Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
BMC Genomics ; 25(1): 345, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580917

RESUMEN

BACKGROUND: High-mobility group B1 (HMGB1) is both a DNA binding nuclear factor modulating transcription and a crucial cytokine that mediates the response to both infectious and noninfectious inflammation such as autoimmunity, cancer, trauma, and ischemia reperfusion injury. HMGB1 has been proposed to control ribosome biogenesis, similar as the other members of a class of HMGB proteins. RESULTS: Here, we report that HMGB1 selectively promotes transcription of genes involved in the regulation of transcription, osteoclast differentiation and apoptotic process. Improved RNA immunoprecipitation by UV cross-linking and deep sequencing (iRIP-seq) experiment revealed that HMGB1 selectively bound to mRNAs functioning not only in signal transduction and gene expression, but also in axon guidance, focal adhesion, and extracellular matrix organization. Importantly, HMGB1-bound reads were strongly enriched in specific structured RNAs, including the domain II of 28S rRNA, H/ACA box snoRNAs including snoRNA63 and scaRNAs. RTL-P experiment showed that overexpression of HMGB1 led to a decreased methylation modification of 28S rRNA at position Am2388, Cm2409, and Gm2411. We further showed that HMGB1 overexpression increased ribosome RNA expression levels and enhanced protein synthesis. CONCLUSION: Taken together, our results support a model in which HMGB1 binds to multiple RNA species in human cancer cells, which could at least partially contribute to HMGB1-modulated rRNA modification, protein synthesis function of ribosomes, and differential gene expression including rRNA genes. These findings provide additional mechanistic clues to HMGB1 functions in cancers and cell differentiation.


Asunto(s)
Proteína HMGB1 , Metilación de ARN , Humanos , Células HeLa , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Metilación , ARN Ribosómico 28S/metabolismo , ARN Nucleolar Pequeño/química , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Metilación de ARN/genética
2.
World J Gastroenterol ; 30(2): 115-127, 2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38312115

RESUMEN

Small nucleolar RNAs (snoRNAs) represent a class of non-coding RNAs that play pivotal roles in post-transcriptional RNA processing and modification, thereby contributing significantly to the maintenance of cellular functions related to protein synthesis. SnoRNAs have been discovered to possess the ability to influence cell fate and alter disease progression, holding immense potential in controlling human diseases. It is suggested that the dysregulation of snoRNAs in cancer exhibits differential expression across various cancer types, stages, metastasis, treatment response and/or prognosis in patients. On the other hand, colorectal cancer (CRC), a prevalent malignancy of the digestive system, is characterized by high incidence and mortality rates, ranking as the third most common cancer type. Recent research indicates that snoRNA dysregulation is associated with CRC, as snoRNA expression significantly differs between normal and cancerous conditions. Consequently, assessing snoRNA expression level and function holds promise for the prognosis and diagnosis of CRC. Nevertheless, current comprehension of the potential roles of snoRNAs in CRC remains limited. This review offers a comprehensive survey of the aberrant regulation of snoRNAs in CRC, providing valuable insights into the discovery of novel biomarkers, therapeutic targets, and potential tools for the diagnosis and treatment of CRC and furnishing critical cues for advancing research into CRC and the judicious selection of therapeutic targets.


Asunto(s)
Neoplasias Colorrectales , ARN Nucleolar Pequeño , Humanos , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Pronóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología
3.
Mol Carcinog ; 63(6): 1117-1132, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38421204

RESUMEN

Breast cancer stem cells (BCSCs) are key players in carcinogenesis and development. Small nucleolar RNAs (snoRNAs) seem to have a crucial influence on regulating stem cell-like properties in various cancers, but the underlying mechanism in breast cancer has not been determined. In this study, we first found that the expression of SNORA51 might be strongly and positively related to BCSCs-like properties. SNORA51 expression was assessed in breast cancer tissues (n = 158 patients) by in situ hybridization. Colony formation, cell counting kit-8, and sphere formation assays were used to detect cell proliferation and self-renewal, respectively. Wound healing and transwell assays were used to detect cell migration. Coimmunoprecipitation and molecular docking were used to determine the underlying mechanism through which SNORA51 regulates BCSCs-like properties. High SNORA51 expression was associated with a worse prognosis, overall survival, and disease-free survival, in 158 breast cancer patients and was also closely related to lymph node status, ER status, the Ki-67 index, histological grade, and TNM stage. Further analysis proved that SNORA51 could enhance and maintain stem cell-like properties, including cell proliferation, self-renewal, and migration, in breast cancer. Moreover, high SNORA51 expression could reduce nucleolar RPL3 expression, induce changes in the expression of NPM1 in the nucleolus and nucleoplasm, and ultimately increase c-MYC expression. Taken together, our findings demonstrated that SNORA51 could enhance BCSCs-like properties via the RPL3/NPM1/c-MYC pathway both in vitro and in vivo. Therefore, SNORA51 might be a significant biomarker and potential therapeutic target and might even provide a new viewpoint on the regulatory mechanism of snoRNAs in breast cancer or other malignant tumors.


Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Células Madre Neoplásicas , Nucleofosmina , Proteínas Proto-Oncogénicas c-myc , ARN Nucleolar Pequeño , Proteínas Ribosómicas , Humanos , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Persona de Mediana Edad , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Pronóstico , Regulación Neoplásica de la Expresión Génica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Movimiento Celular , Transducción de Señal , Animales , Línea Celular Tumoral , Ratones
4.
Int J Mol Sci ; 24(24)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38139448

RESUMEN

The GAS5 gene encodes a long non-coding RNA (lncRNA) and intron-located small nucleolar RNAs (snoRNAs). Its structure, splice variants, and diverse functions in mammalian cells have been thoroughly investigated. However, there are still no data on a successful knockout of GAS5 in human cells, with most of the loss-of-function experiments utilizing standard techniques to produce knockdowns. By using CRISPR/Cas9 to introduce double-strand breaks in the terminal intronic box C/D snoRNA genes (SNORDs), we created monoclonal cell lines carrying continuous deletions in one of the GAS5 alleles. The levels of GAS5-encoded box C/D snoRNAs and lncRNA GAS5 were assessed, and the formation of the novel splice variants was analyzed. To comprehensively evaluate the influence of specific SNORD mutations, human cell lines with individual mutations in SNORD74 and SNORD81 were obtained. Specific mutations in SNORD74 led to the downregulation of all GAS5-encoded SNORDs and GAS5 lncRNA. Further analysis revealed that SNORD74 contains a specific regulatory element modulating the maturation of the GAS5 precursor transcript. The results demonstrate that the maturation of GAS5 occurs through the m6A-associated pathway in a SNORD-dependent manner, which is a quite intriguing epitranscriptomic mechanism.


Asunto(s)
ARN Largo no Codificante , ARN Nucleolar Pequeño , Humanos , Línea Celular , Intrones/genética , Mamíferos/metabolismo , ARN Largo no Codificante/genética , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo
5.
Front Immunol ; 14: 1138363, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022536

RESUMEN

Introduction: Small nucleolar RNAs (snoRNAs) are a group of non-coding RNAs enriched in the nucleus which direct post-transcriptional modifications of rRNAs, snRNAs and other molecules. Recent studies have suggested that snoRNAs have a significant role in tumor oncogenesis and can be served as prognostic markers for predicting the overall survival of tumor patients. Methods: We screened 122 survival-related snoRNAs from public databases and eventually selected 7 snoRNAs that were most relevant to the prognosis of lower-grade glioma (LGG) patients for the establishment of the 7-snoRNA prognostic signature. Further, we combined clinical characteristics related to the prognosis of glioma patients and the 7-snoRNA prognostic signature to construct a nomogram. Results: The prognostic model displayed greater predictive power in both validation set and stratification analysis. Results of enrichment analysis revealed that these snoRNAs mainly participated in the post-transcriptional process such as RNA splicing, metabolism and modifications. In addition, 7-snoRNA prognostic signature were positively correlated with immune scores and expression levels of multiple immune checkpoint molecules, which can be used as potential biomarkers for immunotherapy prediction. From the results of bioinformatics analysis, we inferred that SNORD88C has a major role in the development of glioma, and then performed in vitro experiments to validate it. The results revealed that SNORD88C could promote the proliferation, invasion and migration of glioma cells. Discussion: We established a 7-snoRNA prognostic signature and nomogram that can be applied to evaluate the survival of LGG patients with good sensitivity and specificity. In addition, SNORD88C could promote the proliferation, migration and invasion of glioma cells and is involved in a variety of biological processes related to DNA and RNA.


Asunto(s)
Glioma , ARN Nucleolar Pequeño , Humanos , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Pronóstico , Glioma/genética , Glioma/patología , Biología Computacional
6.
Cell Mol Gastroenterol Hepatol ; 16(5): 735-755, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37478905

RESUMEN

BACKGROUND & AIMS: Hepatoblastoma (HB) is a common pediatric malignant liver tumor that is characterized by a low level of genetic mutations. Alternative splicing (AS) has been shown to be closely associated with cancer progression, especially in tumors with a low mutational burden. However, the role of AS in HB remains unknown. METHODS: Transcriptome sequencing was performed on 5 pairs of HB tissues and matched non-tumor tissues to delineate the AS landscape in HB. AS events were validated in 92 samples from 46 patients. RNA pull-down and RNA immunoprecipitation assays were carried out to identify splicing factors that regulate the AS of small nucleolar RNA host genes (SNHG). Patient-derived organoids (PDOs) were established to investigate the role of the splicing factor polyadenylate-binding nuclear protein 1 (PABPN1). RESULTS: This study uncovered aberrant alternative splicing in HB, including lncRNAs from SNHG family that undergo intron retention in HB. Further investigations revealed that PABPN1, a significantly upregulated RNA binding protein, interacts with splicing machinery in HB, inducing the intron retention of these SNHG RNAs and the downregulation of intronic small nucleolar RNAs (snoRNAs). Functionally, PABPN1 acts as an oncofetal splicing regulator in HB by promoting cell proliferation and DNA damage repair via inducing the intron retention of SNHG19. Knock-down of PABPN1 increases the cisplatin sensitivity of HB PDOs. CONCLUSIONS: Our findings revealed the role of intron retention in regulating snoRNA expression in hepatoblastoma, explained detailed regulatory mechanism between PABPN1 and the intron retention of SNHG RNAs, and provided insight into the development of new HB treatment options.


Asunto(s)
Hepatoblastoma , Neoplasias Hepáticas , ARN Largo no Codificante , Niño , Humanos , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Hepatoblastoma/tratamiento farmacológico , Hepatoblastoma/genética , Empalme Alternativo/genética , Resistencia a Antineoplásicos/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Proteína I de Unión a Poli(A)/genética , Proteína I de Unión a Poli(A)/metabolismo
7.
Asian Pac J Cancer Prev ; 24(7): 2217-2223, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37505750

RESUMEN

OBJECTIVE: Perform a systematic literature review on SNORA42 in carcinogenesis in order to elucidate its importance, its potential use as a biomarker and as a therapeutic target. METHODS: Using PubMed, SciELO and Science Direct databases as search means, articles that are in line with the scope of the study, written in English, that were published between 2012 and 2022, were selected using the following keywords: "small nucleolar RNA 42", "snoRNA 42" and "SNORA42", as well as searches for the synonyms of this snoRNA (SNORA80E, box H/ACA 42 and ACA42). RESULT: From a total of 131 studies, seven were selected, in which it was possible to identify that SNORA42 interferes in several biological processes, such as proliferation, migration, invasion, metastasis, apoptosis, and signaling pathways. Among the signaling pathways, the p53 and NF-KappaB pathways stand out. Moreover, it is a potential biomarker for diagnosis, prognosis, and treatment of cancer. CONCLUSION: The summary of the main information about SNORA42 in the process of carcinogenesis and cancer progression shows that the use of this snoRNA is ideal for future applications in the field of oncology, in which it can be used as a biomarker and therapeutic target. Thus, it is of fundamental importance to carry out new studies to consolidate the applicability of this molecule.


Asunto(s)
Carcinogénesis , ARN Nucleolar Pequeño , Humanos , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Pronóstico , Apoptosis
8.
Cell Metab ; 35(8): 1457-1473.e13, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37329887

RESUMEN

Obesity, in which the functional importance of small nucleolar RNAs (snoRNAs) remains elusive, correlates with risk for many cancer types. Here, we identify that the serum copies of adipocyte-expressed SNORD46 correlate with body mass index (BMI), and serum SNORD46 antagonizes interleukin-15 (IL-15) signaling. Mechanically, SNORD46 binds IL-15 via G11, and G11A (a mutation that significantly enhances binding affinity) knockin drives obesity in mice. Functionally, SNORD46 blocks IL-15-induced, FER kinase-dependent phosphorylation of platelet glycoprotein 4 (CD36) and monoglyceride lipase (MGLL) in adipocytes, leading to inhibited lipolysis and browning. In natural killer (NK) cells, SNORD46 suppresses the IL-15-dependent autophagy, leading to reduced viability of obese NK. SNORD46 power inhibitors exhibit anti-obesity effects, concurring with improved viability of obese NK and anti-tumor immunity of CAR-NK cell therapy. Hence, our findings demonstrate the functional importance of snoRNAs in obesity and the utility of snoRNA power inhibitors for antagonizing obesity-associated immune resistance.


Asunto(s)
Lipólisis , ARN Nucleolar Pequeño , Animales , Ratones , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Interleucina-15/metabolismo , Rejuvenecimiento , Adipocitos/metabolismo , Obesidad/metabolismo , Células Asesinas Naturales
9.
J Cell Physiol ; 238(6): 1207-1225, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37183323

RESUMEN

Small nucleolar RNAs (snoRNAs) are noncoding RNA molecules of highly variable size, usually ranging from 60 to 150 nucleotides. They are classified into H/ACA box snoRNAs, C/D box snoRNAs, and scaRNAs. Their functional profile includes biogenesis of ribosomes, processing of rRNAs, 2'-O-methylation and pseudouridylation of RNAs, alternative splicing and processing of mRNAs and the generation of small RNA molecules like miRNA. The snoRNAs have been observed to have an important role in hematopoiesis and malignant hematopoietic conditions including leukemia, lymphoma, and multiple myeloma. Blood malignancies arise in immune system cells or the bone marrow due to chromosome abnormalities. It has been estimated that annually over 1.25 million cases of blood cancer occur worldwide. The snoRNAs often show a differential expression profile in blood malignancies. Recent reports associate the abnormal expression of snoRNAs with the inhibition of apoptosis, uncontrolled cell proliferation, angiogenesis, and metastasis. This implies that targeting snoRNAs could be a potential way to treat hematologic malignancies. In this review, we describe the various functions of snoRNAs, their role in hematopoiesis, and the consequences of their dysregulation in blood malignancies. We also evaluate the potential of the dysregulated snoRNAs as biomarkers and therapeutic targets for blood malignancies.


Asunto(s)
Neoplasias Hematológicas , ARN Nucleolar Pequeño , Humanos , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , ARN Ribosómico , Ribosomas/genética , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Hematopoyesis/genética
10.
CNS Neurosci Ther ; 29(10): 2811-2825, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37066523

RESUMEN

AIMS: The isocitrate dehydrogenase (IDH) phenotype is associated with reprogrammed energy metabolism in glioblastoma (GBM) cells. Small nucleolar RNAs (snoRNAs) are known to exert an important regulatory role in the energy metabolism of tumor cells. The purpose of this study was to investigate the role of C/D box snoRNA U3 and transcription factor zinc finger and BTB domain-containing 7A (ZBTB7A) in the regulation of aerobic glycolysis and the proliferative capacity of IDH1 wild-type (IDH1WT ) GBM cells. METHODS: Quantitative reverse transcription PCR and western blot assays were utilized to detect snoRNA U3 and ZBTB7A expression. U3 promoter methylation status was analyzed via bisulfite sequencing and methylation-specific PCR. Seahorse XF glycolysis stress assays, lactate production and glucose consumption measurement assays, and cell viability assays were utilized to detect glycolysis and proliferation of IDH1WT GBM cells. RESULTS: We found that hypomethylation of the CpG island in the promoter region of U3 led to the upregulation of U3 expression in IDH1WT GBM cells, and the knockdown of U3 suppressed aerobic glycolysis and the proliferation ability of IDH1WT GBM cells. We found that small nucleolar-derived RNA (sdRNA) U3-miR, a small fragment produced by U3, was able to bind to the ZBTB4 3'UTR region and reduce ZBTB7A mRNA stability, thereby downregulating ZBTB7A protein expression. Furthermore, ZBTB7A transcriptionally inhibited the expression of hexokinase 2 (HK2) and lactate dehydrogenase A (LDHA), which are key enzymes of aerobic glycolysis, by directly binding to the HK2 and LDHA promoter regions, thereby forming the U3/ZBTB7A/HK2 LDHA pathway that regulates aerobic glycolysis and proliferation of IDH1WT GBM cells. CONCLUSION: U3 enhances aerobic glycolysis and proliferation in IDH1WT GBM cells via the U3/ZBTB7A/HK2 LDHA axis.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/patología , ARN Nucleolar Pequeño/metabolismo , Isocitrato Deshidrogenasa/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Glucólisis , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica
11.
Front Immunol ; 14: 1143980, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006268

RESUMEN

The small nucleolar RNA host genes (SNHGs) are a group of genes that can be transcript into long non-coding RNA SNHG (lncSNHG) and further processed into small nucleolar RNAs (snoRNAs). Although lncSNHGs and snoRNAs are well established to play pivotal roles in tumorigenesis, how lncSNHGs and snoRNAs regulate the immune cell behavior and function to mediate anti-tumor immunity remains further illustrated. Certain immune cell types carry out distinct roles to participate in each step of tumorigenesis. It is particularly important to understand how lncSNHGs and snoRNAs regulate the immune cell function to manipulate anti-tumor immunity. Here, we discuss the expression, mechanism of action, and potential clinical relevance of lncSNHGs and snoRNAs in regulating different types of immune cells that are closely related to anti-tumor immunity. By uncovering the changes and roles of lncSNHGs and snoRNAs in different immune cells, we aim to provide a better understanding of how the transcripts of SNHGs participate in tumorigenesis from an immune perspective.


Asunto(s)
ARN Largo no Codificante , ARN Nucleolar Pequeño , Humanos , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , ARN Largo no Codificante/genética , Carcinogénesis , Transformación Celular Neoplásica
12.
Biomed Pharmacother ; 161: 114519, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36906975

RESUMEN

Small nucleolar RNAs (snoRNAs) are non-coding RNA molecules that range from 60 to 300 nucleotides in length and are primarily located in the nucleoli of cells. They play a critical role in modifying ribosomal RNA and can also regulate alternative splicing and posttranscriptional modification of mRNA. Alterations in snoRNA expression can affect numerous cellular processes, including cell proliferation, apoptosis, angiogenesis, fibrosis, and inflammation, making them a promising target for diagnostics and treatment of various human pathologies. Recent evidence suggests that abnormal snoRNA expression is strongly associated with the development and progression of several lung diseases, such as lung cancer, asthma, chronic obstructive pulmonary disease, and pulmonary hypertension, as well as COVID-19. While few studies have shown a causal relationship between snoRNA expression and disease onset, this research field presents exciting opportunities for identifying new biomarkers and therapeutic targets in lung disease. This review discusses the emerging role and molecular mechanisms of snoRNAs in the pathogenesis of lung diseases, focusing on research opportunities, clinical studies, biomarkers, and therapeutic potential.


Asunto(s)
COVID-19 , Neoplasias Pulmonares , Humanos , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Neoplasias Pulmonares/genética , ARN Mensajero , Prueba de COVID-19
13.
Nucleic Acids Res ; 51(2): 744-764, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36610750

RESUMEN

Ribosomes are ribozymes, hence correct folding of the rRNAs during ribosome biogenesis is crucial to ensure catalytic activity. RNA helicases, which can modulate RNA-RNA and RNA/protein interactions, are proposed to participate in rRNA tridimensional folding. Here, we analyze the biochemical properties of Dbp6, a DEAD-box RNA helicase required for the conversion of the initial 90S pre-ribosomal particle into the first pre-60S particle. We demonstrate that in vitro, Dbp6 shows ATPase as well as annealing and clamping activities negatively regulated by ATP. Mutations in Dbp6 core motifs involved in ATP binding and ATP hydrolysis are lethal and impair Dbp6 ATPase activity but increase its RNA binding and RNA annealing activities. These data suggest that correct regulation of these activities is important for Dbp6 function in vivo. Using in vivo cross-linking (CRAC) experiments, we show that Dbp6 interacts with 25S rRNA sequences located in the 5' domain I and in the peptidyl transferase center (PTC), and also crosslinks to snoRNAs hybridizing to the immature PTC. We propose that the ATPase and RNA clamping/annealing activities of Dbp6 modulate interactions of snoRNAs with the immature PTC and/or contribute directly to the folding of this region.


Asunto(s)
ARN Helicasas DEAD-box , Ribosomas , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Peptidil Transferasas/genética , Peptidil Transferasas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , ARN Helicasas/genética , ARN Ribosómico/metabolismo , ARN Nucleolar Pequeño/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Cancer Gene Ther ; 30(5): 738-751, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36609627

RESUMEN

Transient receptor potential melastatin 8 (TRPM8) play crucial roles in solid tumors such as prostate and breast cancers. But the role of TRPM8 in hepatocellular carcinoma (HCC) and its underlying molecular mechanisms remain largely unknown. In this study, the functional roles of TRPM8 in HCC were systematically investigated for the first time. It was found that the expression level of TRPM8 was significantly upregulated in HCC, which was positively correlated with the worse clinicopathological characteristics. Functional studies revealed that pharmacological inhibition or genetic downregulation of TRPM8 ameliorated hepatocarcinogenesis in vitro and in vivo. Mechanistically, the oncogenic role of TRPM8 in HCC was at least partially achieved by affecting mitochondrial function. TRPM8 could modulate the expression of nucleolar relative molecule-small nucleolar RNA, H/ACA box 55 (SNORA55) by inducing transformation of chromatin structure and histone modification type. These data suggest that as a bridge molecule in TRPM8-triggered HCC, SNORA55 can migrate from nucleus to mitochondria and exert oncogenic role by affecting mitochondria function through targeting ATP5A1 and ATP5B. Herein, we uncovered the potent oncogenic role of TRPM8 in HCC by inducing nuclear and mitochondrial dysfunction in a SNORA55 dependent manner, and provided a potential therapeutic target for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Canales Catiónicos TRPM , Masculino , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , ARN Nucleolar Pequeño/metabolismo , Próstata/patología , Mitocondrias/genética , Mitocondrias/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Proteínas de la Membrana/genética
15.
J Adv Res ; 46: 75-85, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35700920

RESUMEN

BACKGROUND: Previous studies have focused on the involvement of small nucleolar RNAs (snoRNAs) and SNHGs in tumor cell proliferation, apoptosis, invasion, and metastasis via multiple pathways, including phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT), Wnt/ß catenin, and mitogen-activated protein kinase (MAPK). These molecular mechanisms affect the integrity of the intestinal mucosal barrier. AIM OF REVIEW: Current evidence regarding snoRNAs and SNHGs in the context of the mucosal barrier and modulation of homeostasis is fragmented. In this review, we collate the established information on snoRNAs and SNHGs as well as discuss the major pathways affecting the mucosal barrier. KEY SCIENTIFIC CONCEPTS OF REVIEW: Intestinal mucosal immunity, microflora, and the physical barrier are altered in non-neoplastic diseases such as inflammatory bowel diseases. Dysregulated snoRNAs and SNHGs may impact the intestinal mucosal barrier to promote the pathogenesis and progression of multiple diseases. SnoRNAs or SNHGs has been shown to be associated with poor disease behaviors, indicating that they may be exploited as prognostic biomarkers. Additionally, clarifying the complicated interactions between snoRNAs or SNHGs and the mucosal barrier may provide novel insights for the therapeutic treatment targeting strengthen the intestinal mucosal barrier.


Asunto(s)
Neoplasias , ARN Nucleolar Pequeño , Humanos , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Fosfatidilinositol 3-Quinasas , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinasa
16.
Cell Death Differ ; 30(2): 341-355, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36376383

RESUMEN

Small nucleolar RNAs (snoRNAs) have been shown to play critical regulatory roles in cancer development. SNORD88C, which located at the intronic region of C19orf48 in chromosome 19q.33 with a 97-nt length was screened through database and snoRNA-sequencing. We firstly verified this snoRNA was up-regulated in tissue and plasma and served as a non-invasive diagnostic biomarker; then confirmed that SNORD88C promoted proliferation and metastasis of NSCLC in vitro and in vivo. Mechanistically, SNORD88C promoted 2'-O-methylation modification at the C3680 site on 28S rRNA and in turn enhanced downstream SCD1 translation, a central lipogenic enzyme for the synthesis of MUFA that can inhibit autophagy by regulating lipid peroxidation and mTOR, providing the novel insight into the regulation of SNORD88C in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , ARN Ribosómico 28S/genética , ARN Ribosómico 28S/metabolismo , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Metilación , Carcinoma de Pulmón de Células no Pequeñas/genética , Secuencia de Bases , Neoplasias Pulmonares/genética , Autofagia/genética , Estearoil-CoA Desaturasa
17.
BMC Cancer ; 22(1): 1351, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36564758

RESUMEN

BACKGROUND: Glioma-initiating cells (GICs) are the source of glioma cells that can self-renew, have pluripotency, and are treatment-resistant, so are the starting point for relapse and eventual death despite multimodality therapy. L-[methyl-11C] methionine PET has observed high accumulation at the time of recurrence, it is important to understand the mechanism of tumor cell activation caused by the reorganization of methionine metabolism.  METHODS: We cultured cells in methionine-deprived culture medium for comprehensive analysis. Based on the obtained results, the possible target molecules were chemically inhibited and the respective markers were analyzed. RESULTS: Methionine depletion markedly decreased proliferation and increased cell death of GICs. Decreased S-adenosyl-methionine, which is synthesized intracellularly by catalyzed by methionine adenosyltransferase using methionine, triggered the following: (i) global DNA demethylation, (ii) hyper-methylation of signaling pathways regulating pluripotency of stem cells, (iii) decreased expression of the core-genes and pluripotent markers of stem cells including FOXM1, SOX2, SOX4, PROM1, and OLIG2, (iv) decreased cholesterol synthesis and increased excretion mainly through decreased SREBF2, and (v) down-regulation of the large subunit of ribosomal protein configured 28S and ACA43, small nucleolar RNA guiding the pseudouridylation of 28S rRNA, which is essential for translation. In addition, inhibition of cholesterol synthesis with statin resulted in a phenotype similar to that of methionine depletion and decreases in stem cell markers and small nucleolar RNA ACA43. Moreover, suppression of FOXM1 decreased stem cell markers such as SOX4 and PROM1. The gene expression profile for cholesterol production was obtained from the Ivy Glioblastoma Atlas Project database and compared between tumor cells with relatively low methionine levels in areas of pseudopalisading arrangement around necrosis and tumor cells in the infiltrating region, showing that cells in the infiltrating region have higher capacity to produce cholesterol. CONCLUSIONS: Methionine metabolism is closely related with self-renewal, pluripotency, and cell death in GICs through modification of cholesterol biosynthesis, especially in the SREBF2-FOXM1 and ACA43 axis with modification of rRNA.


Asunto(s)
Glioma , Metionina , Humanos , Metionina/farmacología , Metionina/metabolismo , ARN Nucleolar Pequeño/metabolismo , Células Madre Neoplásicas/metabolismo , Recurrencia Local de Neoplasia/patología , Glioma/patología , Muerte Celular , Racemetionina/metabolismo , Colesterol/metabolismo , Factores de Transcripción SOXC
18.
J Transl Med ; 20(1): 618, 2022 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-36566215

RESUMEN

BACKGROUND: Small nucleolar RNAs (snoRNAs) are dysregulated in many cancers, although their exact role in tumor genesis and progression remains unclear. METHODS: The expression profiles of snoRNAs in endometrial cancer (EC) tissues were analyzed using data from The Cancer Genome Atlas, and SNORD104 was identified as an upregulated snoRNA in EC. The tumorigenic role of SNORD104 in EC was established in CCK8, colony formation, EdU, apoptosis, Transwell, and in vivo xenograft experiments. The molecular mechanisms of SNORD104 were analyzed by RNA immunoprecipitation (RIP), Nm-seq, RTL-P assay, RNA stability assay, qRT-PCR, and western blotting. RESULTS: Antisense oligonucleotide (ASO)-mediated knockdown of SNORD104 in Ishikawa cells significantly inhibited their proliferation, colony formation ability, migration, and invasion in vitro and increased apoptosis. On the other hand, overexpression of SNORD104 promoted EC growth in vivo and in vitro. RIP assay showed that SNORD104 binds to the 2'-O-methyltransferase fibrillarin (FBL), and according to the results of Nm-seq and RTL-P assay, SNORD104 upregulated PARP1 (encoding poly (ADP-ribose) polymerase 1) 2'-O-methylation. The binding of FBL to PARP1 mRNA was also verified by RIP assay. Furthermore, SNORD104 expression was positively correlated with PARP1 expression in EC tissues. In the presence of actinomycin D, SNORD104 increased the stability of PARP1 mRNA and promoted its nuclear localization. Finally, silencing FBL or PARP1 in the HEC1B cells overexpressing SNORD104 inhibited their proliferative and clonal capacities and increased apoptosis rates. CONCLUSIONS: SNORD104 enhances PARP1 mRNA stability and translation in the EC cells by upregulating 2'-O-methylation and promotes tumor growth.


Asunto(s)
Neoplasias Endometriales , Estabilidad del ARN , ARN Nucleolar Pequeño , Femenino , Humanos , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Regulación Neoplásica de la Expresión Génica , Metilación , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Procesamiento Proteico-Postraduccional , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo
19.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36430145

RESUMEN

Small nucleolar RNAs (snoRNAs) are a highly expressed class of non-coding RNAs known for their role in guiding post-transcriptional modifications of ribosomal RNAs and small nuclear RNAs. Emerging studies suggest that snoRNAs are also implicated in regulating other vital cellular processes, such as pre-mRNA splicing and 3'-processing of mRNAs, and in the development of cancer and viral infections. There is an emerging body of evidence for specific snoRNA's involvement in the optimal replication of RNA viruses. In order to investigate the expression pattern of snoRNAs during influenza A viral infection, we performed RNA sequencing analysis of the A549 human cell line infected by influenza virus A/Puerto Rico/8/1934 (H1N1). We identified 66 that were upregulated and 55 that were downregulated in response to influenza A virus infection. The increased expression of most C/D-box snoRNAs was associated with elevated levels of 5'- and 3'-short RNAs derived from this snoRNA. Analysis of the poly(A)+ RNA sequencing data indicated that most of the differentially expressed snoRNAs synthesis was not correlated with the corresponding host genes expression. Furthermore, influenza A viral infection led to an imbalance in the expression of genes responsible for C/D small nucleolar ribonucleoprotein particles' biogenesis. In summary, our results indicate that the expression pattern of snoRNAs in A549 cells is significantly altered during influenza A viral infection.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Humanos , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Gripe Humana/genética , ARN Ribosómico
20.
Nucleic Acids Res ; 50(18): 10695-10716, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36161484

RESUMEN

5-Methylcytosine (m5C) is a base modification broadly found on various RNAs in the human transcriptome. In eukaryotes, m5C is catalyzed by enzymes of the NSUN family composed of seven human members (NSUN1-7). NOP2/NSUN1 has been primarily characterized in budding yeast as an essential ribosome biogenesis factor required for the deposition of m5C on the 25S ribosomal RNA (rRNA). Although human NOP2/NSUN1 has been known to be an oncogene overexpressed in several types of cancer, its functions and substrates remain poorly characterized. Here, we used a miCLIP-seq approach to identify human NOP2/NSUN1 RNA substrates. Our analysis revealed that NOP2/NSUN1 catalyzes the deposition of m5C at position 4447 on the 28S rRNA. We also find that NOP2/NSUN1 binds to the 5'ETS region of the pre-rRNA transcript and regulates pre-rRNA processing through non-catalytic complex formation with box C/D snoRNAs. We provide evidence that NOP2/NSUN1 facilitates the recruitment of U3 and U8 snoRNAs to pre-90S ribosomal particles and their stable assembly into snoRNP complexes. Remarkably, expression of both WT and catalytically inactive NOP2/NSUN1 in knockdown background rescues the rRNA processing defects and the stable assembly of box C/D snoRNP complexes, suggesting that NOP2/NSUN1-mediated deposition of m5C on rRNA is not required for ribosome synthesis.


Asunto(s)
Proteínas Nucleares/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas , ARNt Metiltransferasas/metabolismo , 5-Metilcitosina/metabolismo , Humanos , Precursores del ARN/metabolismo , ARN Ribosómico/metabolismo , ARN Ribosómico 28S/metabolismo , ARN Nucleolar Pequeño/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/genética , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA