Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Nucleic Acids Res ; 51(8): 3888-3902, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36999602

RESUMEN

To perform double-stranded DNA passage, type II topoisomerases generate a covalent enzyme-cleaved DNA complex (i.e. cleavage complex). Although this complex is a requisite enzyme intermediate, it is also intrinsically dangerous to genomic stability. Consequently, cleavage complexes are the targets for several clinically relevant anticancer and antibacterial drugs. Human topoisomerase IIα and IIß and bacterial gyrase maintain higher levels of cleavage complexes with negatively supercoiled over positively supercoiled DNA substrates. Conversely, bacterial topoisomerase IV is less able to distinguish DNA supercoil handedness. Despite the importance of supercoil geometry to the activities of type II topoisomerases, the basis for supercoil handedness recognition during DNA cleavage has not been characterized. Based on the results of benchtop and rapid-quench flow kinetics experiments, the forward rate of cleavage is the determining factor of how topoisomerase IIα/IIß, gyrase and topoisomerase IV distinguish supercoil handedness in the absence or presence of anticancer/antibacterial drugs. In the presence of drugs, this ability can be enhanced by the formation of more stable cleavage complexes with negatively supercoiled DNA. Finally, rates of enzyme-mediated DNA ligation do not contribute to the recognition of DNA supercoil geometry during cleavage. Our results provide greater insight into how type II topoisomerases recognize their DNA substrates.


Asunto(s)
Antineoplásicos , Topoisomerasa de ADN IV , Humanos , Topoisomerasa de ADN IV/genética , ADN Superhelicoidal , División del ADN , Lateralidad Funcional , ADN-Topoisomerasas de Tipo II/genética , ADN
2.
EMBO J ; 41(12): e110632, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35578785

RESUMEN

Topoisomerase II (TOP2) unlinks chromosomes during vertebrate DNA replication. TOP2 "poisons" are widely used chemotherapeutics that stabilize TOP2 complexes on DNA, leading to cytotoxic DNA breaks. However, it is unclear how these drugs affect DNA replication, which is a major target of TOP2 poisons. Using Xenopus egg extracts, we show that the TOP2 poisons etoposide and doxorubicin both inhibit DNA replication through different mechanisms. Etoposide induces TOP2-dependent DNA breaks and TOP2-dependent fork stalling by trapping TOP2 behind replication forks. In contrast, doxorubicin does not lead to appreciable break formation and instead intercalates into parental DNA to stall replication forks independently of TOP2. In human cells, etoposide stalls forks in a TOP2-dependent manner, while doxorubicin stalls forks independently of TOP2. However, both drugs exhibit TOP2-dependent cytotoxicity. Thus, etoposide and doxorubicin inhibit DNA replication through distinct mechanisms despite shared genetic requirements for cytotoxicity.


Asunto(s)
ADN-Topoisomerasas de Tipo II , Venenos , Animales , ADN , Replicación del ADN , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Doxorrubicina/farmacología , Etopósido/farmacología , Humanos , Vertebrados/genética , Vertebrados/metabolismo
3.
Cell Chem Biol ; 28(6): 743-745, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34143956

RESUMEN

Topoisomerase I is the target for a number of widely prescribed anticancer drugs that are based on camptothecin. In this issue of Cell Chemical Biology, Flor et al. (2020) demonstrate that the cellular response to camptothecin is mediated by lipid-derived electrophiles that are generated as a result of drug-induced oxidative stress.


Asunto(s)
ADN-Topoisomerasas de Tipo I , Venenos , Camptotecina/farmacología , ADN-Topoisomerasas de Tipo I/metabolismo , Inhibidores de Topoisomerasa I
4.
Biochemistry ; 60(21): 1630-1641, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34008964

RESUMEN

The extensive length, compaction, and interwound nature of DNA, together with its controlled and restricted movement in eukaryotic cells, create a number of topological issues that profoundly affect all of the functions of the genetic material. Topoisomerases are essential enzymes that modulate the topological structure of the double helix, including the regulation of DNA under- and overwinding and the removal of tangles and knots from the genome. Type II topoisomerases alter DNA topology by generating a transient double-stranded break in one DNA segment and allowing another segment to pass through the DNA gate. These enzymes are involved in a number of critical nuclear processes in eukaryotic cells, such as DNA replication, transcription, and recombination, and are required for proper chromosome structure and segregation. However, because type II topoisomerases generate double-stranded breaks in the genetic material, they also are intrinsically dangerous enzymes that have the capacity to fragment the genome. As a result of this dualistic nature, type II topoisomerases are the targets for a number of widely prescribed anticancer drugs. This article will describe the structure and catalytic mechanism of eukaryotic type II topoisomerases and will go on to discuss the actions of topoisomerase II poisons, which are compounds that stabilize DNA breaks generated by the type II enzyme and convert these essential enzymes into "molecular scissors." Topoisomerase II poisons represent a broad range of structural classes and include anticancer drugs, dietary components, and environmental chemicals.


Asunto(s)
ADN-Topoisomerasas de Tipo II/metabolismo , ADN-Topoisomerasas de Tipo II/fisiología , ADN-Topoisomerasas de Tipo II/ultraestructura , Antineoplásicos/química , ADN/química , Daño del ADN/genética , Daño del ADN/fisiología , Eucariontes/genética , Eucariontes/metabolismo , Genoma/genética , Humanos , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacología , Translocación Genética/genética
5.
J Med Chem ; 63(21): 12873-12886, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33079544

RESUMEN

We disclose a novel class of 6-amino-tetrahydroquinazoline derivatives that inhibit human topoisomerase II (topoII), a validated target of anticancer drugs. In contrast to topoII-targeted drugs currently in clinical use, these compounds do not act as topoII poisons that enhance enzyme-mediated DNA cleavage, a mechanism that is linked to the development of secondary leukemias. Instead, these tetrahydroquinazolines block the topoII function with no evidence of DNA intercalation. We identified a potent lead compound [compound 14 (ARN-21934) IC50 = 2 µM for inhibition of DNA relaxation, as compared to an IC50 = 120 µM for the anticancer drug etoposide] with excellent metabolic stability and solubility. This new compound also shows ~100-fold selectivity for topoIIα over topoß, a broad antiproliferative activity toward cultured human cancer cells, a favorable in vivo pharmacokinetic profile, and the ability to penetrate the blood-brain barrier. Thus, ARN-21934 is a highly promising lead for the development of novel and potentially safer topoII-targeted anticancer drugs.


Asunto(s)
ADN-Topoisomerasas de Tipo II/química , Quinidina/análogos & derivados , Inhibidores de Topoisomerasa II/química , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , ADN/química , ADN/metabolismo , División del ADN , ADN-Topoisomerasas de Tipo II/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Semivida , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Ratones , Quinidina/química , Quinidina/metabolismo , Quinidina/farmacología , Inhibidores de Topoisomerasa II/metabolismo , Inhibidores de Topoisomerasa II/farmacología
6.
Cell Rep ; 29(2): 422-436.e5, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31597101

RESUMEN

Termination of DNA replication occurs when two replication forks converge upon the same stretch of DNA. Resolution of topological stress by topoisomerases is crucial for fork convergence in bacteria and viruses, but it is unclear whether similar mechanisms operate during vertebrate termination. Using Xenopus egg extracts, we show that topoisomerase II (Top2) resolves topological stress to prevent converging forks from stalling during termination. Under these conditions, stalling arises due to an inability to unwind the final stretch of DNA ahead of each fork. By promoting fork convergence, Top2 facilitates all downstream events of termination. Converging forks ultimately overcome stalling independently of Top2, indicating that additional mechanisms support fork convergence. Top2 acts throughout replication to prevent the accumulation of topological stress that would otherwise stall converging forks. Thus, termination poses evolutionarily conserved topological problems that can be mitigated by careful execution of the earlier stages of replication.


Asunto(s)
Replicación del ADN , ADN-Topoisomerasas de Tipo II/metabolismo , Xenopus/metabolismo , Animales , ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Femenino , Humanos , Masculino , Modelos Biológicos , Complejos Multienzimáticos/metabolismo , Unión Proteica
7.
J Chem Inf Model ; 59(9): 4007-4017, 2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31449404

RESUMEN

Human type II topoisomerases (TopoII) are essential for controlling DNA topology within the cell. For this reason, there are a number of TopoII-targeted anticancer drugs that act by inducing DNA cleavage mediated by both TopoII isoforms (TopoIIα and TopoIIß) in cells. However, recent studies suggest that specific poisoning of TopoIIα may be a safer strategy for treating cancer. This is because poisoning of TopoIIß appears to be linked to the generation of secondary leukemia in patients. We recently reported that enzyme-mediated DNA cleavage complexes (in which TopoII is covalently linked to the cleaved DNA during catalysis) formed in the presence of the anticancer drug etoposide persisted approximately 3-fold longer with TopoIIα than TopoIIß. Notably, enhanced drug-target residence time may reduce the adverse effects of specific TopoIIα poisons. However, it is still not clear how to design drugs that are specific for the α isoform. In this study, we report the results of classical molecular dynamics (MD) simulations to comparatively analyze the molecular interactions formed within the TopoII/DNA/etoposide complex with both isoforms. We also used smoothed potential MD to estimate etoposide dissociation kinetics from the two isoform complexes. These extensive classical and enhanced sampling simulations revealed stabilizing interactions of etoposide with two serine residues (Ser763 and Ser800) in TopoIIα. These interactions are missing in TopoIIß, where both amino acids are alanine residues. This may explain the greater persistence of etoposide-stabilized cleavage complexes formed with Topo TopoIIα. These findings could be useful for the rational design of specific TopoIIα poisons.


Asunto(s)
Antineoplásicos/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Etopósido/metabolismo , Simulación de Dinámica Molecular , Terapia Molecular Dirigida , Antineoplásicos/farmacología , Dominio Catalítico , ADN-Topoisomerasas de Tipo II/química , Etopósido/farmacología , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Cinética
8.
Bioorg Med Chem Lett ; 28(17): 2961-2968, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30006062

RESUMEN

Etoposide is an anticancer drug that acts by inducing topoisomerase II-mediated DNA cleavage. Despite its wide use, etoposide is associated with some very serious side-effects including the development of treatment-related acute myelogenous leukemias. Etoposide targets both human topoisomerase IIα and IIß. However, the contributions of the two enzyme isoforms to the therapeutic vs. leukemogenic properties of the drug are unclear. In order to develop an etoposide-based drug with specificity for cancer cells that express an active polyamine transport system, the sugar moiety of the drug has been replaced with a polyamine tail. To analyze the effects of this substitution on the specificity of hybrid molecules toward the two enzyme isoforms, we analyzed the activity of a series of etoposide-polyamine hybrids toward human topoisomerase IIα and IIß. All of the compounds displayed an ability to induce enzyme-mediated DNA cleavage that was comparable to or higher than that of etoposide. Relative to the parent drug, the hybrid compounds displayed substantially higher activity toward topoisomerase IIß than IIα. Modeling studies suggest that the enhanced specificity may result from interactions with Gln778 in topoisomerase IIß. The corresponding residue in the α isoform is a methionine.


Asunto(s)
Etopósido/farmacología , Proteínas de Unión a Poli-ADP-Ribosa/antagonistas & inhibidores , Poliaminas/farmacología , Inhibidores de Topoisomerasa II/farmacología , ADN-Topoisomerasas de Tipo II/metabolismo , Relación Dosis-Respuesta a Droga , Etopósido/síntesis química , Etopósido/química , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Poliaminas/química , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II/síntesis química , Inhibidores de Topoisomerasa II/química
9.
Nucleic Acids Res ; 46(5): 2218-2233, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29447373

RESUMEN

Etoposide and other topoisomerase II-targeted drugs are important anticancer therapeutics. Unfortunately, the safe usage of these agents is limited by their indiscriminate induction of topoisomerase II-mediated DNA cleavage throughout the genome and by a lack of specificity toward cancer cells. Therefore, as a first step toward constraining the distribution of etoposide-induced DNA cleavage sites and developing sequence-specific topoisomerase II-targeted anticancer agents, we covalently coupled the core of etoposide to oligonucleotides centered on a topoisomerase II cleavage site in the PML gene. The initial sequence used for this 'oligonucleotide-linked topoisomerase inhibitor' (OTI) was identified as part of the translocation breakpoint of a patient with acute promyelocytic leukemia (APL). Subsequent OTI sequences were derived from the observed APL breakpoint between PML and RARA. Results indicate that OTIs can be used to direct the sites of etoposide-induced DNA cleavage mediated by topoisomerase IIα and topoisomerase IIß. OTIs increased levels of enzyme-mediated cleavage by inhibiting DNA ligation, and cleavage complexes induced by OTIs were as stable as those induced by free etoposide. Finally, OTIs directed against the PML-RARA breakpoint displayed cleavage specificity for oligonucleotides with the translocation sequence over those with sequences matching either parental gene. These studies demonstrate the feasibility of using oligonucleotides to direct topoisomerase II-mediated DNA cleavage to specific sites in the genome.


Asunto(s)
División del ADN/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/metabolismo , Etopósido/farmacología , Oligonucleótidos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Secuencia de Bases , Etopósido/química , Estudios de Factibilidad , Humanos , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Oligonucleótidos/química , Proteínas de Fusión Oncogénica/antagonistas & inhibidores , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacología
10.
Bioorg Med Chem Lett ; 27(20): 4687-4693, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28919339

RESUMEN

It has been proposed that xanthone derivatives with anticancer potential act as topoisomerase II inhibitors because they interfere with the ability of the enzyme to bind its ATP cofactor. In order to further characterize xanthone mechanism and generate compounds with potential as anticancer drugs, we synthesized a series of derivatives in which position 3 was substituted with different polyamine chains. As determined by DNA relaxation and decatenation assays, the resulting compounds are potent topoisomerase IIα inhibitors. Although xanthone derivatives inhibit topoisomerase IIα-catalyzed ATP hydrolysis, mechanistic studies indicate that they do not act at the ATPase site. Rather, they appear to function by blocking the ability of DNA to stimulate ATP hydrolysis. On the basis of activity, competition, and modeling studies, we propose that xanthones interact with the DNA cleavage/ligation active site of topoisomerase IIα and inhibit the catalytic activity of the enzyme by interfering with the DNA strand passage step.


Asunto(s)
Proteínas de Unión al ADN/antagonistas & inhibidores , Poliaminas/farmacología , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacología , Xantonas/farmacología , Adenosina Trifosfato/metabolismo , Antígenos de Neoplasias/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Sitios de Unión , Catálisis , Dominio Catalítico , ADN/metabolismo , División del ADN/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico , Poliaminas/química , Inhibidores de Topoisomerasa II/síntesis química , Xantonas/química
11.
Nucleic Acids Res ; 45(13): 7855-7869, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28541438

RESUMEN

DNA nano-structures present appealing new means for monitoring different molecules. Here, we demonstrate the assembly and utilization of a surface-attached double-stranded DNA catenane composed of two intact interlinked DNA nano-circles for specific and sensitive measurements of the life essential topoisomerase II (Topo II) enzyme activity. Topo II activity was detected via the numeric release of DNA nano-circles, which were visualized at the single-molecule level in a fluorescence microscope upon isothermal amplification and fluorescence labeling. The transition of each enzymatic reaction to a micrometer sized labeled product enabled quantitative detection of Topo II activity at the single decatenation event level rendering activity measurements in extracts from as few as five cells possible. Topo II activity is a suggested predictive marker in cancer therapy and, consequently, the described highly sensitive monitoring of Topo II activity may add considerably to the toolbox of individualized medicine where decisions are based on very sparse samples.


Asunto(s)
ADN-Topoisomerasas de Tipo II/metabolismo , ADN Encadenado/química , ADN Encadenado/metabolismo , Antígenos de Neoplasias/análisis , Antígenos de Neoplasias/metabolismo , Secuencia de Bases , ADN-Topoisomerasas de Tipo II/análisis , ADN Encadenado/genética , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Proteínas Recombinantes/análisis , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
12.
Genome Res ; 27(7): 1238-1249, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28385713

RESUMEN

Type II topoisomerases orchestrate proper DNA topology, and they are the targets of anti-cancer drugs that cause treatment-related leukemias with balanced translocations. Here, we develop a high-throughput sequencing technology to define TOP2 cleavage sites at single-base precision, and use the technology to characterize TOP2A cleavage genome-wide in the human K562 leukemia cell line. We find that TOP2A cleavage has functionally conserved local sequence preferences, occurs in cleavage cluster regions (CCRs), and is enriched in introns and lincRNA loci. TOP2A CCRs are biased toward the distal regions of gene bodies, and TOP2 poisons cause a proximal shift in their distribution. We find high TOP2A cleavage levels in genes involved in translocations in TOP2 poison-related leukemia. In addition, we find that a large proportion of genes involved in oncogenic translocations overall contain TOP2A CCRs. The TOP2A cleavage of coding and lincRNA genes is independently associated with both length and transcript abundance. Comparisons to ENCODE data reveal distinct TOP2A CCR clusters that overlap with marks of transcription, open chromatin, and enhancers. Our findings implicate TOP2A cleavage as a broad DNA damage mechanism in oncogenic translocations as well as a functional role of TOP2A cleavage in regulating transcription elongation and gene activation.


Asunto(s)
Daño del ADN , ADN-Topoisomerasas de Tipo II/metabolismo , Sitios Genéticos , Leucemia/enzimología , Proteínas de Neoplasias/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Elongación de la Transcripción Genética , ADN-Topoisomerasas de Tipo II/genética , Humanos , Células K562 , Leucemia/genética , Leucemia/patología , Proteínas de Neoplasias/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , ARN Largo no Codificante/biosíntesis , ARN Largo no Codificante/genética
13.
Bioorg Med Chem Lett ; 27(3): 586-589, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27998679

RESUMEN

A number of topoisomerase II-targeted anticancer drugs, including amsacrine, utilize an acridine or related aromatic core as a scaffold. Therefore, to further explore the potential of acridine-related compounds to act as topoisomerase II poisons, we synthesized a series of novel trifluoromethylated 9-amino-3,4-dihydroacridin-1(2H)-one derivatives and examined their ability to enhance DNA cleavage mediated by human topoisomerase IIα. Derivatives containing a H, Cl, F, and Br at C7 enhanced enzyme-mediated double-stranded DNA cleavage ∼5.5- to 8.5-fold over baseline, but were less potent than amsacrine. The inclusion of an amino group at C9 was critical for activity. The compounds lost their activity against topoisomerase IIα in the presence of a reducing agent, displayed no activity against the catalytic core of topoisomerase IIα, and inhibited DNA cleavage when incubated with the enzyme prior to the addition of DNA. These findings strongly suggest that the compounds act as covalent, rather than interfacial, topoisomerase II poisons.


Asunto(s)
Acridinas/química , Acridinas/farmacología , Antígenos de Neoplasias/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , Amsacrina/química , Antineoplásicos/química , Antineoplásicos/farmacología , ADN/metabolismo , División del ADN/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Humanos , Sustancias Intercalantes/química , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacología
14.
Bioorg Med Chem Lett ; 26(7): 1809-12, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26906637

RESUMEN

Ellipticine (5,11-dimethyl-6H-pyrido[4,3-b]carbazole) is an antineoplastic agent that intercalates into DNA and alters topoisomerase II activity. Unfortunately, this compound displays a number of adverse properties. Therefore, to investigate new ellipticine-based compounds for their potential as topoisomerase II-targeted drugs, we synthesized two novel derivatives, N-methyl-5-demethyl ellipticine (ET-1) and 2-methyl-N-methyl-5-demethyl ellipticinium iodide (ET-2). As determined by DNA decatenation and cleavage assays, ET-1 and ET-2 act as catalytic inhibitors of human topoisomerase IIα and are both more potent than the parent compound. Neither compound impairs the ability of the type II enzyme to bind its DNA substrate. Finally, the potency of ET-1 and ET-2 as catalytic inhibitors of topoisomerase IIα appears to be related to their ability to intercalate into the double helix.


Asunto(s)
Proteínas de Unión al ADN/antagonistas & inhibidores , Elipticinas/química , Elipticinas/farmacología , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacología , Antígenos de Neoplasias/metabolismo , ADN/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Sustancias Intercalantes/química , Sustancias Intercalantes/farmacología , Metilación
15.
Chem Res Toxicol ; 29(3): 415-20, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26894873

RESUMEN

Two metabolites from the ascomycete fungus Septofusidium berolinense were recently identified as having antineoplastic activity [Ekiz et al. (2015) J. Antibiot. , DOI: 10.1038/ja.2015.84]. However, the basis for this activity is not known. One of the compounds [3,6-dihydroxy-2-propylbenzaldehyde (GE-1)] is a hydroquinone, and the other [2-hydroxymethyl-3-propylcyclohexa-2,5-diene-1,4-dione (GE-2)] is a quinone. Because some hydroquinones and quinones act as topoisomerase II poisons, the effects of GE-1 and GE-2 on DNA cleavage mediated by human topoisomerase IIα were assessed. GE-2 enhanced DNA cleavage ∼4-fold and induced scission with a site specificity similar to that of the anticancer drug etoposide. Similar to other quinone-based topoisomerase II poisons, GE-2 displayed several hallmark characteristics of covalent topoisomerase II poisons, including (1) the inability to poison a topoisomerase IIα construct that lacks the N-terminal domain, (2) the inhibition of DNA cleavage when the compound was incubated with the enzyme prior to the addition of plasmid, and (3) the loss of poisoning activity in the presence of a reducing agent. In contrast to GE-2, GE-1 did not enhance DNA cleavage mediated by topoisomerase IIα except at very high concentrations. However, the activity and potency of the metabolite were dramatically enhanced under oxidizing conditions. These results suggest that topoisomerase IIα may play a role in mediating the cytotoxic effects of these fungal metabolites.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Benzaldehídos/farmacología , Ciclohexanonas/farmacología , División del ADN , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , Hongos/química , Hongos/metabolismo , Metabolismo Secundario , Benzaldehídos/química , Benzaldehídos/metabolismo , Ciclohexanonas/química , Ciclohexanonas/metabolismo , Humanos , Estructura Molecular
16.
Biochemistry ; 54(29): 4531-41, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26132160

RESUMEN

Several naturally occurring dietary polyphenols with chemopreventive or anticancer properties are topoisomerase II poisons. To identify additional phytochemicals that enhance topoisomerase II-mediated DNA cleavage, a library of 341 Mediterranean plant extracts was screened for activity against human topoisomerase IIα. An extract from Phillyrea latifolia L., a member of the olive tree family, displayed high activity against the human enzyme. On the basis of previous metabolomics studies, we identified several polyphenols (hydroxytyrosol, oleuropein, verbascoside, tyrosol, and caffeic acid) as potential candidates for topoisomerase II poisons. Of these, hydroxytyrosol, oleuropein, and verbascoside enhanced topoisomerase II-mediated DNA cleavage. The potency of these olive metabolites increased 10-100-fold in the presence of an oxidant. Hydroxytyrosol, oleuropein, and verbascoside displayed hallmark characteristics of covalent topoisomerase II poisons. (1) The activity of the metabolites was abrogated by a reducing agent. (2) Compounds inhibited topoisomerase II activity when they were incubated with the enzyme prior to the addition of DNA. (3) Compounds were unable to poison a topoisomerase IIα construct that lacked the N-terminal domain. Because hydroxytyrosol, oleuropein, and verbascoside are broadly distributed across the olive family, extracts from the leaves, bark, and fruit of 11 olive tree species were tested for activity against human topoisomerase IIα. Several of the extracts enhanced enzyme-mediated DNA cleavage. Finally, a commercial olive leaf supplement and extra virgin olive oils pressed from a variety of Olea europea subspecies enhanced DNA cleavage mediated by topoisomerase IIα. Thus, olive metabolites appear to act as topoisomerase II poisons in complex formulations intended for human dietary consumption.


Asunto(s)
ADN-Topoisomerasas de Tipo II/química , Olea/química , Extractos Vegetales/química , Inhibidores de Topoisomerasa II/química , División del ADN , Ensayos de Selección de Medicamentos Antitumorales , Frutas/química , Glucósidos/química , Humanos , Glucósidos Iridoides , Iridoides/química , Fenoles/química , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/química , Corteza de la Planta/química , Hojas de la Planta/química , Plásmidos/química
17.
Chem Res Toxicol ; 28(5): 989-96, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-25806475

RESUMEN

Extracts from the rhizome of the turmeric plant are widely consumed as anti-inflammatory dietary supplements. Turmeric extract contains the three curcuminoids, curcumin (≈80% relative abundance), demethoxycurcumin (DMC; ≈15%), and bisdemethoxycurcumin (BDMC; ≈5%). A distinct feature of pure curcumin is its instability at physiological pH, resulting in rapid autoxidation to a bicyclopentadione within 10-15 min. Here, we describe oxidative transformation of turmeric extract, DMC, and BDMC and the identification of their oxidation products using LC-MS and NMR analyses. DMC autoxidized over the course of 24 h to the expected bicyclopentadione diastereomers. BDMC was resistant to autoxidation, and oxidative transformation required catalysis by horseradish peroxidase and H2O2 or potassium ferricyanide. The product of BDMC oxidation was a stable spiroepoxide that was equivalent to a reaction intermediate in the autoxidation of curcumin. The ability of DMC and BDMC to poison recombinant human topoisomerase IIα was significantly increased in the presence of potassium ferricyanide, indicating that oxidative transformation was required to achieve full DNA cleavage activity. DMC and BDMC are less prone to autoxidation than curcumin and contribute to the enhanced stability of turmeric extract at physiological pH. Their oxidative metabolites may contribute to the biological effects of turmeric extract.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Curcuma/toxicidad , Curcumina/análogos & derivados , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , Extractos Vegetales/toxicidad , Antígenos de Neoplasias/química , Curcuma/química , Curcuma/metabolismo , Curcumina/química , Curcumina/metabolismo , Curcumina/toxicidad , División del ADN/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/química , Proteínas de Unión al ADN/química , Diarilheptanoides , Compuestos Epoxi/química , Compuestos Epoxi/metabolismo , Compuestos Epoxi/toxicidad , Humanos , Oxidación-Reducción , Extractos Vegetales/química , Extractos Vegetales/metabolismo
18.
Biochemistry ; 54(5): 1278-86, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25586498

RESUMEN

CP-115,955 is a quinolone with a 4-hydroxyphenyl at C7 that displays high activity against both bacterial and human type II topoisomerases. To determine the basis for quinolone cross-reactivity between bacterial and human enzymes, the activity of CP-115,955 and a series of related quinolones and quinazolinediones against Bacillus anthracis topoisomerase IV and human topoisomerase IIα was analyzed. Results indicate that the activity of CP-115,955 against the bacterial and human enzymes is mediated by different interactions. On the basis of the decreased activity of quinazolinediones against wild-type and resistant mutant topoisomerase IV and the low activity of quinolones against resistant mutant enzymes, it appears that the primary interaction of CP-115,955 with the bacterial system is mediated through the C3/C4 keto acid and the water-metal ion bridge. In contrast, the drug interacts with the human enzyme primarily through the C7 4-hydroxyphenyl ring and has no requirement for a substituent at C8 in order to attain high activity. Despite the fact that the human type II enzyme is unable to utilize the water-metal ion bridge, quinolones in the CP-115,955 series display higher activity against topoisomerase IIα in vitro and in cultured human cells than the corresponding quinazolinediones. Thus, quinolones may be a viable platform for the development of novel drugs with anticancer potential.


Asunto(s)
Bacillus anthracis/enzimología , Proteínas Bacterianas/química , ADN-Topoisomerasas de Tipo II/química , Fluoroquinolonas/química , Inhibidores de Topoisomerasa II/química , Bacillus anthracis/genética , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular , Topoisomerasa de ADN IV/antagonistas & inhibidores , Topoisomerasa de ADN IV/química , Topoisomerasa de ADN IV/genética , Topoisomerasa de ADN IV/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Fluoroquinolonas/farmacología , Humanos , Mutación , Inhibidores de Topoisomerasa II/farmacología
19.
Bioorg Med Chem Lett ; 24(24): 5627-5629, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25466187

RESUMEN

A series of novel ether-linked dimers of demethylepipodophyllotoxin are topoisomerase II poisons that exhibit higher levels of double-stranded versus single-stranded DNA cleavage than their corresponding monomers. The dimers also have higher levels of tumor cell cytotoxicity than the monomers, lending support to the two-drug model for interaction of demethylepipodophyllotoxins with human topoisomerase IIα.


Asunto(s)
Éter/química , Podofilotoxina/química , Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , ADN/química , ADN/metabolismo , División del ADN/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/química , ADN-Topoisomerasas de Tipo II/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Dimerización , Humanos , Podofilotoxina/síntesis química , Podofilotoxina/toxicidad
20.
Biochemistry ; 53(41): 6595-602, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25280269

RESUMEN

Coordination between the N-terminal gate and the catalytic core of topoisomerase II allows the proper capture, cleavage, and transport of DNA during the catalytic cycle. Because the activities of these domains are tightly linked, it has been difficult to discern their individual contributions to enzyme-DNA interactions and drug mechanism. To further address the roles of these domains, we analyzed the activity of the catalytic core of human topoisomerase IIα. The catalytic core and the wild-type enzyme both maintained higher levels of cleavage with negatively (as compared to positively) supercoiled plasmid, indicating that the ability to distinguish supercoil handedness is embedded within the catalytic core. However, the catalytic core alone displayed little ability to cleave DNA substrates that did not intrinsically provide the enzyme with a transport segment (i.e., substrates that did not contain crossovers). Finally, in contrast to interfacial topoisomerase II poisons, covalent poisons did not enhance DNA cleavage mediated by the catalytic core. This distinction allowed us to further characterize the mechanism of etoposide quinone, a drug metabolite that functions primarily as a covalent poison. Etoposide quinone retained some ability to enhance DNA cleavage mediated by the catalytic core, indicating that it still can function as an interfacial poison. These results further define the distinct contributions of the N-terminal gate and the catalytic core to topoisomerase II function. The catalytic core senses the handedness of DNA supercoils during cleavage, while the N-terminal gate is critical for capturing the transport segment and for the activity of covalent poisons.


Asunto(s)
Antígenos de Neoplasias/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , ADN Circular/metabolismo , ADN Superhelicoidal/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Modelos Moleculares , Inhibidores de Topoisomerasa II/farmacología , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Benzoquinonas/química , Benzoquinonas/metabolismo , Benzoquinonas/farmacología , Sitios de Unión , Biocatálisis/efectos de los fármacos , Dominio Catalítico , División del ADN/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/química , ADN-Topoisomerasas de Tipo II/genética , ADN Circular/química , ADN Superhelicoidal/química , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Etopósido/química , Etopósido/metabolismo , Etopósido/farmacología , Humanos , Cinética , Conformación Molecular , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Estereoisomerismo , Especificidad por Sustrato , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA