Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
medRxiv ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38766261

RESUMEN

The etiology of prostate cancer, the second most common cancer in men globally, has a strong heritable component. While rare coding germline variants in several genes have been identified as risk factors from candidate gene and linkage studies, the exome-wide spectrum of causal rare variants remains to be fully explored. To more comprehensively address their contribution, we analysed data from 37,184 prostate cancer cases and 331,329 male controls from five cohorts with germline exome/genome sequencing and one cohort with imputed array data from a population enriched in low-frequency deleterious variants. Our gene-level collapsing analysis revealed that rare damaging variants in SAMHD1 as well as genes in the DNA damage response pathway (BRCA2, ATM and CHEK2) are associated with the risk of overall prostate cancer. We also found that rare damaging variants in AOX1 and BRCA2 were associated with increased severity of prostate cancer in a case-only analysis of aggressive versus non-aggressive prostate cancer. At the single-variant level, we found rare non-synonymous variants in three genes (HOXB13, CHEK2, BIK) significantly associated with increased risk of overall prostate cancer and in four genes (ANO7, SPDL1, AR, TERT) with decreased risk. Altogether, this study provides deeper insights into the genetic architecture and biological basis of prostate cancer risk and severity.

2.
Sci Adv ; 8(34): eabo6371, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36026442

RESUMEN

Large reference datasets of protein-coding variation in human populations have allowed us to determine which genes and genic subregions are intolerant to germline genetic variation. There is also a growing number of genes implicated in severe Mendelian diseases that overlap with genes implicated in cancer. We hypothesized that cancer-driving mutations might be enriched in genic subregions that are depleted of germline variation relative to somatic variation. We introduce a new metric, OncMTR (oncology missense tolerance ratio), which uses 125,748 exomes in the Genome Aggregation Database (gnomAD) to identify these genic subregions. We demonstrate that OncMTR can significantly predict driver mutations implicated in hematologic malignancies. Divergent OncMTR regions were enriched for cancer-relevant protein domains, and overlaying OncMTR scores on protein structures identified functionally important protein residues. Last, we performed a rare variant, gene-based collapsing analysis on an independent set of 394,694 exomes from the UK Biobank and find that OncMTR markedly improves genetic signals for hematologic malignancies.


Asunto(s)
Mutación de Línea Germinal , Neoplasias Hematológicas , Células Germinativas , Neoplasias Hematológicas/genética , Humanos
3.
Nat Genet ; 54(8): 1155-1166, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35835912

RESUMEN

Clonal hematopoiesis (CH), the clonal expansion of a blood stem cell and its progeny driven by somatic driver mutations, affects over a third of people, yet remains poorly understood. Here we analyze genetic data from 200,453 UK Biobank participants to map the landscape of inherited predisposition to CH, increasing the number of germline associations with CH in European-ancestry populations from 4 to 14. Genes at new loci implicate DNA damage repair (PARP1, ATM, CHEK2), hematopoietic stem cell migration/homing (CD164) and myeloid oncogenesis (SETBP1). Several associations were CH-subtype-specific including variants at TCL1A and CD164 that had opposite associations with DNMT3A- versus TET2-mutant CH, the two most common CH subtypes, proposing key roles for these two loci in CH development. Mendelian randomization analyses showed that smoking and longer leukocyte telomere length are causal risk factors for CH and that genetic predisposition to CH increases risks of myeloproliferative neoplasia, nonhematological malignancies, atrial fibrillation and blood epigenetic ageing.


Asunto(s)
Hematopoyesis Clonal , Hematopoyesis , Transformación Celular Neoplásica , Hematopoyesis Clonal/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Hematopoyesis/genética , Humanos , Mutación/genética , Factores de Riesgo
5.
Am J Respir Crit Care Med ; 206(1): 56-69, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35417304

RESUMEN

Rationale: Genetic studies of idiopathic pulmonary fibrosis (IPF) have improved our understanding of this disease, but not all causal loci have been identified. Objectives: To identify genes enriched with rare deleterious variants in IPF and familial pulmonary fibrosis. Methods: We performed gene burden analysis of whole-exome data, tested single variants for disease association, conducted KIF15 (kinesin family member 15) functional studies, and examined human lung single-cell RNA sequencing data. Measurements and Main Results: Gene burden analysis of 1,725 cases and 23,509 control subjects identified heterozygous rare deleterious variants in KIF15, a kinesin involved in spindle separation during mitosis, and three telomere-related genes (TERT [telomerase reverse transcriptase], RTEL1 [regulator of telomere elongation helicase 1], and PARN [poly(A)-specific ribonuclease]). KIF15 was implicated in autosomal-dominant models of rare deleterious variants (odds ratio [OR], 4.9; 95% confidence interval [CI], 2.7-8.8; P = 2.55 × 10-7) and rare protein-truncating variants (OR, 7.6; 95% CI, 3.3-17.1; P = 8.12 × 10-7). Meta-analyses of the discovery and replication cohorts, including 2,966 cases and 29,817 control subjects, confirm the involvement of KIF15 plus the three telomere-related genes. A common variant within a KIF15 intron (rs74341405; OR, 1.6; 95% CI, 1.4-1.9; P = 5.63 × 10-10) is associated with IPF risk, confirming a prior report. Lymphoblastoid cells from individuals heterozygous for the common variant have decreased KIF15 and reduced rates of cell growth. Cell proliferation is dependent on KIF15 in the presence of an inhibitor of Eg5/KIF11, which has partially redundant function. KIF15 is expressed specifically in replicating human lung cells and shows diminished expression in replicating epithelial cells of patients with IPF. Conclusions: Both rare deleterious variants and common variants in KIF15 link a nontelomerase pathway of cell proliferation with IPF susceptibility.


Asunto(s)
Fibrosis Pulmonar Idiopática , Cinesinas , Telomerasa , Exoma , Humanos , Fibrosis Pulmonar Idiopática/genética , Cinesinas/genética , Telomerasa/genética , Telómero
6.
Genes Chromosomes Cancer ; 61(9): 523-529, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35394676

RESUMEN

As an essential regulator of DNA damage, ataxia-telangiectasia mutated (ATM) gene has been widely studied in oncology. However, the independent effects of ATM missense variants and protein-truncating variants (PTVs) on neoplasms have not been heavily studied. Whole-exome sequencing data and the clinical health records of 394,694 UK Biobank European participants were used in this analysis. We mined genetic associations from gene-level and variant-level phenome-wide association studies, and conducted a variant-level conditional association study to test whether the effects of ATM missense variants on neoplasms were independent of ATM PTV carrier status. The gene-level PTV collapsing analysis was consistent with established ATM PTV literature showing that the aggregated impact of 286 ATM PTVs significantly (p < 2 × 10-9 ) associated with 31 malignant neoplasm phenotypes. Of 773 distinct protein-coding variants in ATM, three individual missense variants significantly (p < 2 × 10-9 ) associated with nine phenotypes. Remarkably, although the nine phenotypes were tumor-related, none overlapped the established ATM PTV-linked malignancies. A subsequent conditional analysis identified that the missense signals were acting independently of the known clinically relevant ATM PTVs.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Neoplasias de la Mama , Mutación Missense , Neoplasias , Proteínas de la Ataxia Telangiectasia Mutada/genética , Bancos de Muestras Biológicas , Neoplasias de la Mama/genética , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Exoma , Femenino , Predisposición Genética a la Enfermedad , Humanos , Neoplasias/genética , Reino Unido
7.
Commun Biol ; 4(1): 392, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758299

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a fatal disorder characterised by progressive, destructive lung scarring. Despite substantial progress, the genetic determinants of this disease remain incompletely defined. Using whole genome and whole exome sequencing data from 752 individuals with sporadic IPF and 119,055 UK Biobank controls, we performed a variant-level exome-wide association study (ExWAS) and gene-level collapsing analyses. Our variant-level analysis revealed a novel association between a rare missense variant in SPDL1 and IPF (NM_017785.5:g.169588475 G > A p.Arg20Gln; p = 2.4 × 10-7, odds ratio = 2.87, 95% confidence interval: 2.03-4.07). This signal was independently replicated in the FinnGen cohort, which contains 1028 cases and 196,986 controls (combined p = 2.2 × 10-20), firmly associating this variant as an IPF risk allele. SPDL1 encodes Spindly, a protein involved in mitotic checkpoint signalling during cell division that has not been previously described in fibrosis. To the best of our knowledge, these results highlight a novel mechanism underlying IPF, providing the potential for new therapeutic discoveries in a disease of great unmet need.


Asunto(s)
Proteínas de Ciclo Celular/genética , Fibrosis Pulmonar Idiopática/genética , Mutación Missense , Anciano , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Fibrosis Pulmonar Idiopática/diagnóstico , Masculino , Fenotipo , Secuenciación del Exoma
8.
Circ Genom Precis Med ; 13(6): e003030, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33125268

RESUMEN

BACKGROUND: Spontaneous coronary artery dissection (SCAD) occurs when an epicardial coronary artery is narrowed or occluded by an intramural hematoma. SCAD mainly affects women and is associated with pregnancy and systemic arteriopathies, particularly fibromuscular dysplasia. Variants in several genes, such as those causing connective tissue disorders, have been implicated; however, the genetic architecture is poorly understood. Here, we aim to better understand the diagnostic yield of rare variant genetic testing among a cohort of SCAD survivors and to identify genes or gene sets that have a significant enrichment of rare variants. METHODS: We sequenced a cohort of 384 SCAD survivors from the United Kingdom, alongside 13 722 UK Biobank controls and a validation cohort of 92 SCAD survivors. We performed a research diagnostic screen for pathogenic variants and exome-wide and gene-set rare variant collapsing analyses. RESULTS: The majority of patients within both cohorts are female, 29% of the study cohort and 14% validation cohort have a remote arteriopathy. Four cases across the 2 cohorts had a diagnosed connective tissue disorder. We identified pathogenic or likely pathogenic variants in 7 genes (PKD1, COL3A1, SMAD3, TGFB2, LOX, MYLK, and YY1AP1) in 14/384 cases in the study cohort and in 1/92 cases in the validation cohort. In our rare variant collapsing analysis, PKD1 was the highest-ranked gene, and several functionally plausible genes were enriched for rare variants, although no gene achieved study-wide statistical significance. Gene-set enrichment analysis suggested a role for additional genes involved in renal function. CONCLUSIONS: By studying the largest sequenced cohort of SCAD survivors, we demonstrate that, based on current knowledge, only a small proportion have a pathogenic variant that could explain their disease. Our findings strengthen the overlap between SCAD and renal and connective tissue disorders, and we highlight several new genes for future validation.


Asunto(s)
Anomalías de los Vasos Coronarios/genética , Secuenciación del Exoma , Variación Genética , Genoma Humano , Enfermedades Vasculares/congénito , Adulto , Anciano , Estudios de Cohortes , Femenino , Humanos , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Modelos Genéticos , Reino Unido , Enfermedades Vasculares/genética , Adulto Joven
9.
Genome Res ; 29(5): 809-818, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30940688

RESUMEN

Large-scale sequencing efforts in amyotrophic lateral sclerosis (ALS) have implicated novel genes using gene-based collapsing methods. However, pathogenic mutations may be concentrated in specific genic regions. To address this, we developed two collapsing strategies: One focuses rare variation collapsing on homology-based protein domains as the unit for collapsing, and the other is a gene-level approach that, unlike standard methods, leverages existing evidence of purifying selection against missense variation on said domains. The application of these two collapsing methods to 3093 ALS cases and 8186 controls of European ancestry, and also 3239 cases and 11,808 controls of diversified populations, pinpoints risk regions of ALS genes, including SOD1, NEK1, TARDBP, and FUS While not clearly implicating novel ALS genes, the new analyses not only pinpoint risk regions in known genes but also highlight candidate genes as well.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Análisis Mutacional de ADN/métodos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Femenino , Variación Genética , Humanos , Masculino , Mutación , Quinasa 1 Relacionada con NIMA/genética , Dominios Proteicos/genética , Proteína FUS de Unión a ARN/genética , Factores de Riesgo , Superóxido Dismutasa-1/genética , Población Blanca/genética , Secuenciación del Exoma/métodos
10.
Lancet ; 393(10173): 758-767, 2019 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-30712878

RESUMEN

BACKGROUND: Identification of chromosomal aneuploidies and copy number variants that are associated with fetal structural anomalies has substantial value. Although whole-exome sequencing (WES) has been applied to case series of a few selected prenatal cases, its value in routine clinical settings has not been prospectively assessed in a large unselected cohort of fetuses with structural anomalies. We therefore aimed to determine the incremental diagnostic yield (ie, the added value) of WES following uninformative results of standard investigations with karyotype testing and chromosomal microarray in an unselected cohort of sequential pregnancies showing fetal structural anomalies. METHODS: In this prospective cohort study, the parents of fetuses who were found to have a structural anomaly in a prenatal ultrasound were screened for possible participation in the study. These participants were predominantly identified in or were referred to the Columbia University Carmen and John Thain Center for Prenatal Pediatrics (New York, NY, USA). Fetuses with confirmed aneuploidy or a causal pathogenic copy number variant were excluded from WES analyses. By use of WES of the fetuses and parents (parent-fetus trios), we identified genetic variants that indicated an underlying cause (diagnostic genetic variants) and genetic variants that met the criteria of bioinformatic signatures that had previously been described to be significantly enriched among diagnostic genetic variants. FINDINGS: Between April 24, 2015, and April 19, 2017, 517 sequentially identified pregnant women found to have fetuses with a structural anomaly were screened for their eligibility for inclusion in our study. 71 (14%) couples declined testing, 87 (17%) trios were missing at least one DNA sample (from either parent or the fetus), 69 (13%) trios had a clinically relevant abnormal karyotype or chromosomal microarray finding, 51 (10%) couples did not consent to WES or withdrew consent, and five (1%) samples were not of good enough quality for analysis. DNA samples from 234 (45%) eligible trios were therefore used for analysis of the primary outcome. By use of trio sequence data, we identified diagnostic genetic variants in 24 (10%) families. Mutations with bioinformatic signatures that were indicative of pathogenicity but with insufficient evidence to be considered diagnostic were also evaluated; 46 (20%) of the 234 fetuses assessed were found to have such signatures. INTERPRETATION: Our analysis of WES data in a prospective cohort of unselected fetuses with structural anomalies shows the value added by WES following the use of routine genetic tests. Our findings suggest that, in cases of fetal anomalies in which assessment with karyotype testing and chromosomal microarray fail to determine the underlying cause of a structural anomaly, WES can add clinically relevant information that could assist current management of a pregnancy. The unique challenges of WES-based prenatal diagnostics require analysis by a multidisciplinary team of perinatal practitioners and laboratory specialists. FUNDING: Institute for Genomic Medicine (Columbia University Irving Medical Center).


Asunto(s)
Cariotipo Anormal/embriología , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Aneuploidia , Variaciones en el Número de Copia de ADN/genética , Secuenciación del Exoma/estadística & datos numéricos , Desarrollo Fetal/genética , Feto/anomalías , Anomalías Múltiples/epidemiología , Amniocentesis , Muestra de la Vellosidad Coriónica , Femenino , Tamización de Portadores Genéticos , Humanos , Masculino , Embarazo , Estudios Prospectivos , Ultrasonografía Prenatal , Secuenciación del Exoma/métodos
11.
N Engl J Med ; 380(2): 142-151, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30586318

RESUMEN

BACKGROUND: Exome sequencing is emerging as a first-line diagnostic method in some clinical disciplines, but its usefulness has yet to be examined for most constitutional disorders in adults, including chronic kidney disease, which affects more than 1 in 10 persons globally. METHODS: We conducted exome sequencing and diagnostic analysis in two cohorts totaling 3315 patients with chronic kidney disease. We assessed the diagnostic yield and, among the patients for whom detailed clinical data were available, the clinical implications of diagnostic and other medically relevant findings. RESULTS: In all, 3037 patients (91.6%) were over 21 years of age, and 1179 (35.6%) were of self-identified non-European ancestry. We detected diagnostic variants in 307 of the 3315 patients (9.3%), encompassing 66 different monogenic disorders. Of the disorders detected, 39 (59%) were found in only a single patient. Diagnostic variants were detected across all clinically defined categories, including congenital or cystic renal disease (127 of 531 patients [23.9%]) and nephropathy of unknown origin (48 of 281 patients [17.1%]). Of the 2187 patients assessed, 34 (1.6%) had genetic findings for medically actionable disorders that, although unrelated to their nephropathy, would also lead to subspecialty referral and inform renal management. CONCLUSIONS: Exome sequencing in a combined cohort of more than 3000 patients with chronic kidney disease yielded a genetic diagnosis in just under 10% of cases. (Funded by the National Institutes of Health and others.).


Asunto(s)
Exoma , Predisposición Genética a la Enfermedad , Mutación , Insuficiencia Renal Crónica/genética , Análisis de Secuencia de ADN/métodos , Adulto , Anciano , Estudios de Cohortes , Variación Genética , Humanos , Masculino , Persona de Mediana Edad , Insuficiencia Renal Crónica/etnología , Adulto Joven
12.
Am J Med Genet A ; 176(11): 2259-2275, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30194818

RESUMEN

De novo germline mutations in GNB1 have been associated with a neurodevelopmental phenotype. To date, 28 patients with variants classified as pathogenic have been reported. We add 18 patients with de novo mutations to this cohort, including a patient with mosaicism for a GNB1 mutation who presented with a milder phenotype. Consistent with previous reports, developmental delay in these patients was moderate to severe, and more than half of the patients were non-ambulatory and nonverbal. The most observed substitution affects the p.Ile80 residue encoded in exon 6, with 28% of patients carrying a variant at this residue. Dystonia and growth delay were observed more frequently in patients carrying variants in this residue, suggesting a potential genotype-phenotype correlation. In the new cohort of 18 patients, 50% of males had genitourinary anomalies and 61% of patients had gastrointestinal anomalies, suggesting a possible association of these findings with variants in GNB1. In addition, cutaneous mastocytosis, reported once before in a patient with a GNB1 variant, was observed in three additional patients, providing further evidence for an association to GNB1. We will review clinical and molecular data of these new cases and all previously reported cases to further define the phenotype and establish possible genotype-phenotype correlations.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/genética , Estudios de Asociación Genética , Mutación/genética , Adolescente , Niño , Preescolar , Estudios de Cohortes , Epilepsia/genética , Femenino , Subunidades beta de la Proteína de Unión al GTP/química , Humanos , Masculino , Sistema Nervioso/crecimiento & desarrollo , Fenotipo , Embarazo , Estructura Terciaria de Proteína
13.
Am J Respir Crit Care Med ; 196(1): 82-93, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28099038

RESUMEN

RATIONALE: Idiopathic pulmonary fibrosis (IPF) is an increasingly recognized, often fatal lung disease of unknown etiology. OBJECTIVES: The aim of this study was to use whole-exome sequencing to improve understanding of the genetic architecture of pulmonary fibrosis. METHODS: We performed a case-control exome-wide collapsing analysis including 262 unrelated individuals with pulmonary fibrosis clinically classified as IPF according to American Thoracic Society/European Respiratory Society/Japanese Respiratory Society/Latin American Thoracic Association guidelines (81.3%), usual interstitial pneumonia secondary to autoimmune conditions (11.5%), or fibrosing nonspecific interstitial pneumonia (7.2%). The majority (87%) of case subjects reported no family history of pulmonary fibrosis. MEASUREMENTS AND MAIN RESULTS: We searched 18,668 protein-coding genes for an excess of rare deleterious genetic variation using whole-exome sequence data from 262 case subjects with pulmonary fibrosis and 4,141 control subjects drawn from among a set of individuals of European ancestry. Comparing genetic variation across 18,668 protein-coding genes, we found a study-wide significant (P < 4.5 × 10-7) case enrichment of qualifying variants in TERT, RTEL1, and PARN. A model qualifying ultrarare, deleterious, nonsynonymous variants implicated TERT and RTEL1, and a model specifically qualifying loss-of-function variants implicated RTEL1 and PARN. A subanalysis of 186 case subjects with sporadic IPF confirmed TERT, RTEL1, and PARN as study-wide significant contributors to sporadic IPF. Collectively, 11.3% of case subjects with sporadic IPF carried a qualifying variant in one of these three genes compared with the 0.3% carrier rate observed among control subjects (odds ratio, 47.7; 95% confidence interval, 21.5-111.6; P = 5.5 × 10-22). CONCLUSIONS: We identified TERT, RTEL1, and PARN-three telomere-related genes previously implicated in familial pulmonary fibrosis-as significant contributors to sporadic IPF. These results support the idea that telomere dysfunction is involved in IPF pathogenesis.


Asunto(s)
Exoma/genética , Predisposición Genética a la Enfermedad/genética , Fibrosis Pulmonar Idiopática/genética , Femenino , Variación Genética/genética , Humanos , Masculino , Persona de Mediana Edad
14.
Am J Hum Genet ; 99(4): 991-999, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27693232

RESUMEN

The ASXL genes (ASXL1, ASXL2, and ASXL3) participate in body patterning during embryogenesis and encode proteins involved in epigenetic regulation and assembly of transcription factors to specific genomic loci. Germline de novo truncating variants in ASXL1 and ASXL3 have been respectively implicated in causing Bohring-Opitz and Bainbridge-Ropers syndromes, which result in overlapping features of severe intellectual disability and dysmorphic features. ASXL2 has not yet been associated with a human Mendelian disorder. In this study, we performed whole-exome sequencing in six unrelated probands with developmental delay, macrocephaly, and dysmorphic features. All six had de novo truncating variants in ASXL2. A careful review enabled the recognition of a specific phenotype consisting of macrocephaly, prominent eyes, arched eyebrows, hypertelorism, a glabellar nevus flammeus, neonatal feeding difficulties, hypotonia, and developmental disabilities. Although overlapping features with Bohring-Opitz and Bainbridge-Ropers syndromes exist, features that distinguish the ASXL2-associated condition from ASXL1- and ASXL3-related disorders are macrocephaly, absence of growth retardation, and more variability in the degree of intellectual disabilities. We were also able to demonstrate with mRNA studies that these variants are likely to exert a dominant-negative effect, given that both alleles are expressed in blood and the mutated ASXL2 transcripts escape nonsense-mediated decay. In conclusion, de novo truncating variants in ASXL2 underlie a neurodevelopmental syndrome with a clinically recognizable phenotype. This report expands the germline disorders that are linked to the ASXL genes.


Asunto(s)
Fenotipo , Proteínas Represoras/genética , Niño , Preescolar , Discapacidades del Desarrollo/genética , Exoma/genética , Cejas/anomalías , Humanos , Hipertelorismo/genética , Lactante , Recién Nacido , Masculino , Megalencefalia/genética , Hipotonía Muscular/genética , ARN Mensajero/metabolismo , Síndrome
15.
J Clin Immunol ; 36(5): 462-71, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27076228

RESUMEN

The purpose of this research was to use next generation sequencing to identify mutations in patients with primary immunodeficiency diseases whose pathogenic gene mutations had not been identified. Remarkably, four unrelated patients were found by next generation sequencing to have the same heterozygous mutation in an essential donor splice site of PIK3R1 (NM_181523.2:c.1425 + 1G > A) found in three prior reports. All four had the Hyper IgM syndrome, lymphadenopathy and short stature, and one also had SHORT syndrome. They were investigated with in vitro immune studies, RT-PCR, and immunoblotting studies of the mutation's effect on mTOR pathway signaling. All patients had very low percentages of memory B cells and class-switched memory B cells and reduced numbers of naïve CD4+ and CD8+ T cells. RT-PCR confirmed the presence of both an abnormal 273 base-pair (bp) size and a normal 399 bp size band in the patient and only the normal band was present in the parents. Following anti-CD40 stimulation, patient's EBV-B cells displayed higher levels of S6 phosphorylation (mTOR complex 1 dependent event), Akt phosphorylation at serine 473 (mTOR complex 2 dependent event), and Akt phosphorylation at threonine 308 (PI3K/PDK1 dependent event) than controls, suggesting elevated mTOR signaling downstream of CD40. These observations suggest that amino acids 435-474 in PIK3R1 are important for its stability and also its ability to restrain PI3K activity. Deletion of Exon 11 leads to constitutive activation of PI3K signaling. This is the first report of this mutation and immunologic abnormalities in SHORT syndrome.


Asunto(s)
Linfocitos B/inmunología , Trastornos del Crecimiento/genética , Síndrome de Inmunodeficiencia con Hiper-IgM/genética , Hipercalcemia/genética , Enfermedades Metabólicas/genética , Mutación/genética , Nefrocalcinosis/genética , Fosfatidilinositol 3-Quinasas/genética , Empalme Alternativo/genética , Línea Celular Transformada , Niño , Preescolar , Fosfatidilinositol 3-Quinasa Clase Ia , Anomalías Craneofaciales , Análisis Mutacional de ADN , Enanismo , Oído/anomalías , Femenino , Genes Dominantes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Linfadenopatía , Masculino , Cuello/anomalías , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/metabolismo , Tórax/anomalías
16.
Am J Hum Genet ; 98(5): 1001-1010, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27108799

RESUMEN

Whole-exome sequencing of 13 individuals with developmental delay commonly accompanied by abnormal muscle tone and seizures identified de novo missense mutations enriched within a sub-region of GNB1, a gene encoding the guanine nucleotide-binding protein subunit beta-1, Gß. These 13 individuals were identified among a base of 5,855 individuals recruited for various undiagnosed genetic disorders. The probability of observing 13 or more de novo mutations by chance among 5,855 individuals is very low (p = 7.1 × 10(-21)), implicating GNB1 as a genome-wide-significant disease-associated gene. The majority of these 13 mutations affect known Gß binding sites, which suggests that a likely disease mechanism is through the disruption of the protein interface required for Gα-Gßγ interaction (resulting in a constitutively active Gßγ) or through the disruption of residues relevant for interaction between Gßγ and certain downstream effectors (resulting in reduced interaction with the effectors). Strikingly, 8 of the 13 individuals recruited here for a neurodevelopmental disorder have a germline de novo GNB1 mutation that overlaps a set of five recurrent somatic tumor mutations for which recent functional studies demonstrated a gain-of-function effect due to constitutive activation of G protein downstream signaling cascades for some of the affected residues.


Asunto(s)
Discapacidades del Desarrollo/etiología , Subunidades beta de la Proteína de Unión al GTP/genética , Mutación de Línea Germinal/genética , Discapacidad Intelectual/etiología , Hipotonía Muscular/etiología , Convulsiones/etiología , Adolescente , Adulto , Niño , Preescolar , Discapacidades del Desarrollo/patología , Exoma/genética , Femenino , Subunidades beta de la Proteína de Unión al GTP/química , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Hipotonía Muscular/patología , Fenotipo , Conformación Proteica , Convulsiones/patología , Transducción de Señal , Adulto Joven
17.
N Engl J Med ; 372(25): 2409-22, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26083206

RESUMEN

Background Combined immunodeficiencies are marked by inborn errors of T-cell immunity in which the T cells that are present are quantitatively or functionally deficient. Impaired humoral immunity is also common. Patients have severe infections, autoimmunity, or both. The specific molecular, cellular, and clinical features of many types of combined immunodeficiencies remain unknown. Methods We performed genetic and cellular immunologic studies involving five unrelated children with early-onset invasive bacterial and viral infections, lymphopenia, and defective T-cell, B-cell, and natural killer (NK)-cell responses. Two patients died early in childhood; after allogeneic hematopoietic stem-cell transplantation, the other three had normalization of T-cell function and clinical improvement. Results We identified biallelic mutations in the dedicator of cytokinesis 2 gene (DOCK2) in these five patients. RAC1 activation was impaired in the T cells. Chemokine-induced migration and actin polymerization were defective in the T cells, B cells, and NK cells. NK-cell degranulation was also affected. Interferon-α and interferon-λ production by peripheral-blood mononuclear cells was diminished after viral infection. Moreover, in DOCK2-deficient fibroblasts, viral replication was increased and virus-induced cell death was enhanced; these conditions were normalized by treatment with interferon alfa-2b or after expression of wild-type DOCK2. Conclusions Autosomal recessive DOCK2 deficiency is a new mendelian disorder with pleiotropic defects of hematopoietic and nonhematopoietic immunity. Children with clinical features of combined immunodeficiencies, especially with early-onset, invasive infections, may have this condition. (Supported by the National Institutes of Health and others.).


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Factores de Intercambio de Guanina Nucleótido/genética , Síndromes de Inmunodeficiencia/genética , Mutación , Linfocitos T/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Preescolar , Resultado Fatal , Femenino , Proteínas Activadoras de GTPasa , Genes Recesivos , Enfermedades Genéticas Congénitas/terapia , Factores de Intercambio de Guanina Nucleótido/deficiencia , Trasplante de Células Madre Hematopoyéticas , Humanos , Síndromes de Inmunodeficiencia/terapia , Lactante , Células Asesinas Naturales/inmunología , Masculino , Linaje , Linfocitos T/metabolismo , Proteína de Unión al GTP rac1/metabolismo
18.
Nat Commun ; 6: 6031, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25615886

RESUMEN

Gene-regulatory network analysis is a powerful approach to elucidate the molecular processes and pathways underlying complex disease. Here we employ systems genetics approaches to characterize the genetic regulation of pathophysiological pathways in human temporal lobe epilepsy (TLE). Using surgically acquired hippocampi from 129 TLE patients, we identify a gene-regulatory network genetically associated with epilepsy that contains a specialized, highly expressed transcriptional module encoding proconvulsive cytokines and Toll-like receptor signalling genes. RNA sequencing analysis in a mouse model of TLE using 100 epileptic and 100 control hippocampi shows the proconvulsive module is preserved across-species, specific to the epileptic hippocampus and upregulated in chronic epilepsy. In the TLE patients, we map the trans-acting genetic control of this proconvulsive module to Sestrin 3 (SESN3), and demonstrate that SESN3 positively regulates the module in macrophages, microglia and neurons. Morpholino-mediated Sesn3 knockdown in zebrafish confirms the regulation of the transcriptional module, and attenuates chemically induced behavioural seizures in vivo.


Asunto(s)
Epilepsia del Lóbulo Temporal/genética , Redes Reguladoras de Genes , Proteínas de Choque Térmico/genética , Hipocampo/patología , Convulsiones/genética , Adolescente , Adulto , Animales , Niño , Preescolar , Epilepsia del Lóbulo Temporal/fisiopatología , Femenino , Proteínas de Choque Térmico/metabolismo , Hipocampo/fisiopatología , Humanos , Lactante , Inflamación/genética , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Microglía/metabolismo , Microglía/patología , Persona de Mediana Edad , Actividad Motora , Neuronas/metabolismo , Neuronas/patología , Pentilenotetrazol , Convulsiones/fisiopatología , Adulto Joven , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA