Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Gene ; 929: 148812, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39116959

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and represents the main cause of liver cirrhosis and hepatocellular carcinoma. Cav3.2 is a T-type calcium channel that is widely present in tissues throughout the body and plays a vital role in energy and metabolic balance. However, the effects of Cav3.2 on the NFALD remain unclear. Here, we investigated the role of Cav3.2 channel in the development and progression of NAFLD. After 16 weeks on a high-fat diets (HFD), Cav3.2 knockout (Cav3.2 KO) improved hepatic steatosis, liver injury and metabolic syndrome in an NAFLD mouse model. We provided evidence that Cav3.2 KO inhibited HFD-induced hepatic oxidative stress, inflammation and hepatocyte apoptosis. In addition, Cav3.2 KO also attenuated hepatic lipid accumulation, oxidative stress, inflammation and hepatocyte apoptosis in palmitic acid/oleic acid (PAOA)-treated primary hepatocytes. These results suggest that therapeutic approaches targeting Cav3.2 provide effective approaches for treating NAFLD.


Asunto(s)
Apoptosis , Canales de Calcio Tipo T , Dieta Alta en Grasa , Hepatocitos , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico , Estrés Oxidativo , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Ratones , Dieta Alta en Grasa/efectos adversos , Hepatocitos/metabolismo , Hepatocitos/patología , Masculino , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Hígado/metabolismo , Hígado/patología , Inflamación/genética , Inflamación/metabolismo
2.
Br J Pharmacol ; 181(22): 4546-4570, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39081110

RESUMEN

BACKGROUND AND PURPOSE: Gastrointestinal tumours overexpress voltage-gated calcium (CaV3) channels (CaV3.1, 3.2 and 3.3). CaV3 channels regulate cell growth and apoptosis colorectal cancer. Gossypol, a polyphenolic aldehyde found in the cotton plant, has anti-tumour properties and inhibits CaV3 currents. A systematic study was performed on gossypol blocking mechanism on CaV3 channels and its potential anticancer effects in colon cancer cells, which express CaV3 isoforms. EXPERIMENTAL APPROACH: Transcripts for CaV3 proteins were analysed in gastrointestinal cancers using public repositories and in human colorectal cancer cell lines HCT116, SW480 and SW620. The gossypol blocking mechanism on CaV3 channels was investigated by combining heterologous expression systems and patch-clamp experiments. The anti-tumoural properties of gossypol were estimated by cell proliferation, viability and cell cycle assays. Ca2+ dynamics were evaluated with cytosolic and endoplasmic reticulum (ER) Ca2+ indicators. KEY RESULTS: High levels of CaV3 transcripts correlate with poor prognosis in gastrointestinal cancers. Gossypol blockade of CaV3 isoforms is concentration- and use-dependent interacting with the closed, activated and inactivated conformations of CaV3 channels. Gossypol and CaV3 channels down-regulation inhibit colorectal cancer cell proliferation by arresting cell cycles at the G0/G1 and G2/M phases, respectively. CaV3 channels underlie the vectorial Ca2+ uptake by endoplasmic reticulum in colorectal cancer cells. CONCLUSION AND IMPLICATIONS: Gossypol differentially blocked CaV3 channel and its anticancer activity was correlated with high levels of CaV3.1 and CaV3.2 in colorectal cancer cells. The CaV3 regulates cell proliferation and Ca2+ dynamics in colorectal cancer cells. Understanding this blocking mechanism maybe improve cancer therapies.


Asunto(s)
Bloqueadores de los Canales de Calcio , Canales de Calcio Tipo T , Proliferación Celular , Neoplasias del Colon , Gosipol , Humanos , Gosipol/farmacología , Gosipol/análogos & derivados , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Proliferación Celular/efectos de los fármacos , Canales de Calcio Tipo T/metabolismo , Canales de Calcio Tipo T/genética , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Calcio/metabolismo , Línea Celular Tumoral , Fase de Descanso del Ciclo Celular/efectos de los fármacos , Antineoplásicos/farmacología
3.
Int Immunopharmacol ; 136: 112410, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38843641

RESUMEN

Impaired wound healing in diabetes results from a complex interplay of factors that disrupt epithelialization and wound closure. MG53, a tripartite motif (TRIM) family protein, plays a key role in repairing cell membrane damage and facilitating tissue regeneration. In this study, bone marrow-derived mesenchymal stem cells (BMSCs) were transduced with lentiviral vectors overexpressing MG53 to investigate their efficacy in diabetic wound healing. Using a db/db mouse wound model, we observed that BMSCs-MG53 significantly enhanced diabetic wound healing. This improvement was associated with marked increase in re-epithelialization and vascularization. BMSCs-MG53 promoted recruitment and survival of BMSCs, as evidenced by an increase in MG53/Ki67-positive BMSCs and their improved response to scratch wounding. The combination therapy also promoted angiogenesis in diabetic wound tissues by upregulating the expression of angiogenic growth factors. MG53 overexpression accelerated the differentiation of BMSCs into endothelial cells, manifested as the formation of mature vascular network structure and a remarkable increase in DiI-Ac-LDL uptake. Our mechanistic investigation revealed that MG53 binds to caveolin-3 (CAV3) and subsequently increases phosphorylation of eNOS, thereby activating eNOS/NO signaling. Notably, CAV3 knockdown reversed the promoting effects of MG53 on BMSCs endothelial differentiation. Overall, our findings support the notion that MG53 binds to CAV3, activates eNOS/NO signaling pathway, and accelerates the therapeutic effect of BMSCs in the context of diabetic wound healing. These insights hold promise for the development of innovative strategies for treating diabetic-related impairments in wound healing.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Óxido Nítrico Sintasa de Tipo III , Óxido Nítrico , Transducción de Señal , Cicatrización de Heridas , Animales , Células Madre Mesenquimatosas/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ratones , Óxido Nítrico/metabolismo , Masculino , Ratones Endogámicos C57BL , Neovascularización Fisiológica , Células Cultivadas , Humanos , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Diferenciación Celular , Proteínas de la Membrana
4.
Chem Biodivers ; 21(4): e202400182, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38315068

RESUMEN

Voltage-gated calcium channels (VGCCs), particularly T-type calcium channels (TTCCs), are crucial for various physiological processes and have been implicated in pain, epilepsy, and cancer. Despite the clinical trials of TTCC blockers like Z944 and MK8998, none are currently available on the market. This study investigates the efficacy of Lycopodium alkaloids, particularly as natural product-based TTCC blockers. We synthesized eighteen derivatives from α-obscurine, a lycodine-type alkaloid, and identified five derivatives with significant Cav3.1 blockade activity. The most potent derivative, compound 7, exhibited an IC50 value of 0.19±0.03 µM and was further analyzed through molecular docking, revealing key interactions with Cav3.1. These findings provide a foundation for the structural optimization of Cav3.1 calcium channel blockers and present compound 7 as a promising lead compound for drug development and a tool for chemical biology research.


Asunto(s)
Alcaloides , Bloqueadores de los Canales de Calcio , Humanos , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/química , Simulación del Acoplamiento Molecular , Alcaloides/farmacología , Alcaloides/química , Dolor , Calcio
5.
J Invest Dermatol ; 144(3): 612-620.e6, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37863387

RESUMEN

Voltage-gated calcium channels regulate neuronal excitability. The Cav3.2 isoform of the T-type voltage-activated calcium channel is expressed in sensory neurons and is implicated in pain transmission. However, its role in itch remains unclear. In this study, we demonstrated that Cav3.2 is expressed by mechanosensory and peptidergic subsets of mouse dorsal root ganglion neurons and colocalized with TRPV1 and receptors for type 2 cytokines. Cav3.2-positive neurons innervate human skin. A deficiency of Cav3.2 reduces histamine, IL-4/IL-13, and TSLP-induced itch in mice. Cav3.2 channels were upregulated in the dorsal root ganglia of an atopic dermatitis (AD)-like mouse model and mediated neuronal excitability. Genetic knockout of Cav3.2 or T-type calcium channel blocker mibefradil treatment reduced spontaneous and mechanically induced scratching behaviors and skin inflammation in an AD-like mouse model. Substance P and vasoactive intestinal polypeptide levels were increased in the trigeminal ganglia from AD-like mouse model, and genetic ablation or pharmacological inhibition of Cav3.2 reduced their gene expression. Cav3.2 knockout also attenuated the pathologic changes in ex vivo skin explants cocultured with trigeminal ganglia neurons from AD-induced mice. Our study identifies the role of Cav3.2 in both histaminergic and nonhistaminergic acute itch. Cav3.2 channel also contributes to AD-related chronic itch and neuroinflammation.


Asunto(s)
Canales de Calcio Tipo T , Dermatitis Atópica , Ratones , Humanos , Animales , Dermatitis Atópica/metabolismo , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Prurito/metabolismo , Inflamación/metabolismo , Células Receptoras Sensoriales/metabolismo , Interleucina-13/metabolismo , Ganglios Espinales/metabolismo
6.
Front Pharmacol ; 14: 1212800, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37529702

RESUMEN

Neuropathic pain can appear as a direct or indirect nerve damage lesion or disease that affects the somatosensory nervous system. If the neurons are damaged or indirectly stimulated, immune cells contribute significantly to inflammatory and neuropathic pain. After nerve injury, peripheral macrophages/spinal microglia accumulate around damaged neurons, producing endogenous hydrogen sulfide (H2S) through the cystathionine-γ-lyase (CSE) enzyme. H2S has a pronociceptive modulation on the Cav3.2 subtype, the predominant Cav3 isoform involved in pain processes. The present review provides relevant information about H2S modulation on the Cav3.2 T-type channels in neuropathic pain conditions. We have discussed that the dual effect of H2S on T-type channels is concentration-dependent, that is, an inhibitory effect is seen at low concentrations of 10 µM and an augmentation effect on T-current at 100 µM. The modulation mechanism of the Cav3.2 channel by H2S involves the direct participation of the redox/Zn2+ affinity site located in the His191 in the extracellular loop of domain I of the channel, involving a group of extracellular cysteines, comprising C114, C123, C128, and C1333, that can modify the local redox environment. The indirect interaction pathways involve the regulation of the Cav3.2 channel through cytokines, kinases, and post-translational regulators of channel expression. The findings conclude that the CSE/H2S/Cav3.2 pathway could be a promising therapeutic target for neuropathic pain disorders.

7.
J Bone Oncol ; 42: 100495, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37583441

RESUMEN

Background: Bone cancer pain (BCP) is one of the most ubiquitous and refractory symptoms of cancer patients that needs to be urgently addressed. Substantial studies have revealed the pivotal role of Cav3.2 T-type calcium channels in chronic pain, however, its involvement in BCP and the specific molecular mechanism have not been fully elucidated. Methods: The expression levels of Cav3.2, insulin-like growth factor 1(IGF-1), IGF-1 receptor (IGF-1R) and hypoxia-inducible factor-1α (HIF-1α) were detected by Western blot in tissues and cells. X-ray and Micro CT used to detect bone destruction in rats. Immunofluorescence was used to detect protein expression and spatial location in the spinal dorsal horn. Electrophoretic mobility shift assay used to verify the interaction between HIF-1α and Cav3.2. Results: The results showed that the expression of Cav3.2 channel was upregulated and blockade of this channel alleviated mechanical allodynia and thermal hyperalgesia in BCP rats. Additionally, inhibition of IGF-1/IGF-1R signaling not only reversed the BCP-induced upregulation of Cav3.2 and HIF-1α, but also decreased nociceptive hypersensitivity in BCP rats. Inhibition of IGF-1 increased Cav3.2 expression levels, which were abolished by pretreatment with HIF-1α siRNA in PC12 cells. Furthermore, nuclear HIF-1α bound to the promoter of Cav3.2 to regulate the Cav3.2 transcription level, and knockdown of HIF-1α suppresses the IGF-1-induced upregulation of Cav3.2 and pain behaviors in rats with BCP. Conclusion: These findings suggest that spinal Cav3.2 T-type calcium channels play a central role during the development of bone cancer pain in rats via regulation of the IGF-1/IGF-1R/HIF-1α pathway.

8.
Handb Exp Pharmacol ; 279: 249-262, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37311830

RESUMEN

Aldosterone is a steroid hormone produced in the zona glomerulosa (ZG) of the adrenal cortex. The most prominent function of aldosterone is the control of electrolyte homeostasis and blood pressure via the kidneys. The primary factors regulating aldosterone synthesis are the serum concentrations of angiotensin II and potassium. The T-type voltage-gated calcium channel CaV3.2 (encoded by CACNA1H) is an important component of electrical as well as intracellular calcium oscillations, which govern aldosterone production in the ZG. Excessive aldosterone production that is (partially) uncoupled from physiological stimuli leads to primary aldosteronism, the most common cause of secondary hypertension. Germline gain-of-function mutations in CACNA1H were identified in familial hyperaldosteronism, whereas somatic mutations are a rare cause of aldosterone-producing adenomas. In this review, we summarize these findings, put them in perspective, and highlight missing knowledge.


Asunto(s)
Canales de Calcio Tipo T , Hiperaldosteronismo , Hipertensión , Humanos , Aldosterona , Hiperaldosteronismo/genética , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Hipertensión/genética , Señalización del Calcio , Mutación
9.
Transl Neurosci ; 14(1): 20220285, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37250140

RESUMEN

Background: Ca2+ channels are abnormally expressed in various tumor cells and are involved in the progression of human glioma. Here, we explored the role of a calcium channel, voltage-dependent, T-type, alpha 1H subunit (CACNA1H), which encodes T-type Ca2+ channel Cav3.2 in glioma cells. Methods: Cell viability and apoptosis were detected using cell-counting kit-8 and flow cytometry, respectively. The expression of target protein was determined using western blot analysis. Results: Cell viability of U251 cells was inhibited significantly after the knockdown of CACNA1H. The apoptosis of U251 cells was enhanced significantly after the knockdown of CACNA1H. Importantly, knockdown of CACNA1H decreased the levels of p-PERK, GRP78, CHOP, and ATF6, indicating that CACNA1H knockdown activated endoplasmic reticulum stress (ERS) in U251 cells. In addition, T-type Ca2+ channel inhibitor NNC55-0396 also induced apoptosis through the activation of ERS in U251 cells. ERS inhibitor UR906 could block CACNA1H inhibitor ABT-639-induced apoptosis. Conclusion: Suppression of CACNA1H activated the ERS and thus induced apoptosis in glioma cells. T-type Ca2+ channel inhibitors ABT-639 and NNC55-0396 also induced apoptosis through ERS in glioma cells. Our data highlighted the effect of CACNA1H as an oncogenic gene in human glioma.

10.
Int J Mol Sci ; 24(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37240147

RESUMEN

Calcium is a highly positively charged ionic species. It regulates all cell types' functions and is an important second messenger that controls and triggers several mechanisms, including membrane stabilization, permeability, contraction, secretion, mitosis, intercellular communications, and in the activation of kinases and gene expression. Therefore, controlling calcium transport and its intracellular homeostasis in physiology leads to the healthy functioning of the biological system. However, abnormal extracellular and intracellular calcium homeostasis leads to cardiovascular, skeletal, immune, secretory diseases, and cancer. Therefore, the pharmacological control of calcium influx directly via calcium channels and exchangers and its outflow via calcium pumps and uptake by the ER/SR are crucial in treating calcium transport remodeling in pathology. Here, we mainly focused on selective calcium transporters and blockers in the cardiovascular system.


Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , Humanos , Calcio/metabolismo , Canales de Calcio/metabolismo , Sistema Cardiovascular/metabolismo , Sistemas de Mensajero Secundario , Bloqueadores de los Canales de Calcio/farmacología , Enfermedades Cardiovasculares/tratamiento farmacológico , Homeostasis
11.
Arthritis Res Ther ; 24(1): 168, 2022 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-35842727

RESUMEN

BACKGROUND: Peripheral and central nociceptive sensitization is a critical pathogenetic component in osteoarthritis (OA) chronic pain. T-type calcium channel 3.2 (CaV3.2) regulates neuronal excitability and plays important roles in pain processing. We previously identified that enhanced T-type/CaV3.2 activity in the primary sensory neurons (PSNs) of dorsal root ganglia (DRG) is associated with neuropathic pain behavior in a rat model of monosodium iodoacetate (MIA)-induced knee OA. PSN-specific T-type/CaV3.2 may therefore represent an important mediator in OA painful neuropathy. Here, we test the hypothesis that the T-type/CaV3.2 channels in PSNs can be rationally targeted for pain relief in MIA-OA. METHODS: MIA model of knee OA was induced in male and female rats by a single injection of 2 mg MIA into intra-knee articular cavity. Two weeks after induction of knee MIA-OA pain, recombinant adeno-associated viruses (AAV)-encoding potent CaV3.2 inhibitory peptide aptamer 2 (CaV3.2iPA2) that have been characterized in our previous study were delivered into the ipsilateral lumbar 4/5 DRG. Effectiveness of DRG-CaV3.2iPA2 treatment on evoked (mechanical and thermal) and spontaneous (conditioned place preference) pain behavior, as well as weight-bearing asymmetry measured by Incapacitance tester, in the arthritic limbs of MIA rats were evaluated. AAV-mediated transgene expression in DRG was determined by immunohistochemistry. RESULTS: AAV-mediated expression of CaV3.2iPA2 selective in the DRG-PSNs produced significant and comparable mitigations of evoked and spontaneous pain behavior, as well as normalization of weight-bearing asymmetry in both male and female MIA-OA rats. Analgesia of DRG-AAV-CaV3.2iPA1, another potent CaV3.2 inhibitory peptide, was also observed. Whole-cell current-clamp recordings showed that AAV-mediated CaV3.2iPA2 expression normalized hyperexcitability of the PSNs dissociated from the DRG of MIA animals, suggesting that CaV3.2iPA2 attenuated pain behavior by reversing MIA-induced neuronal hyperexcitability. CONCLUSIONS: Together, our results add therapeutic support that T-type/CaV3.2 in primary sensory pathways contributes to MIA-OA pain pathogenesis and that CaV3.2iPAs are promising analgesic leads that, combined with AAV-targeted delivery in anatomically segmental sensory ganglia, have the potential for further development as a peripheral selective T-type/CaV3.2-targeting strategy in mitigating chronic MIA-OA pain behavior. Validation of the therapeutic potential of this strategy in other OA models may be valuable in future study.


Asunto(s)
Neuralgia , Osteoartritis de la Rodilla , Animales , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/metabolismo , Ácido Yodoacético/toxicidad , Masculino , Osteoartritis de la Rodilla/metabolismo , Ratas , Ratas Sprague-Dawley , Células Receptoras Sensoriales/metabolismo
12.
Stem Cell Res Ther ; 13(1): 4, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35012644

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSC) hold great promise for treating cardiovascular disease. Recently, we genetically modified MSCs with high mobility group box 1 (HMGB1), and these cells demonstrated high mobility by efficient migrating and homing to target neointima. The possible mechanism was investigated in the current study. METHODS: Rat MSCs were transfected with lentivirus containing HMGB1 cDNA to yield MSC-H cell line stably overexpressing HMGB1. The MSC-C cells which were transfected with empty lentivirus served as negative control, and the differentially expressed genes were analyzed by microarray. The cell mobility was determined by transwell migration assay. Intracellular free calcium and the expression of Cav3.2 T-type calcium channel (CACNA1H) were assayed to analyze activity of CACNA1H-mediated calcium influx. H2S production and γ-cystathionase expression were examined to assess the activity of γ-cystathionase/H2S signaling. The interaction of HMGB1 with γ-cystathionase in MSC-H cells was analyzed by co-immunoprecipitation. Luciferase reporter assay was performed to determine whether the promoter activity of γ-cystathionase was regulated by interaction of ß-catenin and TCF/LEF binding site. Intercellular cAMP, PKA activity, phosphorylation of ß-catenin, and GSK3ß were investigated to reveal cAMP/PKA mediated ß-catenin activation. RESULT: Microarray analysis revealed that differentially expressed genes were enriched in cAMP signaling and calcium signaling. CACNA1H was upregulated to increase intracellular free calcium and MSC-H cell migration. Blockage of CACNA1H by ABT-639 significantly reduced intracellular free calcium and cell migration. The γ-cystathionase/H2S signaling was responsible for CACNA1H activation. H2S production was increased with high expression of γ-cystathionase in MSC-H cells, which was blocked by γ-cystathionase inhibitor DL-propargylglycine. Upregulation of γ-cystathionase was not attributed to interaction with HMGB1 overexpressed in MSC-H cells although γ-cystathionase was suggested to co-immunoprecipitate with oxidized HMGB1. Bioinformatics analysis identified a conserved TCF/LEF binding site in the promoter of γ-cystathionase gene. Luciferase reporter assay confirmed that the promoter had positive response to ß-catenin which was activated in MSC-H cells. Finally, cAMP/PKA was activated to phosphorylate ß-catenin at Ser657 and GSK3ß, enabling persisting activation of Wnt/ß-catenin signaling in MSC-H cells. CONCLUSION: Our study revealed that modification of MSCs with HMGB1 promoted CACNA1H-mediated calcium influx via PKA/ß-catenin/γ-cystathionase pathway. This was a plausible mechanism for high mobility of MSC-H cell line.


Asunto(s)
Canales de Calcio Tipo T , Proteína HMGB1 , Células Madre Mesenquimatosas , Animales , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Movimiento Celular , Cistationina gamma-Liasa/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratas , Vía de Señalización Wnt/fisiología , beta Catenina/genética , beta Catenina/metabolismo
13.
Molecules ; 26(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34770935

RESUMEN

Catharanthus roseus is a well-known traditional herbal medicine for the treatment of cancer, hypertension, scald, and sore in China. Phytochemical investigation on the twigs and leaves of this species led to the isolation of two new monoterpene indole alkaloids, catharanosines A (1) and B (2), and six known analogues (3-8). Structures of 1 and 2 were established by 1H-, 13C- and 2D-NMR, and HREIMS data. The absolute configuration of 1 was confirmed by single-crystal X-ray diffraction analysis. Compound 2 represented an unprecedented aspidosperma-type alkaloid with a 2-piperidinyl moiety at C-10. Compounds 6-8 exhibited remarkable Cav3.1 low voltage-gated calcium channel (LVGCC) inhibitory activity with IC50 values of 11.83 ± 1.02, 14.3 ± 1.20, and 14.54 ± 0.99 µM, respectively.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/química , Catharanthus/química , Alcaloides Indólicos/farmacología , Monoterpenos/farmacología , Extractos Vegetales/farmacología , Bloqueadores de los Canales de Calcio/química , Canales de Calcio Tipo T/metabolismo , Relación Dosis-Respuesta a Droga , Alcaloides Indólicos/química , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Monoterpenos/química , Extractos Vegetales/química , Relación Estructura-Actividad
14.
Dev Biol ; 480: 14-24, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34407458

RESUMEN

Neural tube closure (NTC) is a complex multi-step morphogenetic process that transforms the flat neural plate found on the surface of the post-gastrulation embryo into the hollow and subsurface central nervous system (CNS). Errors in this process underlie some of the most prevalent human birth defects, and occur in about 1 out of every 1000 births. Previously, we discovered a mutant in the basal chordate Ciona savignyi (named bugeye) that revealed a novel role for a T-Type Calcium Channel (Cav3) in this process. Moreover, the requirement for CAV3s in Xenopus NTC suggests a conserved function among the chordates. Loss of CAV3 leads to defects restricted to anterior NTC, with the brain apparently fully developed, but protruding from the head. Here we report first on a new Cav3 mutant in the related species C. robusta. RNAseq analysis of both C. robusta and C. savignyi bugeye mutants reveals misregulation of a number of transcripts including ones that are involved in cell-cell recognition and adhesion. Two in particular, Selectin and Fibronectin leucine-rich repeat transmembrane, which are aberrantly upregulated in the mutant, are expressed in the closing neural tube, and when disrupted by CRISPR gene editing lead to the open brain phenotype displayed in bugeye mutants. We speculate that these molecules play a transient role in tissue separation and adhesion during NTC and failure to downregulate them leads to an open neural tube.


Asunto(s)
Caveolina 3/genética , Adhesión Celular/fisiología , Ciona/metabolismo , Animales , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Caveolina 3/metabolismo , Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Morfogénesis/genética , Placa Neural/metabolismo , Tubo Neural/metabolismo , Defectos del Tubo Neural/genética , Neurulación/genética
15.
Arch Toxicol ; 95(8): 2719-2735, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34181029

RESUMEN

The liver hormone hepcidin regulates systemic iron homeostasis. Hepcidin is also expressed by the kidney, but exclusively in distal nephron segments. Several studies suggest hepcidin protects against kidney damage involving Fe2+ overload. The nephrotoxic non-essential metal ion Cd2+ can displace Fe2+ from cellular biomolecules, causing oxidative stress and cell death. The role of hepcidin in Fe2+ and Cd2+ toxicity was assessed in mouse renal cortical [mCCD(cl.1)] and inner medullary [mIMCD3] collecting duct cell lines. Cells were exposed to equipotent Cd2+ (0.5-5 µmol/l) and/or Fe2+ (50-100 µmol/l) for 4-24 h. Hepcidin (Hamp1) was transiently silenced by RNAi or overexpressed by plasmid transfection. Hepcidin or catalase expression were evaluated by RT-PCR, qPCR, immunoblotting or immunofluorescence microscopy, and cell fate by MTT, apoptosis and necrosis assays. Reactive oxygen species (ROS) were detected using CellROX™ Green and catalase activity by fluorometry. Hepcidin upregulation protected against Fe2+-induced mIMCD3 cell death by increasing catalase activity and reducing ROS, but exacerbated Cd2+-induced catalase dysfunction, increasing ROS and cell death. Opposite effects were observed with Hamp1 siRNA. Similar to Hamp1 silencing, increased intracellular Fe2+ prevented Cd2+ damage, ROS formation and catalase disruption whereas chelation of intracellular Fe2+ with desferrioxamine augmented Cd2+ damage, corresponding to hepcidin upregulation. Comparable effects were observed in mCCD(cl.1) cells, indicating equivalent functions of renal hepcidin in different collecting duct segments. In conclusion, hepcidin likely binds Fe2+, but not Cd2+. Because Fe2+ and Cd2+ compete for functional binding sites in proteins, hepcidin affects their free metal ion pools and differentially impacts downstream processes and cell fate.


Asunto(s)
Cadmio/toxicidad , Hepcidinas/genética , Hierro/toxicidad , Estrés Oxidativo/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Sitios de Unión , Unión Competitiva , Cadmio/administración & dosificación , Muerte Celular/efectos de los fármacos , Línea Celular , Células Cultivadas , Deferoxamina/farmacología , Femenino , Silenciador del Gen , Hierro/administración & dosificación , Túbulos Renales Colectores/citología , Túbulos Renales Colectores/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo
16.
Biol Pharm Bull ; 44(3): 461-464, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33642557

RESUMEN

T-Type Ca2+ channels (T-channels), particularly Cav3.2, are now considered as therapeutic targets for treatment of intractable pain including visceral pain. Among existing medicines, bepridil, a multi-channel blocker, used for treatment of arrhythmia and angina, and pimozide, a dopamine D2 receptor antagonist, known as a typical antipsychotic, have potent T-channel blocking activity. We thus tested whether bepridil and pimozide could suppress visceral pain in mice. Colonic and bladder pain were induced by intracolonic administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS) and systemic administration of cyclophosphamide (CPA), respectively. Referred hyperalgesia was assessed by von Frey test, and colonic hypersensitivity to distension by a volume load with intracolonic water injection and spontaneous bladder pain were evaluated by observing nociceptive behaviors in conscious mice. The mice exhibited referred hyperalgesia and colonic hypersensitivity to distension on day 6 after TNBS treatment. Systemic administration of bepridil at 10-20 mg/kg or pimozide at 0.1-0.5 mg/kg strongly reduced the referred hyperalgesia on the TNBS-induced referred hyperalgesia and colonic hypersensitivity to distension. CPA treatment caused bladder pain-like nociceptive behavior and referred hyperalgesia, which were reversed by bepridil at 10-20 mg/kg or pimozide at 0.5-1 mg/kg. Our data thus suggest that bepridil and pimozide, existing medicines capable of blocking T-channels, are useful for treatment of colonic and bladder pain, and serve as seeds for the development of new medicines for visceral pain treatment.


Asunto(s)
Analgésicos/uso terapéutico , Bepridil/uso terapéutico , Bloqueadores de los Canales de Calcio/uso terapéutico , Colitis/tratamiento farmacológico , Cistitis/tratamiento farmacológico , Antagonistas de los Receptores de Dopamina D2/uso terapéutico , Pimozida/uso terapéutico , Dolor Visceral/tratamiento farmacológico , Animales , Canales de Calcio Tipo T , Colitis/inducido químicamente , Ciclofosfamida , Cistitis/inducido químicamente , Femenino , Masculino , Ratones , Ácido Trinitrobencenosulfónico , Dolor Visceral/inducido químicamente
17.
Front Pain Res (Lausanne) ; 2: 750583, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35295464

RESUMEN

The persistence of increased excitability and spontaneous activity in injured peripheral neurons is imperative for the development and persistence of many forms of neuropathic pain. This aberrant activity involves increased activity and/or expression of voltage-gated Na+ and Ca2+ channels and hyperpolarization activated cyclic nucleotide gated (HCN) channels as well as decreased function of K+ channels. Because they display limited central side effects, peripherally restricted Na+ and Ca2+ channel blockers and K+ channel activators offer potential therapeutic approaches to pain management. This review outlines the current status and future therapeutic promise of peripherally acting channel modulators. Selective blockers of Nav1.3, Nav1.7, Nav1.8, Cav3.2, and HCN2 and activators of Kv7.2 abrogate signs of neuropathic pain in animal models. Unfortunately, their performance in the clinic has been disappointing; some substances fail to meet therapeutic end points whereas others produce dose-limiting side effects. Despite this, peripheral voltage-gated cation channels retain their promise as therapeutic targets. The way forward may include (i) further structural refinement of K+ channel activators such as retigabine and ASP0819 to improve selectivity and limit toxicity; use or modification of Na+ channel blockers such as vixotrigine, PF-05089771, A803467, PF-01247324, VX-150 or arachnid toxins such as Tap1a; the use of Ca2+ channel blockers such as TTA-P2, TTA-A2, Z 944, ACT709478, and CNCB-2; (ii) improving methods for assessing "pain" as opposed to nociception in rodent models; (iii) recognizing sex differences in pain etiology; (iv) tailoring of therapeutic approaches to meet the symptoms and etiology of pain in individual patients via quantitative sensory testing and other personalized medicine approaches; (v) targeting genetic and biochemical mechanisms controlling channel expression using anti-NGF antibodies such as tanezumab or re-purposed drugs such as vorinostat, a histone methyltransferase inhibitor used in the management of T-cell lymphoma, or cercosporamide a MNK 1/2 inhibitor used in treatment of rheumatoid arthritis; (vi) combination therapy using drugs that are selective for different channel types or regulatory processes; (vii) directing preclinical validation work toward the use of human or human-derived tissue samples; and (viii) application of molecular biological approaches such as clustered regularly interspaced short palindromic repeats (CRISPR) technology.

18.
Endocrinology ; 161(10)2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32785697

RESUMEN

The physiological stimulation of aldosterone production in adrenocortical glomerulosa cells by angiotensin II and high plasma K+ depends on the depolarization of the cell membrane potential and the subsequent Ca2+ influx via voltage-activated Ca2+ channels. Germline mutations of the low-voltage activated T-type Ca2+ channel CACNA1H (Cav3.2) have been found in patients with primary aldosteronism. Here, we investigated the electrophysiology and Ca2+ signaling of adrenal NCI-H295R cells overexpressing CACNA1H wildtype and mutant M1549V in order to understand how mutant CACNA1H alters adrenal cell function. Whole-cell patch-clamp measurements revealed a strong activation of mutant CACNA1H at the resting membrane potential of adrenal cells. Both the expression of wildtype and mutant CACNA1H led to a depolarized membrane potential. In addition, cells expressing mutant CACNA1H developed pronounced action potential-like membrane voltage oscillations. Ca2+ measurements showed an increased basal Ca2+ activity, an altered K+ sensitivity, and abnormal oscillating Ca2+ changes in cells with mutant CACNA1H. In addition, removal of extracellular Na+ reduced CACNA1H current, voltage oscillations, and Ca2+ levels in mutant cells, suggesting a role of the partial Na+ conductance of CACNA1H in cellular pathology. In conclusion, the pathogenesis of stimulus-independent aldosterone production in patients with CACNA1H mutations involves several factors: i) a loss of normal control of the membrane potential, ii) an increased Ca2+ influx at basal conditions, and iii) alterations in sensitivity to extracellular K+ and Na+. Finally, our findings underline the importance of CACNA1H in the control of aldosterone production and support the concept of the glomerulosa cell as an electrical oscillator.


Asunto(s)
Glándulas Suprarrenales/fisiopatología , Canales de Calcio Tipo T/genética , Hiperaldosteronismo/genética , Hiperaldosteronismo/metabolismo , Glándulas Suprarrenales/metabolismo , Glándulas Suprarrenales/patología , Aldosterona/metabolismo , Animales , Células CHO , Calcio/metabolismo , Canales de Calcio Tipo T/metabolismo , Cricetinae , Cricetulus , Humanos , Hiperaldosteronismo/patología , Hiperaldosteronismo/fisiopatología , Potenciales de la Membrana , Mutación , Técnicas de Placa-Clamp , Sodio/metabolismo , Células Tumorales Cultivadas , Zona Glomerular/metabolismo , Zona Glomerular/patología , Zona Glomerular/fisiopatología
19.
Cells ; 9(8)2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32707767

RESUMEN

Cystitis-related bladder pain involves RAGE activation by HMGB1, and increased Cav3.2 T-type Ca2+ channel activity by H2S, generated by upregulated cystathionine-γ-lyase (CSE) in mice treated with cyclophosphamide (CPA). We, thus, investigated possible crosstalk between the HMGB1/RAGE and CSE/H2S/Cav3.2 pathways in the bladder pain development. Bladder pain (nociceptive behavior/referred hyperalgesia) and immuno-reactive CSE expression in the bladder were determined in CPA-treated female mice. Cell signaling was analyzed in urothelial T24 and macrophage-like RAW264.7 cells. The CPA-induced bladder pain was abolished by pharmacological inhibition of T-type Ca2+ channels or CSE, and genetic deletion of Cav3.2. The CPA-induced CSE upregulation, as well as bladder pain was prevented by HMGB1 inactivation, inhibition of HMGB1 release from macrophages, antagonists of RAGE or P2X4/P2X7 receptors, and N-acetylcysteine, an antioxidant. Acrolein, a metabolite of CPA, triggered ATP release from T24 cells. Adenosine triphosphate (ATP) stimulated cell migration via P2X7/P2X4, and caused HMGB1 release via P2X7 in RAW264.7 cells, which was dependent on p38MAPK/NF-κB signaling and reactive oxygen species (ROS) accumulation. Together, our data suggest that CPA, once metabolized to acrolein, causes urothelial ATP-mediated, redox-dependent HMGB1 release from macrophages, which in turn causes RAGE-mediated CSE upregulation and subsequent H2S-targeted Cav3.2-dependent nociceptor excitation, resulting in bladder pain.


Asunto(s)
Adenosina Trifosfato/metabolismo , Canales de Calcio Tipo T/metabolismo , Cistitis Intersticial/metabolismo , Proteína HMGB1/metabolismo , Macrófagos/metabolismo , Transducción de Señal/genética , Sulfitos/metabolismo , Acroleína/metabolismo , Animales , Canales de Calcio Tipo T/genética , Ciclofosfamida/efectos adversos , Ciclofosfamida/metabolismo , Cistationina gamma-Liasa/metabolismo , Cistitis Intersticial/inducido químicamente , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Noqueados , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Regulación hacia Arriba/genética
20.
Mol Brain ; 13(1): 95, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32560664

RESUMEN

Low-voltage-activated Cav3 calcium channels (T-type) play an essential role in the functioning of the nervous system where they support oscillatory activities that relie on several channel molecular determinants that shape their unique gating properties. In a previous study, we documented the important role of the carboxy proximal region in the functioning of Cav3.3 channels. Here, we explore the ability of a TAT-based cell penetrating peptide containing this carboxy proximal region (TAT-C3P) to modulate the activity of Cav3 channels. We show that chronic application of TAT-C3P on tsA-201 cells expressing Cav3 channels selectively inhibits Cav3.3 channels without affecting Cav3.1 and Cav3.2 channels. Therefore, the TAT-C3P peptide described in this study represents a new tool to address the specific physiological role of Cav3.3 channels, and to potentially enhance our understanding of Cav3.3 in disease.


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Neuronas/metabolismo , Péptidos/metabolismo , Secuencia de Aminoácidos , Animales , Canales de Calcio Tipo T/química , Línea Celular , Humanos , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA