stability of the BLC-C16C4C16Br2 complex was confirmed by performing a molecular dynamics simulation and evaluating parameters such as root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (R g), and solvent accessible surface area (SASA). Apart from its aggregation inducing properties, the gemini surfactant itself causes toxicity to the cancerous cell (A549): which is confirmed by MTT assay. This work delivers new insight into the effect of cationic gemini surfactants in amyloid aggregation and paves the way to the rational design of new anti-amyloidogenic agents.

8.
Artículo en Inglés | MEDLINE | ID: mdl-30763917

RESUMEN

ß-lactoglobulin (BLG) is a well characterized milk protein and a model for folding and aggregation studies. Rutin is a quercetin based-flavanoid and a famous dietary supplement. It is a potential protector from coronary heart disease, cancers, and inflammatory bowel disease. In this study, amyloid fibrillation is reported in BLG at pH 2.0 and temperature 358 K. It is inhibited to some extent by rutin with a rate of 99.3 h-1 M-1. Amyloid fibrillation started taking place after 10 h of incubation and completed near 40 h at a rate of 16.6 × 10-3 h-1, with a plateau during 40-108 h. Disruption of tertiary structure of BLG and increased solvent accessibility of hydrophobic core seem to trigger intermolecular assembly. Increase in 7% ß-sheet structure at the cost of 10% α-helical structures and the electron micrograph of BLG fibrils at 108 h further support the formation of amyloid. Although it could not block amyloidosis completely, and even the time required to reach plateau remains the same, a decrease of growth rate from 16.6 × 10-3 to 13.5 × 10-3 h-1 was observed in the presence of 30.0 µM rutin. Rutin seems to block solvent accessibility of the hydrophobic core of BLG. A decrease in the fibril population was observed in electron micrographs, with the increase in rutin concentration. All evidences indicate reversal of fibrillation in BLG in the presence of rutin.


Asunto(s)
Amiloide/química , Lactoglobulinas/química , Quercetina/química , Rutina/química , Animales , Bovinos , Concentración de Iones de Hidrógeno , Dominios Proteicos , Estructura Secundaria de Proteína
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 187: 98-103, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-28666159

RESUMEN

Human mortalin is a Hsp70 mitochondrial protein that plays an essential role in the biogenesis of mitochondria. The deregulation of mortalin expression and its functions could lead to several age-associated disorders and some types of cancers. In the present study, we optimized the expression and purification of recombinant human mortalin by the use of two-step chromatography. Low temperature (18°C) and 0.5mM (IPTG) was required for optimum mortalin expression. Chaperone activity of mortalin was assessed by the citrate synthase and insulin protection assay, which suggested their protective role in mitochondria. Folding and unfolding assessments of mortalin were carried out in the presence of guanidine hydrochloride (GdnHCl) by intrinsic fluorescence measurement, ANS (8-analino 1-nephthlene sulfonic acid) binding and CD (circular dichroism) analysis. Under denaturing conditions, mortalin showed decrease in tryptophan fluorescence intensity along with a red shift of 11nm. Moreover, ANS binding studies illustrated decrease in hydrophobicity. CD measurement of mortalin showed a predominant helical structure. However, the secondary structure was lost at low concentration of GdnHCl (1M). We present a simple and robust method to produce soluble mortalin and warranted that chaperones are also susceptible to unfolding and futile to maintain protein homeostasis.


Asunto(s)
Proteínas HSP70 de Choque Térmico/aislamiento & purificación , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Dicroismo Circular , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/genética , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espectrometría de Fluorescencia
10.
Bioorg Med Chem ; 22(7): 2236-43, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24613627

RESUMEN

The high mutation rate of RNA viruses has resulted in limitation of vaccine effectiveness and increased emergence of drug-resistant viruses. New effective antivirals are therefore needed to control of the highly mutative RNA viruses. The n-butanol fraction of the stem bark of Mangifera indica exhibited inhibitory activity against influenza neuraminidase (NA) and coxsackie virus 3C protease. Bioassay guided phytochemical study of M. indica stem bark afforded two new compounds including one benzophenone C-glycoside (4) and one xanthone dimer (7), together with eleven known compounds. The structures of these isolated compounds were elucidated on the basis of spectroscopic evidences and correlated with known compounds. Anti-influenza and anti-coxsackie virus activities were evaluated by determining the inhibition of anti-influenza neuraminidase (NA) from pandemic A/RI/5+/1957 H2N2 influenza A virus and inhibition of coxsackie B3 virus 3C protease, respectively. The highest anti-influenza activity was observed for compounds 8 and 9 with IC50 values of 11.9 and 9.2µM, respectively. Compounds 8 and 9 were even more potent against coxsackie B3 virus 3C protease, with IC50 values of 1.1 and 2.0µM, respectively. Compounds 8 and 9 showed weak cytotoxic effect against human hepatocellular carcinoma and human epithelial carcinoma cell lines through MTT assay.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Antivirales/farmacología , Benzofenonas/farmacología , Taninos Hidrolizables/farmacología , Virus de la Influenza A/efectos de los fármacos , Mangifera/química , Inhibidores de Proteasas/farmacología , Proteasas Virales 3C , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Antivirales/química , Antivirales/aislamiento & purificación , Benzofenonas/química , Benzofenonas/aislamiento & purificación , Proliferación Celular/efectos de los fármacos , Cisteína Endopeptidasas/metabolismo , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Enterovirus Humano B/enzimología , Células HeLa , Células Hep G2 , Humanos , Taninos Hidrolizables/química , Taninos Hidrolizables/aislamiento & purificación , Estructura Molecular , Corteza de la Planta/química , Tallos de la Planta/química , Inhibidores de Proteasas/química , Inhibidores de Proteasas/aislamiento & purificación , Relación Estructura-Actividad , Células Tumorales Cultivadas , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA