Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1418549, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39081957

RESUMEN

Objective: SAF-189s is a potent ALK/ROS1 inhibitor that is currently in clinical development for treating advanced ALK+/ROS1+ non-small cell lung cancer (NSCLC). Comprehensive population pharmacokinetics (PopPK) and exposure-response models were developed to evaluate the efficacy and safety of SAF-189s by integrating data from two clinical studies. Methods: The PopPK model was developed using plasma concentration data collected from patients with ALK+/ROS1+ advanced NSCLC (n = 299) and healthy subjects (n = 24). The covariates (demographics, laboratory values, subject types, and concomitant medications) were evaluated to determine their potential influence on the between-patient variability in the pharmacokinetics of SAF-189s. Individual exposure values were then used to investigate the relationships with the efficacy endpoints (overall response rate (ORR), progression-free survival (PFS), and duration of response (DOR)) and key safety endpoints (adverse events of interest). Results: The final PopPK model of SAF-189s was described by a one-compartment model with delayed first-order absorption and time-dependent elimination by allowing the clearance to decrease stepwise over time. Age was included as a covariate for apparent clearance (CL/F), while prior anti-cancer therapy in ALK+ patients (ALKPOT) was included for apparent volume of distribution (V/F). There were no apparent exposure-response relationships for any of the efficacy endpoints at doses of 80-210 mg. The relationship between exposure and safety suggested that a higher steady-state exposure was associated with more frequent incidences of hyperglycemia and proteinuria; the 210-mg dose group was also less tolerated than the other low-dose groups. Conclusion: PopPK and exposure-response models were developed for SAF-189s, and their results demonstrate that SAF-189s exposures are at the plateau of exposure-response for efficacy. The 210-mg dose group had a significantly higher safety risk, while the 160-mg dose group was well-tolerated. Thus, 160 mg of SAF-189s once daily was selected as the recommended phase III dose for the ALK+/ROS1+ or ROS1+ NSCLC patients.

2.
Front Pharmacol ; 14: 1197163, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38149055

RESUMEN

Acquired anaplastic lymphoma kinase (ALK) mutation is the major resistant mechanism to ALK tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) patients. At present, treatment options after acquiring secondary ALK mutations are still limited. Here, we report on a patient with metastatic ALK-rearranged NSCLC who was sequentially treated with ALK TKIs, from crizotinib to lorlatinib, and developed rare acquired compound ALK mutations (L1196M and D1203N) that confer resistance to lorlatinib. Moreover, our report describes the clinical response of an NSCLC patient with these compound mutations to multiple anti-tumor therapies. Among them, the patient was treated with SAF-189s 120 mg daily and had a stable disease lasting 3 months. Chemotherapy (pemetrexed-carboplatin) combined with bevacizumab was then administered. She achieved a partial response, which was maintained for 7 months as the best response. Since both SAF-189s and chemotherapy have shown a clear antitumor effect, they may be viable therapeutic options for these patients. Thus, our study can provide some reference in the treatment of NSCLC patients with ALK L1196M/D1203N compound mutations.

3.
Front Oncol ; 12: 860060, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35311071

RESUMEN

Background: Rearrangements of Anaplastic lymphoma kinase (ALK) have been discovered as a novel driver mutation in patients with non-small-cell lung cancer (NSCLC). Patients' responses to ALK tyrosine kinase inhibitors (TKIs) may vary depending on the variations of ALK rearrangements they have. It is imperative for clinicians to identify druggable ALK fusions in routine practice. Case Presentation: In this study, we discovered a rare ALK rearrangement type (SDK1-ALK) in a Chinese lung adenocarcinoma patient who responded well to ALK inhibitor SAF-189s. The positive expression of ALK in lung biopsy tissue was verified by IHC analysis. A new SDK1-ALK fusion was discovered using NGS. The patient was treated with SAF-189s (160 mg per day) as a first-line therapy and went into continuous remission, with a 12 months progression-free survival at the last follow-up. Conclusion: This is the first case of SDK1-ALK fusion with an excellent response to an ALK inhibitor, which will provide better understanding of ALK-TKI applications for NSCLC patients with ALK fusion in the future.

4.
Acta Pharmacol Sin ; 42(6): 998-1004, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32918045

RESUMEN

The ROS1 fusion kinase is an attractive antitumor target. Though with significant clinical efficacy, the well-known first-generation ROS1 inhibitor (ROS1i) crizotinib inevitably developed acquired resistance due to secondary point mutations in the ROS1 kinase. Novel ROS1is effective against mutations conferring secondary crizotinib resistance, especially G2032R, are urgently needed. In the present study, we evaluated the antitumor efficacy of SAF-189s, the new-generation ROS1/ALK inhibitor, against ROS1 fusion wild-type and crizotinib-resistant mutants. We showed that SAF-189s potently inhibited ROS1 kinase and its known acquired clinically resistant mutants, including the highly resistant G2032R mutant. SAF-189s displayed subnanomolar to nanomolar IC50 values against ROS1 wild-type and mutant kinase activity and a selectivity vs. other 288 protein kinases tested. SAF-189s blocked cellular ROS1 signaling, and in turn potently inhibited the cell proliferation in HCC78 cells and BaF3 cells expressing ROS1 fusion wild-type and resistance mutants. In nude mice bearing BaF3/CD74-ROS1 or BaF3/CD74-ROS1G2032R xenografts, oral administration of SAF-189s dose dependently suppressed the growth of both ROS1 wild-type- and G2032R mutant-driven tumors. In a patient-derived xenograft model of SDC4-ROS1 fusion NSCLC, oral administration of SAF-189s (20 mg/kg every day) induced tumor regression and exhibited notable prolonged and durable efficacy. In addition, SAF-189s was more potent than crizotinib and comparable to lorlatinib, the most advanced ROS1i known against the ROS1G2032R. Collectively, these results suggest the promising potential of SAF-189s for the treatment of patients with the ROS1 fusion G2032R mutation who relapse on crizotinib. It is now recruiting both crizotinib-relapsed and naive ROS1-positive NSCLC patients in a multicenter phase II trial (ClinicalTrials.gov Identifier: NCT04237805).


Asunto(s)
Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Crizotinib/uso terapéutico , Femenino , Humanos , Ratones Desnudos , Mutación , Neoplasias/enzimología , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA