Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38914874

RESUMEN

(20 S)-Ginsenoside Rh2 is a natural saponin derived from Panax ginseng Meyer (P. ginseng), which showed significantly potent anticancer properties. However, its low water solubility and bioavailability strongly restrict its pharmaceutical applications. The aim of current research is to develop a modified (20 S)-Ginsenoside Rh2 formulation with high solubility, dissolution rate and bioavailability by combined computational and experimental methodology. The "PharmSD" model was employed to predict the optimal polymer for (20 S)-Ginsenoside Rh2 solid dispersion formulations. The solubility of (20 S)-Ginsenoside Rh2 in various polymers was assessed, and the optimal ternary solid dispersion was evaluated across different dissolution mediums. Characterization techniques included the Powder X-ray diffraction (PXRD) and Fourier transform infrared spectroscopy (FTIR). Molecular dynamics simulations were employed to elucidate the formation mechanism of the solid dispersion and the interactions among active pharmaceutical ingredient (API) and excipient molecules. Cell and animal experiments were conducted to evaluate the in vivo performance of the modified formulation. The "PharmSD" solid dispersion model identified Gelucire 44/14 as the most effective polymer for enhancing the dissolution rate of Rh2. Subsequent experiment also confirmed that Gelucire 44/14 outperformed the other selected polymers. Moreover, the addition of the third component, sodium dodecyl sulfate (SDS), in the ternary solid dispersion formulation significantly amplified dissolution rates than the binary systems. Characterization experiments revealed that the API existed in an amorphous state and interacted via hydrogen bonding with SDS and Gelucire. Moreover, molecular modeling results provided additional evidence of hydrogen bonding interactions between the API and excipient molecules within the optimal ternary solid dispersion. Cell experiments demonstrated efflux ratio (EfR) of Rh2 ternary solid dispersion was lower than that of pure Rh2. In vivo experiments revealed that the modified formulation substantially improved the absorption of Rh2 in rats. Our research successfully developed an optimal ternary solid dispersion for Rh2 with high solubility, dissolution rate and bioavailability by integrated computational and experimental tools. The combination of Artificial Intelligence (AI) technology and molecular dynamics simulation is a wise way to support the future formulation development.

2.
Mol Med ; 30(1): 56, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671369

RESUMEN

BACKGROUND: Ginsenoside Rh2 (G-Rh2), a steroidal compound extracted from roots of ginseng, has been extensively studied in tumor therapy. However, its specific regulatory mechanism in non-small cell lung cancer (NSCLC) is not well understood. Pyruvate dehydrogenase kinase 4 (PDK4), a central regulator of cellular energy metabolism, is highly expressed in various malignant tumors. We investigated the impact of G-Rh2 on the malignant progression of NSCLC and how it regulated PDK4 to influence tumor aerobic glycolysis and mitochondrial function. METHOD: We examined the inhibitory effect of G-Rh2 on NSCLC through I proliferation assay, migration assay and flow cytometry in vitro. Subsequently, we verified the ability of G-Rh2 to inhibit tumor growth and metastasis by constructing subcutaneous tumor and metastasis models in nude mice. Proteomics analysis was conducted to analyze the action pathways of G-Rh2. Additionally, we assessed glycolysis and mitochondrial function using seahorse, PET-CT, Western blot, and RT-qPCR. RESULT: Treatment with G-Rh2 significantly inhibited tumor proliferation and migration ability both in vitro and in vivo. Furthermore, G-Rh2 inhibited the tumor's aerobic glycolytic capacity, including glucose uptake and lactate production, through the HIF1-α/PDK4 pathway. Overexpression of PDK4 demonstrated that G-Rh2 targeted the inhibition of PDK4 expression, thereby restoring mitochondrial function, promoting reactive oxygen species (ROS) accumulation, and inducing apoptosis. When combined with sodium dichloroacetate, a PDK inhibitor, it complemented the inhibitory capacity of PDKs, acting synergistically as a detoxifier. CONCLUSION: G-Rh2 could target and down-regulate the expression of HIF-1α, resulting in decreased expression of glycolytic enzymes and inhibition of aerobic glycolysis in tumors. Additionally, by directly targeting mitochondrial PDK, it elevated mitochondrial oxidative phosphorylation and enhanced ROS accumulation, thereby promoting tumor cells to undergo normal apoptotic processes.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Ginsenósidos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Neoplasias Pulmonares , Fosforilación Oxidativa , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Humanos , Animales , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Ratones , Línea Celular Tumoral , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Glucólisis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ratones Desnudos , Movimiento Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
3.
Biomed Pharmacother ; 174: 116515, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569276

RESUMEN

Mesenchymal stem cell exosome (MSCs-exo) is a class of products secreted by mesenchymal stem cells (MSCs) that contain various biologically active substances. MSCs-exo is a promising alternative to MSCs due to their lower immunogenicity and lack of ethical constraints. Ginsenoside Rh2 (Rh2) is a hydrolyzed component of the primary active substance of ginsenosides. Rh2 has a variety of pharmacological functions, including anti-inflammatory, anti-tumor, and antioxidant. Studies have demonstrated that gut microbiota and metabolites are critical in developing rheumatoid arthritis (RA). In this study, we constructed a collagen-induced arthritis (CIA) model in rats. We used MSCs-exo combined with Rh2 to treat CIA rats. To observe the effect of MSCs-exo combined with Rh2 on joint inflammation, rat feces were collected for 16 rRNA amplicon sequencing and untargeted metabolomics analysis. The results showed that the arthritis index score and joint swelling of CIA rats treated with MSCs-exo in combination with Rh2 were significantly lower than those of the model and MSCs-exo alone groups. MSCs-exo and Rh2 significantly ameliorated the disturbed gut microbiota in CIA rats. The regulation of Candidatus_Saccharibacteria and Clostridium_XlVb regulation may be the most critical. Rh2 enhanced the therapeutic effect of MSCs-exo compared with the MSCs-exo -alone group. Furthermore, significant changes in gut metabolites were observed in the CIA rat group, and these differentially altered metabolites may act as messengers for host-microbiota interactions. These differential metabolites were enriched into relevant critical metabolic pathways, revealing possible pathways for host-microbiota interactions.


Asunto(s)
Artritis Experimental , Microbioma Gastrointestinal , Ginsenósidos , Células Madre Mesenquimatosas , Animales , Humanos , Masculino , Ratas , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/microbiología , Artritis Experimental/terapia , Artritis Reumatoide/inducido químicamente , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/microbiología , Artritis Reumatoide/terapia , Exosomas/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Ginsenósidos/farmacología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Cordón Umbilical , Colágeno/metabolismo , Colágeno/farmacología
4.
J Ginseng Res ; 48(2): 171-180, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38465222

RESUMEN

Background: Epimers of ginsenoside Rg3 (Rg3) have a low bioavailability and are prone to deglycosylation, which produces epimers of ginsenoside Rh2 (S-Rh2 and R-Rh2) and protopanaxadiol (S-PPD and R-PPD). The aim of this study was to compare the efficacy and potency of these molecules as anti-cancer agents. Methods: Crystal violet staining was used to study the anti-proliferatory action of the molecules on a human epithelial breast cancer cell line, MDA-MB-231, and human umbilical vein endothelial cells (HUVEC) and compare their potency. Cell death and cell cycle were studied using flow cytometry and mode of cell death was studied using live cell imaging. Anti-angiogenic effects of the drug were studied using loop formation assay. Molecular docking showed the interaction of these molecules with vascular endothelial growth factor receptor-2 (VEGFR2) and aquaporin (AQP) water channels. VEGF bioassay was used to study the interaction of Rh2 with VEGFR2, in vitro. Results: HUVEC was the more sensitive cell line to the anti-proliferative effects of S-Rh2, S-PPD and R-PPD. The molecules induced necroptosis/necrosis in MDA-MB-231 and apoptosis in HUVEC. S-Rh2 was the most potent inhibitor of loop formation. In silico molecular docking predicted a good binding score between Rh2 or PPD and the ATP-binding pocket of VEGFR2. VEGF bioassay showed that Rh2 was an allosteric modulator of VEGFR2. In addition, SRh2 and PPD had good binding scores with AQP1 and AQP5, both of which play roles in cell migration and proliferation. Conclusion: The combination of these molecules might be responsible for the anti-cancer effects observed by Rg3.

5.
Am J Chin Med ; 52(1): 217-230, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38291582

RESUMEN

Cancer has evolved into a substantial public health concern as the second-leading cause of mortality globally. Radiotherapy and chemotherapy have been the two most widely used cancer therapies in recent years; however, both have drawbacks. Therefore, the focus has shifted to the creation of herbal medicines, the extraction of active ingredients, replacement therapy, and the adverse effects of these medications. Ginsenoside Rh2, which is extracted from ginseng, has been identified in many cancer cells. The immune system of the body is strengthened by ginsenoside Rh2, which can also cause the proliferation, death, and differentiation of tumor cells through various pathways. For instance, it inhibits the expression of the NF-[Formula: see text]B signaling pathway and induces cell apoptosis, affects the expression levels of mitochondrial apoptosis proteins Bcl-2 and Bax, and cooperates with the PD-1 blockade to reactivate T cells to promote an antitumor immune response. Furthermore, ginsenosides Rh2 has the effect of reversing the toxic effect of chemotherapy drugs on normal cells, reducing myocardial damage, and relieving bone marrow function suppression. For clinical applications, it is mainly used as an adjuvant drug for preoperative neoadjuvant chemotherapy, postoperative adjuvant chemotherapy, and rescue treatment of advanced cancer. This paper summarizes the pharmacological action and mechanism of ginsenosides Rh2 in all kinds of cancer and looks forward to its future development and application.


Asunto(s)
Ginsenósidos , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Apoptosis , Proteínas Reguladoras de la Apoptosis , Transducción de Señal
6.
Phytomedicine ; 123: 155180, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043385

RESUMEN

BACKGROUND: One critical component of the immune system that prevents breast cancer cells from forming distant metastasis is natural killer (NK) cells participating in immune responses to tumors. Ginsenoside Rh2 (GRh2) as one of the major active ingredients of ginseng has been employed in treatment of cancers, but the function of GRh2 in modulating the development of breast cancer remains elusive. PURPOSE: This study was to dissect the effect of GRh2 against breast cancer and its potential mechanisms associated with NK cells, both in vitro and in vivo. METHODS: MDA-MB-231 and 4T1 cells were used to establish in situ and hematogenous mouse models. MDA-MB-231 and MCF-7 were respectively co-cultured with NK92MI cells or primary NK cells in vitro. Anti-tumor efficacy of GRh2 was verified by immunohistochemistry (IHC), Cell Counting Kit-8 (CCK8), high resolution micro-computed tomography (micro-CT) scanning of lungs and hematoxylin and eosin (H&E) staining. Lactate dehydrogenase (LDH) cytotoxicity assay, flow cytometry, in vivo depletion of NK cells, enzyme-linked immunosorbent assay (ELISA), western blot, quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunofluorescence and cell transfection were performed for investigating the anti-tumor mechanisms of GRh2. Molecular docking, microscale thermophoresis (MST) and cellular thermal shift assay (CETSA) were employed to determine the binding between endoplasmic reticulum protein 5 (ERp5) and GRh2. RESULTS: We demonstrated that GRh2 exerted prominent impacts on retarding the growth and metastasis of breast cancer through boosting the cytotoxic function of NK cells, as validated by the elevated release of perforin, granzyme B and interferon-γ (IFN-γ). Mechanistical studies revealed that GRh2 was capable of diminishing the expression of ERp5 and GRh2 directly bound to ERp5 in MDA-MB-231 cells as well as on a recombinant protein level. GRh2 prevented the formation of soluble MICA (sMICA) and upregulated the expression level of MICA in vivo and in vitro. Importantly, the reduced lung metastasis of breast cancer by GRh2 was almost abolished upon the depletion of NK cells. Moreover, GRh2 was able to insert into the binding pocket of ERp5 directly. CONCLUSION: We firstly demonstrated that GRh2 played a pivotal role in augmenting NK cell activity by virtue of modulating the NKG2D-MICA signaling axis via directly binding to ERp5, and may be further optimized to a therapeutic agent for the treatment of breast cancer.


Asunto(s)
Ginsenósidos , Células Asesinas Naturales , Neoplasias , Animales , Ratones , Simulación del Acoplamiento Molecular , Microtomografía por Rayos X , Neoplasias/tratamiento farmacológico
7.
Int J Pharm ; 650: 123718, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38104849

RESUMEN

The emergence of multidrug resistance (MDR) is the leading cause of mortality in patients with breast cancer. Overexpressed P-glycoprotein (P-gp) that can pump out chemotherapeutics from multidrug-resistant cancer cells is the main cause of chemotherapy failure. P-gp inhibitors are hence increasingly used to sensitize chemotherapy to breast cancer with MDR by reducing the efflux of drugs. However, representative P-gp inhibitors usually have severe side effects and the effect of their release behavior on chemotherapy are neglected in current studies. We constructed a nano-in-thermogel delivery system with the sequential release of ginsenoside Rh2 (GRh2) and a chemotherapeutic drug in the tumor microenvironment as a drug compounding "reservoir" to combat MDR in breast cancer. Briefly, paclitaxel (PTX) and GRh2 were encapsulated in solid lipid nanoparticles (SLNs) and dispersed in a poloxamer-based thermogel (SLNs-Gel). GRh2 was used as an innovative and safe P-gp inhibitor to lower P-gp expression and cellular adenosine triphosphate context, thereby sensitizing PTX-resistant breast cancer cells (MCF-7/PTX) to PTX. Pharmacodynamic and in vivo safety studies confirmed that intratumoral injection of SLNs-Gel significantly suppressed the proliferation of PTX-resistant breast cancer and alleviated the PTX-induced hematotoxicity. The GRh2-irrigated nano-in-thermogel delivery system shows great potential in combating multidrug-resistant cancer.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Humanos , Femenino , Neoplasias de la Mama/patología , Resistencia a Múltiples Medicamentos , Sistemas de Liberación de Medicamentos , Resistencia a Antineoplásicos , Paclitaxel , Línea Celular Tumoral , Células MCF-7 , Microambiente Tumoral
8.
Pharmacol Res ; 198: 106988, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37984507

RESUMEN

Profiting from the sustained clinical improvement and prolonged patient survival, immune checkpoint blockade of programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis has emerged as a revolutionary cancer therapy approach. However, the anti-PD-1/PD-L1 antibodies only achieve a clinical response rate of approximately 20%. Herein, we identified a novel combination strategy that Chinese medicine ginseng-derived ginsenoside Rh2 (Rh2) markedly improved the anti-cancer efficacy of anti-PD-L1 antibody in mice bearing MC38 tumor. Rh2 combined with anti-PD-L1 antibody (combo treatment) further triggered the infiltration, proliferation and activation of CD8+ T cells in the tumor microenvironment (TME). Depletion of CD8+ T cells by mouse CD8 blocking antibody abolished the anti-cancer effect of combo treatment totally. Mechanistically, combo treatment further increased the expression of CXCL10 through activating TBK1-IRF3 signaling pathway, explaining the increased infiltration of T cells. Employing anti- CXC chemokine receptor 3 (CXCR3) blocking antibody prevented the T cells infiltration and abolished the anti-cancer effect of combo treatment. Meanwhile, combo treatment increased the percentage of M1-like macrophages and raised the ratio of M1/M2 macrophages in TME. By comparing the anti-cancer effect of combo treatment among MC38, CT26 and 4T1 tumors, resident T cells were considered as a prerequisite for the effectiveness of combo treatment. These findings demonstrated that Rh2 potentiated the anti-cancer effect of PD-L1 blockade via promoting the T cells infiltration and activation, which shed a new light on the combination strategy to enhance anti-PD-L1 immunotherapy by using natural product Rh2.


Asunto(s)
Antígeno B7-H1 , Linfocitos T CD8-positivos , Humanos , Animales , Ratones , Línea Celular Tumoral , Inmunoterapia , Microambiente Tumoral , Quimiocina CXCL10/farmacología
9.
Phytomedicine ; 121: 155131, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37806155

RESUMEN

BACKGROUND: Liver cancer is a topical global health issue. The treatment of liver cancer meets significant challenges in the high recurrence rate and invasive incidence. Therefore, the treatment strategies that target epithelial-mesenchymal transition (EMT) induced by cyclooxygenase 2 (COX2)/ prostaglandin E2 (PGE2) pathway have become epidemic. Ginsenoside Rh2 has been proved to inhibit the EMT. However, the underlying mechanisms remain unclear. Moreover, the octyl ester derivative of Rh2 (Rh2-O) exhibited superior anti-proliferative and immunomodulatory effects than Rh2 in our previous researches, which indicated that Rh2-O might also exert inhibitory effects on invasion and metastasis. PURPOSE: The aim of current study is to explore the inhibitory effects of Rh2 and Rh2-O on invasion and metastasis of hepatocellular carcinoma, and to investigate whether these effects are dependent on the c-Jun/COX2/PGE2 pathway. STUDY DESIGN: The Huh-7 liver cancer cells and the H22 tumor-bearing mice were treated with Rh2 and Rh2-O. METHOD: In this paper, the inhibitory effects of Rh2 and Rh2-O on invasion and metastasis were tested by wound healing, trans-well assay and tumor-bearing mice, and the involvement of c-Jun/COX2/PGE2 pathway were verified by exogenous PGE2, activation of COX2 and overexpression of c-Jun. RESULTS: The results showed that Rh2 and Rh2-O could efficiently inhibit the invasion and metastasis in a dose-dependent manner (p < 0.05). And the Rh2-O showed stronger effects than Rh2. Moreover, the exogenous PGE2, activation of COX2 by exogenous LPS and the overexpression of c-Jun by transfection all reversed the inhibitory effects of Rh2 and Rh2-O on metastasis or EMT (p < 0.05). CONCLUSION: Rh2 and Rh2-O could inhibit the invasion and metastasis of hepatocellular carcinoma via restraining the EMT, which was mediated by c-Jun/COX2/PGE2 pathway.


Asunto(s)
Carcinoma Hepatocelular , Ginsenósidos , Neoplasias Hepáticas , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Dinoprostona/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Ciclooxigenasa 2/metabolismo , Ésteres/uso terapéutico , Ginsenósidos/metabolismo , Línea Celular Tumoral
10.
Pharmaceuticals (Basel) ; 16(9)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37764996

RESUMEN

BACKGROUND: The local tumor control rate of colon cancer by radiotherapy is unsatisfactory due to recurrence and radioresistance. Ginsenoside Rh2 (Rh2), a panoxadiol saponin, possesses various antitumor effects. METHODS: CT26/luc murine colon carcinoma cells and a CT26/luc tumor-bearing animal model were used to investigate the therapeutic efficacy of Rh2 combined with ionizing radiation and the underlying mechanisms. RESULTS: Rh2 caused cell cycle arrest at the G1 phase in CT26/luc cells; however, when combined with ionizing radiation, the cells were arrested at the G2/M phase. Rh2 was found to suppress the activity of NF-κB induced by radiation by inhibiting the MAPK pathway, consequently affecting the expression of effector proteins. In an in vivo study, the combination treatment significantly increased tumor growth delay time and overall survival. Furthermore, the combination treatment significantly reduced NF-κB and NF-κB-related effector proteins, along with PD-1 receptor expression. Additionally, Rh2 administration led to increased levels of interleukin-12, -18, and interferon-γ in the mice's sera. Importantly, biochemical analysis revealed no toxicities associated with Rh2 alone or combined with radiation. CONCLUSIONS: The combination of Rh2 with radiation may have potential as an alternative to improve the therapeutic efficacy of colorectal cancer.

11.
Phytomedicine ; 118: 154938, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37406390

RESUMEN

BACKGROUND: Ginseng is well-known as one of the most valuable and commonly used Chinese medicines not only in ancient China but also worldwide including East, Russia, Southeast Asia, North America and some Western European countries. Ginsenosides, as one of the main high active components of Ginseng, have various pharmacological activities, such as anti-inflammatory, antianaphylaxis, anti-depression, and anticancer activities. Ginsenoside Rh2 (Rh2), one of the major bioactive ginsenosides in Panax ginseng, also exhibits versatile pharmacological activities, such as increasing non-specific resistance and specific immune response, improving cardiac function and fibrosis, anti-inflammatory effects and antitumor effects, which may serve as an excellent medicinal potential. PURPOSE: As one of hundreds of ginsenosides being identified from ginseng, Rh2 exerts a markedly pharmacological effect on various diseases without severe toxicity, it has attracted many researchers 'attention. Although Rh2 plays important roles in some animal models and cell lines to simulate human diseases, its underlying molecular mechanisms have yet to be determined. During the past ten years, nearly 450 studies on Rh2 in the treatment of complex disease have been reported, however, up to now, no comprehensive reviews about the roles of Rh2 in animal models and cellular lines of human nonmalignant and malignant diseases have been conducted. METHOD: We searched articles on ginsenoside-related diseases from December 2010 to February 2023 in peer-reviewed and nonclinical databases, which include Web of Science, Scopus, PubMed, China national knowledge internet and Medline, and using the following keywords: Ginsenoside Rh2, Human diseases, Cancer, Mechanisms, Chinese herbal medicine, Natural products and Signaling pathway. RESULTS: Therefore, in this review, we make a comprehensive summary on the roles of Rh2 and support the potential mechanisms of Rh2 according to the disease classification, including nonmalignant disease such as ulcerative colitis, neuropathic pain, Asthma, myocardial injury, depression and malignant disease such as breast cancer, colorectal cancer, hepatocellular carcinoma and gastric cancer. Finally, the combination therapy of Rh2 and other medications in human diseases are summarized, apart from that, there are other problems such as the bioavailability of oral administration Rh2 to be overcome in following research. CONCLUSION: These findings provide strong evidence that Ginsenoside Rh2 plays important roles in the treatment of nonmalignant and malignant diseases.


Asunto(s)
Carcinoma Hepatocelular , Ginsenósidos , Neoplasias Hepáticas , Panax , Animales , Humanos , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , China
12.
Clin Exp Hypertens ; 45(1): 2229536, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37395203

RESUMEN

BACKGROUND: Acute myocardial infarction (AMI) is one of the most important causes of mortality among patients with cardiovascular disease. Ginsenoside Rh2 plays a protective role in cardiovascular diseases. Furthermore, pyroptosis reportedly participates in regulating the occurrence and development of AMI. However, whether ginsenoside Rh2 contributes to mitigating AMI by regulating cardiomyocyte pyroptosis remains unknown. METHODS: In the present study, we established an AMI model in rats. Next, we determined the effects of ginsenoside Rh2 on AMI by examining the myocardial infarct area, while regulation of myocardial pyroptosis was determined by assessing related factors. We established a cardiomyocyte model using hypoxia/reoxygenation (H/R) treatment. The expression of pyroptosis-related factors was determined following ginsenoside Rh2 treatment. In addition, we evaluated the correlation between ginsenoside Rh2 and the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway at the mechanistic level. RESULTS: Herein, we observed that ginsenoside Rh2 alleviated AMI in rats and cells. Notably, the expression levels of inflammatory factors were reduced in AMI rats and cells. Furthermore, AMI rats and cells exhibited high expression levels of cleaved caspase-1 and gasdermin D, which were downregulated following treatment with ginsenoside Rh2. Further analysis revealed that ginsenoside Rh2 could inhibit cardiomyocyte pyroptosis by regulating the PI3K/AKT signaling pathway. CONCLUSIONS: Collectively, the findings of the present study demonstrated that ginsenoside Rh2 regulates pyroptosis in cardiomyocytes to alleviate AMI in vivo and in vitro, thereby affording a novel therapeutic approach to treat AMI.


Asunto(s)
Infarto del Miocardio , Miocitos Cardíacos , Ratas , Animales , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piroptosis , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Apoptosis
13.
Cancer Med ; 12(11): 12653-12667, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37081781

RESUMEN

BACKGROUND: Ginsenoside Rh2 (G-Rh2) exerts anti-tumor activity in non-small cell lung cancer (NSCLC). microRNAs (miRNAs, miRs) play pivotal roles in NSCLC. We aimed to investigate whether G-Rh2 inhibited NSCLC progression by targeting miRNA. METHODS: Cell viability, apoptosis and cycle were determined by Cell Counting Kit-8, 6-diamidino-2-phenylindole (DAPI) staining and flow cytometry. The potential target miRNAs of G-Rh2 were screened by real-time quantitative polymerase chain reaction (RT-qPCR). The difference in miR-28-5p expression between lung adenocarcinoma (LUAD) tissues and normal tissues or lung squamous cell carcinoma (LUSC) tissues and normal tissues was retrieved from TCGA-LUAD and TCGA-LUSC, respectively. Kaplan-Meier Plotter was conducted to analyze the survival rate for different serine/threonine-protein kinase 4 (STK4) expressions with different prognostic risks. immunohistochemistry of STK4 expression in non-tumor and tumor tissues was analyzed from the HPA database. RT-qPCR and Western blot were adopted for detecting mRNA and protein expression. TargetScan V7.2, miRanda and PITA were adopted for predicting targets of miR-28-5p, overlapped genes were subjected to GO analysis. The interactions of miR-28-5p-Wnt and miR-28-5p-STK4 were detected by TOP/FOP luciferase reporter assay and dual luciferase reporter assay, respectively. RESULTS: Current study observed that G-Rh2 reduced miR-28-5p expression in NSCLC cells dose-dependently. miR-28-5p was upregulated in NSCLC tissues and cells. The target genes of miR-28-5p were enriched in negative regulation of Wnt signaling. miR-28-5p inhibitor inactivated Wnt signaling, inhibited cell viability and cell cycle, while enhanced cell apoptosis of NSCLC cells by targeting STK4. G-Rh2 exerted the similar effects with miR-28-5p inhibitor by reducing miR-28-5p. G-Rh2 and miR-28-5p inhibitor exerted a synergistic effect on inhibiting NSCLC tumor growth. CONCLUSION: In conclusion, G-Rh2 attenuates NSCLC development by affecting miR-28-5p/STK4 axis and inactivating Wnt signaling. Taken together, we project out a novel therapeutic target for NSCLC.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , MicroARNs , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , beta Catenina/metabolismo , Vía de Señalización Wnt/genética , Línea Celular Tumoral , Proliferación Celular/genética , MicroARNs/metabolismo , Adenocarcinoma del Pulmón/genética , Carcinoma de Células Escamosas/genética , Luciferasas/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética
14.
J Ginseng Res ; 47(2): 173-182, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36926617

RESUMEN

Cancer is a global public health issue that becomes the second primary cause of death globally. Considering the side effects of radio- or chemo-therapy, natural phytochemicals are promising alternatives for therapeutic interventions to alleviate the side effects and complications. Ginsenoside Rh2 (GRh2) is the main phytochemical extracted from Panax ginseng C.A. Meyer with anticancer activity. GRh2 could induce apoptosis and autophagy of cancer cells and inhibit proliferation, metastasis, invasion, and angiogenesis in vitro and in vivo. In addition, GRh2 could be used as an adjuvant to chemotherapeutics to enhance the anticancer effect and reverse the adverse effects. Here we summarized the understanding of the molecular mechanisms underlying the anticancer effects of GRh2 and proposed future directions to promote the development and application of GRh2.

15.
Acta Biochim Biophys Sin (Shanghai) ; 55(4): 633-648, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36916297

RESUMEN

Ginsenoside Rh2, which is extracted from ginseng, exerts antitumor activity. Recent studies suggest that Rh2 may suppress the growth of colon cancer (CC) in vitro. However, the underlying mechanism remains unclear. In this study, we identified the relative levels of miR-150-3p in CC tissues and cells by a comprehensive strategy of data mining, computational biology, and real-time reverse transcription PCR (qRT-PCR) experiments. The regulatory effects of miR-150-3p/SRCIN1 on the proliferative and invasive abilities of CC cells are evaluated by CCK-8, EdU, wound healing, and transwell assays. Cell cycle- and apoptosis-related protein levels are assessed by western blot analysis. An in vivo tumor formation assay was conducted to explore the effects of miR-150-3p on tumor growth. Furthermore, bioinformatics and dual luciferase reporter assays are applied to determine the functional binding of miRNA to mRNA of the target gene. Finally, the relationship between Rh2 and miR-150-3p was further verified in SW620 and HCT-116 cells. miR-150-3p is downregulated in CC tissues and cell lines. Functional assays indicate that the upregulation of miR-150-3p inhibits tumor growth both in vivo and in vitro. In addition, SRCIN1 is upregulated in CC and predicts a poor prognosis, and it is the direct target for miR-150-3p. Moreover, the miR-150-3p mimic decreases Topflash/Fopflash-dependent luciferase activity, resulting in the inhibition of Wnt pathway activity. Rh2 can suppress the growth of CC by increasing miR-150-3p expression. Rh2 alleviates the accelerating effect on Wnt pathway activity, cell proliferation/migration, and colony formation caused by miR-150-3p inhibition. Rh2 inhibits the miR-150-3p/SRCIN1/Wnt axis to suppress colon cancer growth.


Asunto(s)
Neoplasias del Colon , Ginsenósidos , MicroARNs , Humanos , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Ginsenósidos/farmacología , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular
16.
Clin Immunol ; 248: 109217, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36581220

RESUMEN

Cold tumor immune microenvironment (TIME) of pancreatic cancer (PC) with minimal dendritic cell (DC) and T cell infiltration can result in insufficient immunotherapy and chemotherapy. While gemcitabine (GEM) is a first-line chemotherapeutic drug for PC, its efficacy is reduced by immunosuppression and drug resistance. Ginsenoside Rh2 (Rh2) is known to have anti-cancer and immunomodulatory properties. Combining GEM with Rh2 may thus overcome immunosuppression and induce lasting anti-tumor immunity in PC. Here, we showed that after GEM-Rh2 therapy, there was significantly greater tumor infiltration by DCs. Caspase recruitment domain-containing protein 9 (CARD9), a central adaptor protein, was strongly up-regulated DCs with GEM-Rh2 therapy and promoted anti-tumor immune responses by DCs. CARD9 was found to be a critical target for Rh2 to enhance DC function. However, GEM-Rh2 treatment did not achieve the substantial anti-PC efficacy in CARD9-/- mice as in WT mice. The adoptive transfer of WT DCs to DC-depleted PC mice treated with GEM-Rh2 elicited strong anti-tumor immune responses, although CARD9-/- DCs were less effective than WT DCs. Our results showed that GEM-Rh2 may reverse cold TIME by enhancing tumor immunogenicity and decreasing the levels of immunosuppressive factors, reactivating DCs via the CARD9-BCL10-MALT1/ NF-κB pathway. Our findings suggest a potentially feasible and safe treatment strategy for PC, with a unique mechanism of action. Thus, Rh2 activation of DCs may remodel the cold TIME and optimize GEM chemotherapy for future therapeutic use.


Asunto(s)
FN-kappa B , Neoplasias Pancreáticas , Animales , Ratones , FN-kappa B/metabolismo , Gemcitabina , Inmunidad , Células Dendríticas , Línea Celular Tumoral , Microambiente Tumoral , Proteína 10 de la LLC-Linfoma de Células B , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Neoplasias Pancreáticas
17.
Eur J Pharmacol ; 940: 175391, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36400161

RESUMEN

Epilepsy is a chronic disease that affects a wide range of people. Furthermore, a third of patients suffering from epileptic seizures do not respond to antiepileptic drugs. In recent years, increasing attention has focused on the role of oxidative stress in acquired epilepsy, and adjuvant antiepileptic drugs to reduce oxidative stress may be a new therapeutic strategy. In this study ginsenoside Rh2 was resistant to oxidative stress induced by epileptic activity in vivo and in vitro. Using online databases, we identified forkhead box O3a (FOXO3a) overexpression in epilepsy tissue and validated this in vitro, in vivo, and in clinical tissues of patients with epilepsy. An in vitro epilepsy model revealed that the overexpression of FOXO3a led to more severe oxidative stress, while the knockdown of FOXO3a had a protective effect on SH-SY5Y cells. Moreover, our results showed that the positive effect of FOXO3a on oxidative stress was caused by the transcriptional activation of Kelch-like ECH-associated protein 1 (KEAP1), a negative regulator of nuclear factor erythroid 2-related factor 2 (NRF2). We also found that ginsenoside Rh2 can directly inhibit the activation of FOXO3a by selectively blocking CREB-binding protein (CBP)/p300-mediated FOXO3a acetylation and play a role in regulating the KEAP1-NRF2 pathway to resist oxidative stress.


Asunto(s)
Epilepsia , Neuroblastoma , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteína de Unión a CREB/metabolismo , Proteína de Unión a CREB/farmacología , Acetilación , Anticonvulsivantes/farmacología , Estrés Oxidativo , Epilepsia/tratamiento farmacológico
18.
Iran J Basic Med Sci ; 25(12): 1442-1451, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36544523

RESUMEN

Objectives: This study aims to evaluate the in vivo anticancer activity of arginine-reduced graphene (Gr-Arg) and ginsenoside Rh2-containing arginine-reduced graphene (Gr-Arg-Rh2). Materials and Methods: Thirty-two mice with breast cancer were divided into four groups and treated every three days for 32 days: Group 1, PBS, Group 2, Rh2, Group 3, Gr-Arg, and Group 4, Gr-Arg-Rh2. The tumor size and weight, gene expression (IL10, INF-γ, TGFß, and FOXP3), and pathological properties of the tumor and normal tissues were assessed. Results: Results showed a significant decrease in TGFß expression for all drug treatment groups compared with the controls (P=0.04). There was no significant difference among the groups regarding IL10 and FOXP3 gene expression profiles (P>0.05). Gr-Arg-Rh2 significantly inhibited tumor growth (size and weight) compared with Rh2 and control groups. The highest survival rate and the highest percentage of tumor necrosis (87.5%) belonged to the Gr-Arg-Rh2 group. Lungs showed metastasis in the control group. No metastasis was observed in the Gr-Arg-Rh2 group. Gr-Arg-Rh2 showed partial degeneration of hepatocytes and acute cell infiltration in the portal spaces and around the central vein. The Gr-Arg group experienced a moderate infiltration of acute cells into the port spaces and around the central vein. The Rh2 group also showed a mild infiltration of acute and chronic cells in portal spaces. Conclusion: Based on the results, Gr-Arg-Rh2 can reduce tumor size, weight, and growth, TGF-ß gene expression, and increase tumor necrosis and survival time in mice with cancer.

19.
Chin J Nat Med ; 20(12): 881-901, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36549803

RESUMEN

As a steroid skeleton-based saponin, ginsenoside Rh2 (G-Rh2) is one of the major bioactive ginsenosides from the plants of genus Panax L. Many studies have reported the notable pharmacological activities of G-Rh2 such as anticancer, antiinflammatory, antiviral, antiallergic, antidiabetic, and anti-Alzheimer's activities. Numerous preclinical studies have demonstrated the great potential of G-Rh2 in the treatment of a wide range of carcinomatous diseases in vitro and in vivo. G-Rh2 is able to inhibit proliferation, induce apoptosis and cell cycle arrest, retard metastasis, promote differentiation, enhance chemotherapy and reverse multi-drug resistance against multiple tumor cells. The present review mainly summarizes the anticancer effects and related mechanisms of G-Rh2 in various models as well as the recent advances in G-Rh2 delivery systems and structural modification to ameliorate its anticancer activity and pharmacokinetics characteristics.


Asunto(s)
Antineoplásicos , Ginsenósidos , Neoplasias , Saponinas , Humanos , Ginsenósidos/farmacología , Antineoplásicos/farmacología , Saponinas/farmacología , Neoplasias/tratamiento farmacológico , Apoptosis
20.
Molecules ; 27(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36431966

RESUMEN

Cervical cancer is a common gynecological malignancy afflicting women all over the world. Ginsenoside Rh2 (GRh2), especially 20(S)-GRh2, is a biologically active component in the natural plant ginseng, which can exhibit anticancer effects. Here, we aimed to investigate the effect of 20(S)-GRh2 on cervical cancer and elucidate the underlying mechanism through RNA-seq. In this study, the CCK-8 assay showed that 20(S)-GRh2 inhibited HeLa cell viability in a time- and dose-dependent manner. Caspase 3 activity and Annexin V staining results showed that 20(S)-GRh2 induced apoptosis of HeLa cells. Gene function enrichment analysis revealed that the biological process gene ontology (GO) terms were associated with the apoptotic signaling pathway. Biological process GO terms' similarity network indicated that apoptosis might be from endoplasmic reticulum stress (ERs). Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that 20(S)-GRh2 primarily modulates apoptosis pathway genes. Combined protein-protein interaction network, hub gene screening, and qPCR validation data showed that ERs-related genes (ATF4 and DDIT3) and the downstream apoptotic genes (JUN, FOS, BBC3, and PMAIP1) were potential novel targets of 20(S)-GRh2-inducing cervical cancer cell apoptosis. Differential transcript usage analysis indicated that DDIT3 is also a differential transcript and its usage of the isoform (ENST00000552740.5) was reduced by 20(S)-GRh2. Molecular docking suggested that 20(S)-GRh2 binds to the targets (ATF4, DDIT3, JUN, FOS, BBC3, and PMAIP1) with high affinity. In conclusion, our findings indicated that 20(S)-GRh2 might promote ERs-related apoptosis of cervical cancer cells by regulating the DDIT3-based targets' signal pathway. The role of 20(S)-GRh2 at the transcriptome level provides novel targets and evidence for the treatment of cervical cancer.


Asunto(s)
Estrés del Retículo Endoplásmico , Neoplasias del Cuello Uterino , Femenino , Humanos , Células HeLa , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Simulación del Acoplamiento Molecular , Apoptosis , Proteínas Reguladoras de la Apoptosis , Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA