Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Biopharm Drug Dispos ; 41(3): 111-125, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32080869

RESUMEN

The immunogenicity of biotherapeutics presents a major challenge during the clinical development of new protein drugs including monoclonal antibodies. To address this, multiple humanization and de-immunization techniques that employ in silico algorithms and in vitro test systems have been proposed and implemented. However, the success of these approaches has been variable and to date, the ability of these techniques to predict immunogenicity has not been systematically tested in humans or other primates. This study tested whether antibody humanization and de-immunization strategies reduce the risk of anti-drug antibody (ADA) development using cynomolgus macaque as a surrogate for human. First human-cyno chimeric antibodies were constructed by grafting the variable domains of the adalimumab and golimumab monoclonal antibodies onto cynomolgus macaque IgG1 and Igκ constant domains followed by framework germlining to cyno to reduce the xenogenic content. Next, B and T cell epitopes and aggregation-prone regions were identified using common in silico methods to select domains with an ADA risk for additional modification. The resultant engineered antibodies had a comparable affinity for TNFα, demonstrated similar biophysical properties, and exhibited significantly reduced ADA levels in cynomolgus macaque compared with the parental antibodies, with a corresponding improvement in the pharmacokinetic profile. Notably, plasma concentrations of the engineered antibodies were quantifiable through 504 hours (chimeric) and 840 hours (germlined/de-immunized), compared with only 336 hours (adalimumab) or 336-672 hours (golimumab). The results point to the significant value in the investment in these engineering strategies as an important guide for monoclonal antibody optimization that can contribute to improved clinical outcomes.


Asunto(s)
Adalimumab/inmunología , Anticuerpos Monoclonales/inmunología , Inmunoglobulina G/inmunología , Animales , Femenino , Humanos , Inmunización , Macaca fascicularis , Masculino , Factor de Necrosis Tumoral alfa/inmunología
2.
MAbs ; 11(6): 1175-1190, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31181988

RESUMEN

We describe a bispecific dual-antagonist antibody against human B cell activating factor (BAFF) and interleukin 17A (IL-17). An anti-IL-17 single-chain variable fragment (scFv) derived from ixekizumab (Taltz®) was fused via a glycine-rich linker to anti-BAFF tabalumab. The IgG-scFv bound both BAFF and IL-17 simultaneously with identical stoichiometry as the parental mAbs. Stability studies of the initial IgG-scFv revealed chemical degradation and aggregation not observed in either parental antibody. The anti-IL-17 scFv showed a high melting temperature (Tm) by differential scanning calorimetry (73.1°C), but also concentration-dependent, initially reversible, protein self-association. To engineer scFv stability, three parallel approaches were taken: labile complementary-determining region (CDR) residues were replaced by stable, affinity-neutral amino acids, CDR charge distribution was balanced, and a H44-L100 interface disulfide bond was introduced. The Tm of the disulfide-stabilized scFv was largely unperturbed, yet it remained monodispersed at high protein concentration. Fluorescent dye binding titrations indicated reduced solvent exposure of hydrophobic residues and decreased proteolytic susceptibility was observed, both indicative of enhanced conformational stability. Superimposition of the H44-L100 scFv (PDB id: 6NOU) and ixekizumab antigen-binding fragment (PDB id: 6NOV) crystal structures revealed nearly identical orientation of the frameworks and CDR loops. The stabilized bispecific molecule LY3090106 (tibulizumab) potently antagonized both BAFF and IL-17 in cell-based and in vivo mouse models. In cynomolgus monkey, it suppressed B cell development and survival and remained functionally intact in circulation, with a prolonged half-life. In summary, we engineered a potent bispecific antibody targeting two key cytokines involved in human autoimmunity amenable to clinical development.


Asunto(s)
Anticuerpos Biespecíficos , Enfermedades Autoinmunes/tratamiento farmacológico , Factor Activador de Células B/antagonistas & inhibidores , Interleucina-17/antagonistas & inhibidores , Anticuerpos de Cadena Única , Animales , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/farmacología , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Monoclonales Humanizados/farmacología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Factor Activador de Células B/inmunología , Femenino , Células HEK293 , Células HT29 , Humanos , Interleucina-17/inmunología , Macaca fascicularis , Ratones , Ratones Transgénicos , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/farmacología
3.
Oncotarget ; 8(55): 94619-94634, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29212254

RESUMEN

Stromal cell-derived factor-1 (SDF-1) and its receptor CXCR4 play a critical role in mobilization and redistribution of immune cells and hematopoietic stem cells (HSCs). We evaluated effects of two CXCR4-targeting agents, peptide antagonist LY2510924 and monoclonal antibody LY2624587, on mobilizing HSCs and white blood cells (WBCs) in humans, monkeys, and mice. Biochemical analysis showed LY2510924 peptide blocked SDF-1/CXCR4 binding in all three species; LY2624587 antibody blocked binding in human and monkey, with minimal activity in mouse. Cellular analysis showed LY2624587 antibody, but not LY2510924 peptide, down-regulated cell surface CXCR4 and induced hematological tumor cell death; both agents have been shown to inhibit SDF-1/CXCR4 interaction and downstream signaling. In animal models, LY2510924 peptide induced robust, prolonged, dose- and time-dependent WBC and HSC increases in mice and monkeys, whereas LY2624587 antibody induced only moderate, transient increases in monkeys. In clinical trials, similar pharmacodynamic effects were observed in patients with advanced cancer: LY2510924 peptide induced sustained WBC and HSC increases, while LY2624587 antibody induced only minimal, transient WBC changes. These distinct pharmacodynamic effects in two different classes of CXCR4 inhibitors are clinically important and should be carefully considered when designing combination studies with immune checkpoint inhibitors or other agents for cancer therapy.

4.
MAbs ; 8(5): 969-82, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27111637

RESUMEN

Bispecific antibodies (BsAbs) can affect multiple disease pathways, thus these types of constructs potentially provide promising approaches to improve efficacy in complex disease indications. The specific and non-specific clearance mechanisms/biology that affect monoclonal antibody (mAb) pharmacokinetics are likely involved in the disposition of BsAbs. Despite these similarities, there are a paucity of studies on the in vivo biology that influences the biodistribution and pharmacokinetics of BsAbs. The present case study evaluated the in vivo disposition of 2 IgG-fusion BsAb formats deemed IgG-ECD (extracellular domain) and IgG-scFv (single-chain Fv) in cynomolgus monkeys. These BsAb molecules displayed inferior in vivo pharmacokinetic properties, including a rapid clearance (> 0.5 mL/hr/kg) and short half-life relative to their mAb counterparts. The current work evaluated factors in vivo that result in the aberrant clearance of these BsAb constructs. Results showed the rapid clearance of the BsAbs that was not attributable to target binding, reduced neonatal Fc receptor (FcRn) interactions or poor molecular/biochemical properties. Evaluation of the cellular distribution of the constructs suggested that the major clearance mechanism was linked to binding/association with liver sinusoidal endothelial cells (LSECs) versus liver macrophages. The role of LSECs in facilitating the clearance of the IgG-ECD and IgG-scFv BsAb constructs described in these studies was consistent with the minimal influence of clodronate-mediated macrophage depletion on the pharmacokinetics of the constructs in cynomolgus monkeys The findings in this report are an important demonstration that the elucidation of clearance mechanisms for some IgG-ECD and IgG-scFv BsAb molecules can be unique and complicated, and may require increased attention due to the proliferation of these more complex mAb-like structures.


Asunto(s)
Anticuerpos Biespecíficos/farmacocinética , Capilares/metabolismo , Hígado/metabolismo , Animales , Semivida , Antígenos de Histocompatibilidad Clase I , Humanos , Macaca fascicularis , Tasa de Depuración Metabólica , Receptores Fc
5.
J Biol Chem ; 291(21): 11337-47, 2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27022022

RESUMEN

Despite the increasing number of multivalent antibodies, bispecific antibodies, fusion proteins, and targeted nanoparticles that have been generated and studied, the mechanism of multivalent binding to cell surface targets is not well understood. Here, we describe a conceptual and mathematical model of multivalent antibody binding to cell surface antigens. Our model predicts that properties beyond 1:1 antibody:antigen affinity to target antigens have a strong influence on multivalent binding. Predicted crucial properties include the structure and flexibility of the antibody construct, the target antigen(s) and binding epitope(s), and the density of antigens on the cell surface. For bispecific antibodies, the ratio of the expression levels of the two target antigens is predicted to be critical to target binding, particularly for the lower expressed of the antigens. Using bispecific antibodies of different valencies to cell surface antigens including MET and EGF receptor, we have experimentally validated our modeling approach and its predictions and observed several nonintuitive effects of avidity related to antigen density, target ratio, and antibody affinity. In some biological circumstances, the effect we have predicted and measured varied from the monovalent binding interaction by several orders of magnitude. Moreover, our mathematical framework affords us a mechanistic interpretation of our observations and suggests strategies to achieve the desired antibody-antigen binding goals. These mechanistic insights have implications in antibody engineering and structure/activity relationship determination in a variety of biological contexts.


Asunto(s)
Reacciones Antígeno-Anticuerpo , Modelos Inmunológicos , Animales , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/metabolismo , Afinidad de Anticuerpos , Antígenos de Superficie/química , Antígenos de Superficie/metabolismo , Línea Celular , Receptores ErbB/química , Receptores ErbB/inmunología , Receptores ErbB/metabolismo , Humanos , Cinética , Unión Proteica , Proteínas Proto-Oncogénicas c-met/química , Proteínas Proto-Oncogénicas c-met/inmunología , Proteínas Proto-Oncogénicas c-met/metabolismo
6.
MAbs ; 7(5): 931-45, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26073904

RESUMEN

Bi-specific antibodies (BsAbs), which can simultaneously block 2 tumor targets, have emerged as promising therapeutic alternatives to combinations of individual monoclonal antibodies. Here, we describe the engineering and development of a novel, human bi-functional antibody-receptor domain fusion molecule with ligand capture (bi-AbCap) through the fusion of the domain 2 of human vascular endothelial growth factor receptor 1 (VEGFR1) to an antibody directed against insulin-like growth factor - type I receptor (IGF-IR). The bi-AbCap possesses excellent stability and developability, and is the result of minimal engineering. Beyond potent neutralizing activities against IGF-IR and VEGF, the bi-AbCap is capable of cross-linking VEGF to IGF-IR, leading to co-internalization and degradation of both targets by tumor cells. In multiple mouse xenograft tumor models, the bi-AbCap improves anti-tumor activity over individual monotherapies. More importantly, it exhibits superior inhibition of tumor growth, compared with the combination of anti-IGF-IR and anti-VEGF therapies, via powerful blockade of both direct tumor cell growth and tumor angiogenesis. The unique "capture-for-degradation" mechanism of the bi-AbCap is informative for the design of next-generation bi-functional anti-cancer therapies directed against independent signaling pathways. The bi-AbCap design represents an alternative approach to the creation of dual-targeting antibody fusion molecules by taking advantage of natural receptor-ligand interactions.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Anticuerpos Neutralizantes/farmacología , Receptores de Somatomedina/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/farmacología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/farmacología , Afinidad de Anticuerpos , Cromatografía Líquida de Alta Presión , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Immunoblotting , Inmunoprecipitación , Ratones , Ratones Desnudos , Microscopía Confocal , Neoplasias Experimentales/tratamiento farmacológico , Estabilidad Proteica , Receptor IGF Tipo 1 , Resonancia por Plasmón de Superficie , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Mol Cancer Ther ; 14(7): 1661-70, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25908685

RESUMEN

Skeletal muscle wasting occurs in a great majority of cancer patients with advanced disease and is associated with a poor prognosis and decreased survival. Myostatin functions as a negative regulator of skeletal muscle mass and has recently become a therapeutic target for reducing the loss of skeletal muscle and strength associated with clinical myopathies. We generated neutralizing antibodies to myostatin to test their potential use as therapeutic agents to attenuate the skeletal muscle wasting due to cancer. We show that our neutralizing antimyostatin antibodies significantly increase body weight, skeletal muscle mass, and strength in non-tumor-bearing mice with a concomitant increase in mean myofiber area. The administration of these neutralizing antibodies in two preclinical models of cancer-induced muscle wasting (C26 colon adenocarcinoma and PC3 prostate carcinoma) resulted in a significant attenuation of the loss of muscle mass and strength with no effect on tumor growth. We also show that the skeletal muscle mass- and strength-preserving effect of the antibodies is not affected by the coadministration of gemcitabine, a common chemotherapeutic agent, in both non-tumor-bearing mice and mice bearing C26 tumors. In addition, we show that myostatin neutralization with these antibodies results in the preservation of skeletal muscle mass following reduced caloric intake, a common comorbidity associated with advanced cancer. Our findings support the use of neutralizing antimyostatin antibodies as potential therapeutics for cancer-induced muscle wasting.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Músculo Esquelético/efectos de los fármacos , Miostatina/inmunología , Neoplasias/tratamiento farmacológico , Síndrome Debilitante/tratamiento farmacológico , Animales , Anticuerpos Neutralizantes/inmunología , Afinidad de Anticuerpos/inmunología , Peso Corporal/efectos de los fármacos , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Femenino , Células HEK293 , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones SCID , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Miofibrillas/efectos de los fármacos , Neoplasias/complicaciones , Neoplasias Experimentales/complicaciones , Neoplasias Experimentales/tratamiento farmacológico , Trasplante Heterólogo , Resultado del Tratamiento , Síndrome Debilitante/etiología
8.
Gut ; 63(12): 1951-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24598129

RESUMEN

OBJECTIVE: Hypoxia affects body iron homeostasis; however, the underlying mechanisms are incompletely understood. DESIGN: Using a standardised hypoxia chamber, 23 healthy volunteers were subjected to hypoxic conditions, equivalent to an altitude of 5600 m, for 6 h. Subsequent experiments were performed in C57BL/6 mice, CREB-H knockout mice, primary hepatocytes and HepG2 cells. RESULTS: Exposure of subjects to hypoxia resulted in a significant decrease of serum levels of the master regulator of iron homeostasis hepcidin and elevated concentrations of platelet derived growth factor (PDGF)-BB. Using correlation analysis, we identified PDGF-BB to be associated with hypoxia mediated hepcidin repression in humans. We then exposed mice to hypoxia using a standardised chamber and observed downregulation of hepatic hepcidin mRNA expression that was paralleled by elevated serum PDGF-BB protein concentrations and higher serum iron levels as compared with mice housed under normoxic conditions. PDGF-BB treatment in vitro and in vivo resulted in suppression of both steady state and BMP6 inducible hepcidin expression. Mechanistically, PDGF-BB inhibits hepcidin transcription by downregulating the protein expression of the transcription factors CREB and CREB-H, and pharmacological blockade or genetic ablation of these pathways abrogated the effects of PDGF-BB toward hepcidin expression. CONCLUSIONS: Hypoxia decreases hepatic hepcidin expression by a novel regulatory pathway exerted via PDGF-BB, leading to increased availability of circulating iron that can be used for erythropoiesis.


Asunto(s)
Hepcidinas/metabolismo , Hipoxia/metabolismo , Hierro/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogénicas c-sis/farmacología , Adulto , Animales , Becaplermina , Modelos Animales de Enfermedad , Regulación hacia Abajo , Eritropoyesis/fisiología , Femenino , Voluntarios Sanos , Fármacos Hematológicos/farmacología , Células Hep G2 , Humanos , Hipoxia/etiología , Masculino , Ratones , Ratones Endogámicos C57BL
9.
PLoS One ; 8(3): e58575, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23536797

RESUMEN

Fibroblast growth factor 21 is a novel hormonal regulator with the potential to treat a broad variety of metabolic abnormalities, such as type 2 diabetes, obesity, hepatic steatosis, and cardiovascular disease. Human recombinant wild type FGF21 (FGF21) has been shown to ameliorate metabolic disorders in rodents and non-human primates. However, development of FGF21 as a drug is challenging and requires re-engineering of its amino acid sequence to improve protein expression and formulation stability. Here we report the design and characterization of a novel FGF21 variant, LY2405319. To enable the development of a potential drug product with a once-daily dosing profile, in a preserved, multi-use formulation, an additional disulfide bond was introduced in FGF21 through Leu118Cys and Ala134Cys mutations. FGF21 was further optimized by deleting the four N-terminal amino acids, His-Pro-Ile-Pro (HPIP), which was subject to proteolytic cleavage. In addition, to eliminate an O-linked glycosylation site in yeast a Ser167Ala mutation was introduced, thus allowing large-scale, homogenous protein production in Pichia pastoris. Altogether re-engineering of FGF21 led to significant improvements in its biopharmaceutical properties. The impact of these changes was assessed in a panel of in vitro and in vivo assays, which confirmed that biological properties of LY2405319 were essentially identical to FGF21. Specifically, subcutaneous administration of LY2405319 in ob/ob and diet-induced obese (DIO) mice over 7-14 days resulted in a 25-50% lowering of plasma glucose coupled with a 10-30% reduction in body weight. Thus, LY2405319 exhibited all the biopharmaceutical and biological properties required for initiation of a clinical program designed to test the hypothesis that administration of exogenous FGF21 would result in effects on disease-related metabolic parameters in humans.


Asunto(s)
Factores de Crecimiento de Fibroblastos/farmacología , Proteínas Recombinantes , Células 3T3 , Sustitución de Aminoácidos , Animales , Línea Celular , Diseño de Fármacos , Factores de Crecimiento de Fibroblastos/química , Factores de Crecimiento de Fibroblastos/genética , Expresión Génica , Variación Genética , Células Hep G2 , Humanos , Proteínas Klotho , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Modelos Moleculares , Pichia/genética , Pichia/metabolismo , Conformación Proteica , Estabilidad Proteica , Temperatura
10.
Thorax ; 67(11): 985-92, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22735687

RESUMEN

BACKGROUND: Therapeutic strategies to modulate the host response to bacterial pneumonia are needed to improve outcomes during community-acquired pneumonia. This study used mice with impaired Fas signalling to examine susceptibility to pneumococcal pneumonia and decoy receptor 3 analogue (DcR3-a) to correct factors associated with increased susceptibility. METHODS: Wild-type mice and those with varying degrees of impairment of Fas (lpr) or Fas ligand signalling (gld) were challenged with Streptococcus pneumoniae and microbiological and immunological outcomes measured in the presence or absence of DcR3-a. RESULTS: During established pneumonia, neutrophils became the predominant cell in the airway and gld mice were less able to clear bacteria from the lungs, demonstrating localised impairment of pulmonary neutrophil function in comparison to lpr or wild-type mice. T-cells from gld mice had enhanced activation and reduced apoptosis in comparison to wild-type and lpr mice during established pneumonia. Treatment with DcR3-a reduced T-cell activation and corrected the defect in pulmonary bacterial clearance in gld mice. CONCLUSIONS: The results suggest that imbalance in tumour necrosis factor superfamily signalling and excessive T-cell activation can impair bacterial clearance in the lung but that DcR3-a treatment can reduce T-cell activation, restore optimal pulmonary neutrophil function and enhance bacterial clearance during S pneumoniae infection.


Asunto(s)
Proteína Ligando Fas/metabolismo , Neutrófilos/inmunología , Fagocitos/inmunología , Neumonía Neumocócica/inmunología , Miembro 6b de Receptores del Factor de Necrosis Tumoral/farmacología , Animales , Modelos Animales de Enfermedad , Proteína Ligando Fas/farmacología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Neutrófilos/efectos de los fármacos , Fagocitos/efectos de los fármacos , Neumonía Neumocócica/metabolismo , Neumonía Neumocócica/microbiología , Neumonía Neumocócica/terapia , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/prevención & control , Transducción de Señal/efectos de los fármacos , Streptococcus pneumoniae/inmunología
11.
J Nutr Biochem ; 23(12): 1600-8, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22444869

RESUMEN

Obesity is often associated with disorders of iron homeostasis; however, the underlying mechanisms are not fully understood. Hepcidin is a key regulator of iron metabolism and may be responsible for obesity-driven iron deficiency. Herein, we used an animal model of diet-induced obesity to study high-fat-diet-induced changes in iron homeostasis. C57BL/6 mice were fed a standard (SD) or high-fat diet (HFD) for 8 weeks, and in addition, half of the mice received high dietary iron (Fe+) for the last 2 weeks. Surprisingly, HFD led to systemic iron deficiency which was traced back to reduced duodenal iron absorption. The mRNA and protein expressions of the duodenal iron transporters Dmt1 and Tfr1 were significantly higher in HFD- than in SD-fed mice, indicating enterocyte iron deficiency, whereas the mRNA levels of the duodenal iron oxidoreductases Dcytb and hephaestin were lower in HFD-fed mice. Neither hepatic and adipose tissue nor serum hepcidin concentrations differed significantly between SD- and HFD-fed mice, whereas dietary iron supplementation resulted in increased hepatic hepcidin mRNA expression and serum hepcidin levels in SD as compared to HFD mice. Our study suggests that HFD results in iron deficiency which is neither due to intake of energy-dense nutrient poor food nor due to increased sequestration in the reticulo-endothelial system but is the consequence of diminished intestinal iron uptake. We found that impaired iron absorption is independent of hepcidin but rather results from reduced metal uptake into the mucosa and discordant oxidoreductases expressions despite enterocyte iron deficiency.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Duodeno/metabolismo , Deficiencias de Hierro , Obesidad/metabolismo , Adipoquinas/genética , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/sangre , Péptidos Catiónicos Antimicrobianos/genética , Proteínas de Transporte de Catión/genética , Duodeno/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hepcidinas , Absorción Intestinal , Hierro/sangre , Hierro/metabolismo , Hierro de la Dieta/farmacocinética , Hierro de la Dieta/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Receptores de Transferrina/genética
12.
Hum Mol Genet ; 20(6): 1232-40, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21208937

RESUMEN

The genetic determinants of variation in iron status are actively sought, but remain incompletely understood. Meta-analysis of two genome-wide association (GWA) studies and replication in three independent cohorts was performed to identify genetic loci associated in the general population with serum levels of iron and markers of iron status, including transferrin, ferritin, soluble transferrin receptor (sTfR) and sTfR-ferritin index. We identified and replicated a novel association of a common variant in the type-2 transferrin receptor (TFR2) gene with iron levels, with effect sizes highly consistent across samples. In addition, we identified and replicated an association between the HFE locus and ferritin and confirmed previously reported associations with the TF, TMPRSS6 and HFE genes. The five replicated variants were tested for association with expression levels of the corresponding genes in a publicly available data set of human liver samples, and nominally statistically significant expression differences by genotype were observed for all genes, although only rs3811647 in the TF gene survived the Bonferroni correction for multiple testing. In addition, we measured for the first time the effects of the common variant in TMPRSS6, rs4820268, on hepcidin mRNA in peripheral blood (n = 83 individuals) and on hepcidin levels in urine (n = 529) and observed an association in the same direction, though only borderline significant. These functional findings require confirmation in further studies with larger sample sizes, but they suggest that common variants in TMPRSS6 could modify the hepcidin-iron feedback loop in clinically unaffected individuals, thus making them more susceptible to imbalances of iron homeostasis.


Asunto(s)
Variación Genética , Hierro/sangre , Receptores de Transferrina/genética , Adulto , Anciano , Anciano de 80 o más Años , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Receptores de Transferrina/metabolismo , Adulto Joven
13.
Clin Chem ; 56(11): 1725-32, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20847326

RESUMEN

BACKGROUND: Hepcidin, a key regulator of iron metabolism, binds to the iron transporter ferroportin to cause its degradation. In humans, hepcidin deficiency has been linked to hemochromatosis and iron overload, whereas increased concentrations have been reported in anemia of cancer and chronic disease. There is currently an unmet clinical need for a specific immunoassay with a low limit of quantification to measure serum concentrations of hepcidin-25, the active form of the protein. METHODS: We generated 2 antihepcidin-25 monoclonal antibodies and used them to build a sandwich ELISA. We correlated ELISA results to hepcidin-25 measurements by LC-MS and used ELISA to measure serum hepcidin-25 concentrations in normal individuals, cancer patients, and patients with rheumatoid arthritis. RESULTS: The sandwich ELISA was highly specific for hepcidin-25, having a limit of quantification of 0.01 µg/L (10 pg/mL). Serum concentrations of hepcidin-25 measured by ELISA correlated with hepcidin-25 concentrations measured by using an independent LC-MS assay (r = 0.98, P < 0.001). Hepcidin-25 concentrations were increased in patients with cancer (median 54.8 µg/L, 25%-75% range 23.2-93.5 µg/L, n = 34) and rheumatoid arthritis (median 10.6 µg/L, 25%-75% range 5.9-18.4 µg/L, n = 76) compared with healthy individuals (median 1.20 µg/L, 25%-75% range 0.42-3.07 µg/L, n = 100). CONCLUSIONS: The use of 2 monoclonal antibodies in a sandwich ELISA format provides a robust and convenient method for measuring concentrations of the active form of hepcidin. This ELISA should help to improve our understanding of the role of hepcidin in regulating iron metabolism.


Asunto(s)
Anticuerpos Monoclonales , Péptidos Catiónicos Antimicrobianos/sangre , Adolescente , Adulto , Péptidos Catiónicos Antimicrobianos/inmunología , Artritis Reumatoide/sangre , Ensayo de Inmunoadsorción Enzimática , Femenino , Hepcidinas , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/sangre , Grupos Raciales , Valores de Referencia , Factores Sexuales , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Adulto Joven
14.
Br J Haematol ; 148(3): 449-55, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19863534

RESUMEN

Recently, the iron and erythropoiesis-controlled growth differentiation factor 15 (GDF15) has been shown to inhibit the expression of hepcidin in beta-thalassaemia patients, thereby increasing iron absorption despite iron overload. To access the diagnostic and pathogenic impact of GDF15 in inflammatory anaemia the association of GDF15 expression with serum iron parameters and hepcidin was studied in patients suffering from iron deficiency anaemia (IDA), anaemia of chronic disease (ACD) and ACD subjects with true iron deficiency (ACD/IDA). GDF15 was significantly increased in both ACD and ACD/IDA, but not in IDA subjects as compared to controls. In contrast, hepcidin levels were significantly lower in IDA and ACD/IDA subjects than in ACD patients. IDA and ACD/IDA, but not ACD, showed an association between GDF15 and soluble transferrin receptor, an indicator of iron requirement for erythropoiesis. However, GDF15 did not correlate to hepcidin in either patient group. While GDF15 levels were linked to the needs for erythropoiesis and iron homeostasis in IDA, the immunity-driven increase of GDF15 may not primarily affect iron homeostasis and hepcidin expression. This indicates that other ACD-related factors may overcome the regulatory effects of GDF15 on hepcidin expression during inflammation.


Asunto(s)
Anemia/sangre , Factor 15 de Diferenciación de Crecimiento/sangre , Adulto , Anciano , Anemia/etiología , Anemia Ferropénica/sangre , Péptidos Catiónicos Antimicrobianos/sangre , Biomarcadores/sangre , Estudios de Casos y Controles , Enfermedad Crónica , Femenino , Factor 15 de Diferenciación de Crecimiento/fisiología , Hepcidinas , Humanos , Masculino , Persona de Mediana Edad
15.
Blood ; 113(21): 5277-86, 2009 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-19293425

RESUMEN

The anemia of chronic disease (ACD) is characterized by macrophage iron retention induced by cytokines and the master regulator hepcidin. Hepcidin controls cellular iron efflux on binding to the iron export protein ferroportin. Many patients, however, present with both ACD and iron deficiency anemia (ACD/IDA), the latter resulting from chronic blood loss. We used a rat model of ACD resulting from chronic arthritis and mimicked ACD/IDA by additional phlebotomy to define differing iron-regulatory pathways. Iron retention during inflammation occurs in macrophages and the spleen, but not in the liver. In rats and humans with ACD, serum hepcidin concentrations are elevated, which is paralleled by reduced duodenal and macrophage expression of ferroportin. Individuals with ACD/IDA have significantly lower hepcidin levels than ACD subjects, and ACD/IDA persons, in contrast to ACD subjects, were able to absorb dietary iron from the gut and to mobilize iron from macrophages. Circulating hepcidin levels affect iron traffic in ACD and ACD/IDA and are more responsive to the erythropoietic demands for iron than to inflammation. Hepcidin determination may aid to differentiate between ACD and ACD/IDA and in selecting appropriate therapy for these patients.


Asunto(s)
Anemia Ferropénica/patología , Anemia/patología , Homeostasis , Hierro/metabolismo , Anemia/sangre , Anemia/metabolismo , Anemia Ferropénica/sangre , Anemia Ferropénica/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/sangre , Estudios de Casos y Controles , Proteínas de Transporte de Catión/análisis , Enfermedad Crónica , Modelos Animales de Enfermedad , Duodeno/metabolismo , Hepcidinas , Humanos , Inflamación , Macrófagos/metabolismo , Macrófagos/patología , Ratas , Ratas Endogámicas Lew , Bazo/metabolismo , Bazo/patología
16.
Br J Haematol ; 144(5): 789-93, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19120353

RESUMEN

Iron absorption is inadequately increased in patients with chronic haemolytic anaemia, which is commonly complicated by iron overload. Growth differentiation factor 15 (GDF15) has been identified as a bone marrow-derived factor that abrogates hepcidin-mediated protection from iron overload under conditions of increased erythropoiesis. Increased concentrations of GDF15 have been reported in beta-thalassaemia patients and GDF15 has been found to suppress hepcidin expression in vitro. To further study the interdependencies of iron metabolism and erythropoiesis in vivo, the concentrations of hepcidin and GDF15 were determined in sera from 22 patients with pyruvate kinase deficiency (PKD) and 21 healthy control subjects. In PKD patients, serum hepcidin levels were 13-fold lower than in controls (2.0 ng/ml vs. 26.2 ng/ml) and GDF15 was significantly higher (859 pg/ml vs. 528 pg/ml). Serum hepcidin concentrations correlated positively with haemoglobin and negatively with serum GDF15. These results suggest that GDF15 contributes to low hepcidin expression and iron loading in PKD.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/sangre , Factor 15 de Diferenciación de Crecimiento/sangre , Sobrecarga de Hierro/sangre , Hierro/metabolismo , Piruvato Quinasa/deficiencia , Adolescente , Adulto , Anciano , Péptidos Catiónicos Antimicrobianos/metabolismo , Estudios de Casos y Controles , Eritropoyesis/fisiología , Femenino , Factor 15 de Diferenciación de Crecimiento/metabolismo , Hemoglobinas/análisis , Hepcidinas , Humanos , Masculino , Persona de Mediana Edad , Recuento de Reticulocitos , Estadísticas no Paramétricas , Adulto Joven
17.
Transfusion ; 48(10): 2197-204, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18657084

RESUMEN

BACKGROUND: Individuals donating whole blood 13 times in a 2-year period without development of iron deficiency anemia (superdonors) are a self-selected population that is deferred for low hematocrit (Hct) level less frequently than other donors. STUDY DESIGN AND METHODS: Iron metabolism was assessed in 138 superdonors through a questionnaire and measurement of Hct, serum ferritin, serum hepcidin, and serum growth differentiation factor 15 (GDF15). Genetic testing for HFE and JAK-2 mutations was also performed. RESULTS AND CONCLUSIONS: Iron deficiency (ferritin level, <30 microg/L) is present in more than 60 percent of superdonors. Behaviors altering iron status included casual use of iron supplements in males, but not in females, and cigarette smoking that produced increased Hct associated with decreased ferritin. The striking biochemical characteristic of superdonors is greatly decreased serum hepcidin, consistent with their need to absorb maximal amounts of dietary iron to replace that lost from blood donation. GDF15 is normal in most superdonors, indicating that GDF15 overexpression arising from the expanded erythroid pool necessary to replace donated red cells is not the biochemical mechanism for the decreased serum hepcidin. Mutations in JAK-2 were not found, indicating that undiagnosed polycythemia vera is not a common cause for successful repeated blood donation by superdonors. Mutations in HFE associated with hemochromatosis were present in superdonors at the same frequency as the normal population. However, superdonors heterozygous for the H63D mutation in HFE had significantly decreased hepcidin : ferritin ratios demonstrating for the first time that the heterozygous state for HFE mutations is associated with alterations in hepcidin expression.


Asunto(s)
Anemia Ferropénica/sangre , Anemia Ferropénica/genética , Donantes de Sangre , Citocinas/genética , Antígenos de Histocompatibilidad Clase I/genética , Janus Quinasa 2/genética , Proteínas de la Membrana/genética , Anemia Ferropénica/tratamiento farmacológico , Péptidos Catiónicos Antimicrobianos/sangre , Femenino , Ferritinas/sangre , Factor 15 de Diferenciación de Crecimiento , Hematócrito , Proteína de la Hemocromatosis , Hepcidinas , Humanos , Hierro/farmacología , Hierro de la Dieta/farmacología , Masculino , Persona de Mediana Edad , Policitemia Vera/genética , Fumar/sangre , Encuestas y Cuestionarios
18.
Drug Metab Dispos ; 35(1): 86-94, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17050651

RESUMEN

It is well established that the neonatal Fc receptor (FcRn) plays a critical role in regulating IgG homeostasis in vivo. As such, modification of the interaction of IgG with FcRn has been the focus of protein-engineering strategies designed to generate therapeutic antibodies with improved pharmacokinetic properties. In the current work, we characterized differences in interaction of IgG between mouse and primate receptors using three humanized anti-tumor necrosis factor alpha antibodies with variant IgG(1) Fc regions. The wild-type and variant IgG showed a differential combination of improved affinity, modified dissociation kinetics, and altered pH-dependent complex dissociation when evaluated on the primate and murine receptors. The observed in vitro binding differences within and between species allowed us to more completely relate these parameters to their influence on the in vivo pharmacokinetics in mice and cynomolgus monkeys. The variant antibodies have different pharmacokinetic behavior in cynomolgus monkeys and mice, which appears to be related to the unique binding characteristics observed with the murine receptor. However, we did not observe a direct relationship between increased binding affinity to the receptor and improved pharmacokinetic properties for these molecules in either species. This work provides further insights into how the FcRn/IgG interaction may be modulated to develop monoclonal antibodies with improved therapeutic properties.


Asunto(s)
Anticuerpos/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Inmunoglobulina G/genética , Inmunoglobulina G/metabolismo , Receptores Fc/metabolismo , Factor de Necrosis Tumoral alfa/inmunología , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Unión Proteica , Transfección
19.
J Biol Chem ; 282(3): 1709-17, 2007 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-17135257

RESUMEN

The neonatal Fc receptor (FcRn) plays a critical role in regulating IgG homeostasis in vivo. There are mixed reports on whether modification of the interaction with FcRn can be used as an engineering strategy to improve the pharmacokinetic and pharmacodynamic properties of monoclonal antibodies. We tested whether the T250Q/M428L mutations, which improved the pharmacokinetics of humanized IgGs in the rhesus monkey, would translate to a pharmacokinetic benefit in both cynomolgus monkeys and mice when constructed on a different humanized IgG framework (anti-tumor necrosis factor-alpha (TNFalpha)). The T250Q/M428L anti-TNFalpha variant displayed an approximately 40-fold increase in binding affinity to cynomolgus monkey FcRn (C-FcRn) at pH 6.0, with maintenance of the pH binding dependence. We also constructed another anti-TNFalpha variant (P257I/Q311I) whose binding kinetics with the C-FcRn was similar to that of the T250Q/M428L variant. The binding affinity of the T250Q/M428L variant for murine FcRn was increased approximately 500-fold, with maintenance of pH dependence. In contrast to the interaction with C-FcRn, this interaction was driven mainly by a decrease in the rate of dissociation. Despite the improved in vitro binding properties of the anti-TNFalpha T250Q/M428L and P257I/Q311I variants to C-FcRn, the pharmacokinetic profiles of these molecules were not differentiated from the wild-type antibody in cynomolgus monkeys after intravenous administration. When administered intravenously to mice, the T250Q/M428L anti-TNFalpha variant displayed improved pharmacokinetics, characterized by an approximately 2-fold slower clearance than the wild-type antibody. The discrepancy between these data and previously reported benefits in rhesus monkeys and the inability of these mutations to translate to improved kinetics across species may be related to a number of factors. We propose extending consideration to differences in the absolute IgG-FcRn affinity, the kinetics of the IgG/FcRn interaction, and differences in the relative involvement of this pathway in the context of other factors influencing the disposition or elimination of monoclonal antibodies.


Asunto(s)
Anticuerpos Monoclonales/química , Inmunoglobulina G/química , Receptores Fc/química , Animales , Línea Celular , Humanos , Concentración de Iones de Hidrógeno , Cinética , Macaca fascicularis , Macaca mulatta , Ratones , Mutación , Unión Proteica , Resonancia por Plasmón de Superficie , Factor de Necrosis Tumoral alfa/metabolismo
20.
Blood ; 102(9): 3206-9, 2003 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-12855566

RESUMEN

In a search for novel growth factors, we discovered that human interleukin-20 (IL-20) enhanced colony formation by CD34+ multipotential progenitors. IL-20 had no effect on erythroid, granulocyte-macrophage, or megakaryocyte progenitors. IL-20 transgenic mice increased the numbers and cell cycling of multipotential but not other progenitors. IL-20 administration to normal mice significantly increased only multipotential progenitor cells, demonstrating that IL-20 significantly influences hematopoiesis, with specificity toward multipotential progenitors. This is the first cytokine with such specificity identified.


Asunto(s)
Células Madre Hematopoyéticas/citología , Interleucinas/farmacología , Células Madre Multipotentes/efectos de los fármacos , Animales , Antígenos CD34 , Células de la Médula Ósea/citología , División Celular/efectos de los fármacos , Células Cultivadas , Sangre Fetal/citología , Hematopoyesis/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Humanos , Interleucinas/administración & dosificación , Ratones , Ratones Transgénicos , Células Madre Multipotentes/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA