Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
J Mol Biol ; 436(14): 168642, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38848866

RESUMEN

The heat shock response (HSR) is a gene regulatory program controlling expression of molecular chaperones implicated in aging, cancer, and neurodegenerative disease. Long presumed to be activated by toxic protein aggregates, recent work suggests a new functional paradigm for the HSR in yeast. Rather than toxic aggregates, adaptive biomolecular condensates comprised of orphan ribosomal proteins (oRP) and stress granule components have been shown to be physiological chaperone clients. By titrating away the chaperones Sis1 and Hsp70 from the transcription factor Hsf1, these condensates activate the HSR. Upon release from Hsp70, Hsf1 forms spatially distinct transcriptional condensates that drive high expression of HSR genes. In this manner, the negative feedback loop controlling HSR activity - in which Hsf1 induces Hsp70 expression and Hsp70 represses Hsf1 activity - is embedded in the biophysics of the system. By analogy to phosphorylation cascades that transmit information via the dynamic activity of kinases, we propose that the HSR is organized as a condensate cascade that transmits information via the localized activity of molecular chaperones.


Asunto(s)
Respuesta al Choque Térmico , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Condensados Biomoleculares/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , Factores de Transcripción del Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico/genética , Fosforilación
2.
Mol Cell Biol ; 44(5): 165-177, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758542

RESUMEN

Systemic amyloid A (AA) amyloidosis, which is considered the second most common form of systemic amyloidosis usually takes place several years prior to the occurrence of chronic inflammation, generally involving the kidney. Activated HSF1, which alleviated unfolded protein response (UPR) or enhanced HSR, is the potential therapeutic target of many diseases. However, the effect of HSF1 on AA amyloidosis remains unclear. This study focused on evaluating effect of HSF1 on AA amyloidosis based on HSF1 knockout mice. As a result, aggravated amyloid deposits and renal dysfunction have been found in HSF1 knockout mice. In progressive AA amyloidosis, HSF1 deficiency enhances serum amyloid A production might to lead to severe AA amyloid deposition in mice, which may be related to deactivated unfolded protein response as well as enhanced inflammation. Thus, HSF1 plays a significant role on UPR related pathway impacting AA amyloid deposition, which can mitigate amyloidogenic proteins from aggregation pathologically and is the possible way for intervening with the pathology of systemic amyloid disorder. In conclusion, HSF1 could not only serve as a new target for AA amyloidosis treatment in the future, but HSF1 knockout mice also can be considered as a valuable novel animal model for renal AA amyloidosis.


Asunto(s)
Amiloidosis , Factores de Transcripción del Choque Térmico , Riñón , Ratones Noqueados , Respuesta de Proteína Desplegada , Animales , Amiloidosis/metabolismo , Amiloidosis/genética , Amiloidosis/patología , Factores de Transcripción del Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico/genética , Ratones , Riñón/patología , Riñón/metabolismo , Proteína Amiloide A Sérica/metabolismo , Proteína Amiloide A Sérica/genética , Modelos Animales de Enfermedad , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Enfermedades Renales/genética , Enfermedades Renales/etiología , Ratones Endogámicos C57BL
3.
Plant Physiol Biochem ; 212: 108743, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38788295

RESUMEN

Zucchini squashes are cold-sensitive and vulnerable to chilling injury (CI) resulting from reactive oxygen species (ROS) and hot water (HW) immersing effectively reduce CI symptoms during cold storage. However, mechanism involved in reduced ROS due to HW treatment has not been characterized well. In this study, tender green zucchini fruit were treated with HW for 15 min at 45 ± 1 °C and stored for 15 d at 4 ± 1 °C and above 90 % relative humidity. Results showed substantial reduction in CI index, electrolyte leakage, malonaldehyde (MDA) contents and ROS accumulation along with increased activity of ROS-scavenging enzymes due to HW treatment. To gain insight into the molecular mechanism involved in antioxidant defense system, transcriptomic analysis revealed that heat shock factors (HSF) accumulated due to HW treatment regulated the ROS pathway during cold stress. CpHSFA4a was one of the highly expressed transcription factors (TF) due to HW treatment that regulated the transcription of ROS enzymes related genes. CpHSFA4a bind actively with heat shock element (HSE) in promoter regions of CpSOD, CpCAT, CpAPX1, CpAPX2, and CpAPX3, activated and increased the expression of these genes. In conclusion, HW treatment alleviated the CI by maintaining ROS homeostasis through CpHSFA4a mediated ROS pathway in zucchini squashes during cold storage.


Asunto(s)
Antioxidantes , Frutas , Proteínas de Plantas , Especies Reactivas de Oxígeno , Antioxidantes/metabolismo , Frutas/metabolismo , Frutas/genética , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Frío , Agua/metabolismo , Regulación de la Expresión Génica de las Plantas , Cucurbita/genética , Cucurbita/metabolismo , Calor , Almacenamiento de Alimentos , Factores de Transcripción del Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico/genética
4.
Biochemistry ; 63(10): 1307-1321, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38688031

RESUMEN

In this study, we investigated the trimerization mechanism and structure of heat shock factor 1 (HSF1) using western blotting, tryptophan (Trp) fluorescence spectroscopy, and molecular modeling. First, we examined the DNA-binding domains of human (Homo sapiens), goldfish (Carassius auratus), and walleye pollock (Gadus chalcogrammus) HSF1s by mutating key residues (36 and 103) that are thought to directly affect trimer formation. Human, goldfish, and walleye pollock HSF1s contain cysteine at residue 36 but cysteine (C), tyrosine (Y), and phenylalanine (F), respectively, at residue 103. The optimal trimerization temperatures for the wild-type HSF1s of each species were found to be 42, 37, and 20 °C, respectively. Interestingly, a mutation experiment revealed that trimerization occurred at 42 °C when residue 103 was cysteine, at 37 °C when it was tyrosine, and at 20 °C when it was phenylalanine, regardless of the species. In addition, it was confirmed that when residue 103 of the three species was mutated to alanine, trimerization did not occur. This suggests that in addition to trimerization via disulfide bond formation between the cysteine residues in human HSF1, trimerization can also occur via the formation of a different type of bond between cysteine and aromatic ring residues such as tyrosine and phenylalanine. We also confirmed that at least one cysteine is required for the trimerization of HSF1s, regardless of its position (residue 36 or 103). Additionally, it was shown that the trimer formation temperature is related to growth and survival in fish.


Asunto(s)
Aminoácidos Aromáticos , Cisteína , Factores de Transcripción del Choque Térmico , Factores de Transcripción del Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico/química , Factores de Transcripción del Choque Térmico/genética , Cisteína/química , Cisteína/metabolismo , Humanos , Animales , Aminoácidos Aromáticos/metabolismo , Aminoácidos Aromáticos/química , Multimerización de Proteína , Respuesta al Choque Térmico , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Carpa Dorada/metabolismo , Modelos Moleculares , Dominios Proteicos
5.
Sci Rep ; 14(1): 8241, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589452

RESUMEN

Female breast cancer is the most diagnosed cancer worldwide. Triple negative breast cancer (TNBC) is the most aggressive type and there is no existing endocrine or targeted therapy. Modulated electro-hyperthermia (mEHT) is a non-invasive complementary cancer therapy using an electromagnetic field generated by amplitude modulated 13.56 MHz frequency that induces tumor cell destruction. However, we have demonstrated a strong induction of the heat shock response (HSR) by mEHT, which can result in thermotolerance. We hypothesized that inhibition of the heat shock factor 1 (HSF1) can synergize with mEHT and enhance tumor cell-killing. Thus, we either knocked down the HSF1 gene with a CRISPR/Cas9 lentiviral construct or inhibited HSF1 with a specific small molecule inhibitor: KRIBB11 in vivo. Wild type or HSF1-knockdown 4T1 TNBC cells were inoculated into the mammary gland's fat pad of BALB/c mice. Four mEHT treatments were performed every second day and the tumor growth was followed by ultrasound and caliper. KRIBB11 was administrated intraperitoneally at 50 mg/kg daily for 8 days. HSF1 and Hsp70 expression were assessed. HSF1 knockdown sensitized transduced cancer cells to mEHT and reduced tumor growth. HSF1 mRNA expression was significantly reduced in the KO group when compared to the empty vector group, and consequently mEHT-induced Hsp70 mRNA upregulation diminished in the KO group. Immunohistochemistry (IHC) confirmed the inhibition of Hsp70 upregulation in mEHT HSF1-KO group. Demonstrating the translational potential of HSF1 inhibition, combined therapy of mEHT with KRIBB11 significantly reduced tumor mass compared to either monotherapy. Inhibition of Hsp70 upregulation by mEHT was also supported by qPCR and IHC. In conclusion, we suggest that mEHT-therapy combined with HSF1 inhibition can be a possible new strategy of TNBC treatment with great translational potential.


Asunto(s)
Aminopiridinas , Hipertermia Inducida , Indazoles , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Ratones , Femenino , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/terapia , Línea Celular Tumoral , Modelos Animales de Enfermedad , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Respuesta al Choque Térmico , ARN Mensajero , Factores de Transcripción del Choque Térmico/genética
6.
Cell Stress Chaperones ; 29(3): 437-439, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641046

RESUMEN

The heat shock transcription factors heat shock transcription factor 1 and Hsf2 have been studied for many years, mainly in the context of stress response and in malignant cells. Their physiological function in nonmalignant human cells under nonstress conditions is still largely unknown. To approach this important issue, Joutsen et al. present immunohistochemical staining data on Hsf1 and Hsf2 in 80 nonpathological human tissue samples. The wealth of these data elicits many interesting questions that will spur many future research projects.


Asunto(s)
Factores de Transcripción del Choque Térmico , Inmunohistoquímica , Humanos , Factores de Transcripción del Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico/genética , Inmunohistoquímica/métodos , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Choque Térmico/metabolismo
7.
Front Biosci (Landmark Ed) ; 29(2): 53, 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38420805

RESUMEN

BACKGROUND: Recently, miRNAs are demonstrated to restrain mRNA translation through novel pattern with bind complementary sites in the coding sequence (CDS). Heat Shock Transcription Factor 4 (HSF4) has been newly described as a tumor-associated transcription factor. Therefore, the present study intends to explore miRNAs that bind CDS region of HSF4, and identify the function of their interactions in the malignant biological behavior of colorectal cancer (CRC). METHODS: Prognostic value of HSF4 and correlation between HSF4 and MACC1 expression were estimated via bioinformatics with the Cancer Genome Atlas (TCGA) data. HSF4 and downstream MACC1/STAT3 signaling cascade was characterized by immunoblotting. To characterize the effects of miR-330-5p and HSF4 on the malignant phenotype of CRC cells by functional experiments. The binding activity of miR-330-5p to coding sequence (CDS) of HSF4 was identified using DIANA-microT-CDS algorithm and dual-luciferase reporter assay. RESULTS: HSF4 was aberrantly overexpressed and associated with poor outcomes of CRC patients. Overexpression of HSF4 was correlated with Tumor Node Metastasis stage, and positively regulated malignant behaviors such as growth, migration, invasion of CRC cells. Moreover, miR-330-5p suppressed CRC cell growth, colony formation, migration and invasive. Interestingly, miR-330-5p recognized complementary sites within the HSF4 CDS region to reduce HSF4 expression. In rescue experiments, restoration of HSF4 expression functionally alleviated miR-330-5p-induced inhibition of cell growth, colon formation, invasion, and wound healing of CRC cells. HSF4 was associated positively with the well-known oncogenic factor MACC1 in TCGA cohort CRC samples, and knockdown of HSF4 resulted in downregulation of MACC1. In mechanism, MACC1 was suppressed upon miR-330-5p-induced downregulation of HSF4, leading to inactivation of phosphorylation of downstream STAT3. CONCLUSION: miR-330-5p suppresses tumors by directly inhibiting HSF4 to negatively modify activity of MACC1/STAT3 pathway.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Humanos , Neoplasias Colorrectales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proliferación Celular/genética , Transducción de Señal/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transactivadores/genética
8.
Autophagy ; 20(3): 659-674, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38290972

RESUMEN

Triple-negative breast cancer (TNBC) is associated with a poor prognosis and metastatic growth. TNBC cells frequently undergo macroautophagy/autophagy, contributing to tumor progression and chemotherapeutic resistance. ANXA2 (annexin A2), a potential therapeutic target for TNBC, has been reported to stimulate autophagy. In this study, we investigated the role of ANXA2 in autophagic processes in TNBC cells. TNBC patients exhibited high levels of ANXA2, which correlated with poor outcomes. ANXA2 increased LC3B-II levels following bafilomycin A1 treatment and enhanced autophagic flux in TNBC cells. Notably, ANXA2 upregulated the phosphorylation of HSF1 (heat shock transcription factor 1), resulting in the transcriptional activation of ATG7 (autophagy related 7). The mechanistic target of rapamycin kinase complex 2 (MTORC2) played an important role in ANXA2-mediated ATG7 transcription by HSF1. MTORC2 did not affect the mRNA level of ANXA2, but it was involved in the protein stability of ANXA2. HSPA (heat shock protein family A (Hsp70)) was a potential interacting protein with ANXA2, which may protect ANXA2 from lysosomal proteolysis. ANXA2 knockdown significantly increased sensitivity to doxorubicin, the first-line chemotherapeutic regimen for TNBC treatment, suggesting that the inhibition of autophagy by ANXA2 knockdown may overcome doxorubicin resistance. In a TNBC xenograft mouse model, we demonstrated that ANXA2 knockdown combined with doxorubicin administration significantly inhibited tumor growth compared to doxorubicin treatment alone, offering a promising avenue to enhance the effectiveness of chemotherapy. In summary, our study elucidated the molecular mechanism by which ANXA2 modulates autophagy, suggesting a potential therapeutic approach for TNBC treatment.Abbreviation: ATG: autophagy related; ChIP: chromatin-immunoprecipitation; HBSS: Hanks' balanced salt solution; HSF1: heat shock transcription factor 1; MTOR: mechanistic target of rapamycin kinase; TNBC: triple-negative breast cancer; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3.


Asunto(s)
Anexina A2 , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Autofagia/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Factores de Transcripción del Choque Térmico/genética , Anexina A2/genética , Línea Celular Tumoral , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Doxorrubicina , Sirolimus
9.
Plant Physiol ; 195(1): 812-831, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38270532

RESUMEN

High temperature stress (HTS) is a serious threat to plant growth and development and to crop production in the context of global warming, and plant response to HTS is largely regulated at the transcriptional level by the actions of various transcription factors (TFs). However, whether and how homeodomain-leucine zipper (HD-Zip) TFs are involved in thermotolerance are unclear. Herein, we functionally characterized a pepper (Capsicum annuum) HD-Zip I TF CaHDZ15. CaHDZ15 expression was upregulated by HTS and abscisic acid in basal thermotolerance via loss- and gain-of-function assays by virus-induced gene silencing in pepper and overexpression in Nicotiana benthamiana plants. CaHDZ15 acted positively in pepper basal thermotolerance by directly targeting and activating HEAT SHOCK FACTORA6a (HSFA6a), which further activated CaHSFA2. In addition, CaHDZ15 interacted with HEAT SHOCK PROTEIN 70-2 (CaHsp70-2) and glyceraldehyde-3-phosphate dehydrogenase1 (CaGAPC1), both of which positively affected pepper thermotolerance. CaHsp70-2 and CaGAPC1 promoted CaHDZ15 binding to the promoter of CaHSFA6a, thus enhancing its transcription. Furthermore, CaHDZ15 and CaGAPC1 were protected from 26S proteasome-mediated degradation by CaHsp70-2 via physical interaction. These results collectively indicate that CaHDZ15, modulated by the interacting partners CaGAPC1 and CaHsp70-2, promotes basal thermotolerance by directly activating the transcript of CaHSFA6a. Thus, a molecular linkage is established among CaHsp70-2, CaGAPC1, and CaHDZ15 to transcriptionally modulate CaHSFA6a in pepper thermotolerance.


Asunto(s)
Capsicum , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Termotolerancia , Factores de Transcripción , Capsicum/genética , Capsicum/fisiología , Termotolerancia/genética , Termotolerancia/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factores de Transcripción del Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico/genética , Nicotiana/genética , Nicotiana/fisiología , Plantas Modificadas Genéticamente , Respuesta al Choque Térmico/genética , Calor , Ácido Abscísico/metabolismo
10.
Cancer Res ; 84(2): 276-290, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-37890164

RESUMEN

Heat shock factor 1 (HSF1) is a stress-responsive transcription factor that promotes cancer cell malignancy. To provide a better understanding of the biological processes regulated by HSF1, here we developed an HSF1 activity signature (HAS) and found that it was negatively associated with antitumor immune cells in breast tumors. Knockdown of HSF1 decreased breast tumor size and caused an influx of several antitumor immune cells, most notably CD8+ T cells. Depletion of CD8+ T cells rescued the reduction in growth of HSF1-deficient tumors, suggesting HSF1 prevents CD8+ T-cell influx to avoid immune-mediated tumor killing. HSF1 suppressed expression of CCL5, a chemokine for CD8+ T cells, and upregulation of CCL5 upon HSF1 loss significantly contributed to the recruitment of CD8+ T cells. These findings indicate that HSF1 suppresses antitumor immune activity by reducing CCL5 to limit CD8+ T-cell homing to breast tumors and prevent immune-mediated destruction, which has implications for the lack of success of immune modulatory therapies in breast cancer. SIGNIFICANCE: The stress-responsive transcription factor HSF1 reduces CD8+ T-cell infiltration in breast tumors to prevent immune-mediated killing, indicating that cellular stress responses affect tumor-immune interactions and that targeting HSF1 could improve immunotherapies.


Asunto(s)
Neoplasias de la Mama , Proteínas de Unión al ADN , Humanos , Femenino , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Neoplasias de la Mama/patología , Factores de Transcripción del Choque Térmico/genética , Línea Celular Tumoral , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Linfocitos T CD8-positivos/metabolismo , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo
11.
Nat Commun ; 14(1): 7420, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973875

RESUMEN

Responses of cells to stimuli are increasingly discovered to involve the binding of sequence-specific transcription factors outside of known target genes. We wanted to determine to what extent the genome-wide binding and function of a transcription factor are shaped by the cell type versus the stimulus. To do so, we induced the Heat Shock Response pathway in two different cancer cell lines with two different stimuli and related the binding of its master regulator HSF1 to nascent RNA and chromatin accessibility. Here, we show that HSF1 binding patterns retain their identity between basal conditions and under different magnitudes of activation, so that common HSF1 binding is globally associated with distinct transcription outcomes. HSF1-induced increase in DNA accessibility was modest in scale, but occurred predominantly at remote genomic sites. Apart from regulating transcription at existing elements including promoters and enhancers, HSF1 binding amplified during responses to stimuli may engage inactive chromatin.


Asunto(s)
Proteínas de Unión al ADN , Neoplasias , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Factores de Transcripción/metabolismo , Respuesta al Choque Térmico/genética , Cromatina/genética , Neoplasias/genética
12.
Ecotoxicol Environ Saf ; 266: 115571, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37837696

RESUMEN

BACKGROUND: Cadmium toxicity has been associated with disruption of protein homeostasis by interfering with protein folding processes. Heat shock factor 1 (HSF1) coordinates the rapid and extensive cellular response to maintain proteomic balance facing the challenges from many environmental stressors. Thus, we suspect that HSF1 may shield cells from cadmium toxicity by conserving proteome integrity. RESULTS: Here, we demonstrate that cadmium, a highly poisonous metal, induces aggregation of cytosolic proteins in human cells, which disrupts protein homeostasis and activates HSF1. Cadmium exposure increases HSF1's phosphorylation, nuclear translocation and DNA bindings. Aside from this, HSF1 goes through liquid-liquid phase separation to form small nuclear condensates upon cadmium exposure. A specific regulatory domain of HSF1 is critical for HSF1's phase separation capability. Most importantly, human cells with impaired HSF1 are sensitized to cadmium, however, cells with overexpressed HSF1 are protected from cadmium toxicity. Overexpression of HSF1 in human cells reduces protein aggregates, amyloid fibrils and DNA damages to antagonize cadmium toxicity. CONCLUSIONS: HSF1 protects cells from cadmium toxicity by governing the integrity of both proteome and genome. Similar mechanisms may enable HSF1 to alleviate cellular toxicity caused by other heavy metals. HSF1's role in cadmium exposure may provide important insights into the toxic effects of heavy metals on human cells and body organs, allowing us to better manage heavy metal poisoning.


Asunto(s)
Cadmio , Proteínas de Unión al ADN , Humanos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Cadmio/toxicidad , Cadmio/metabolismo , Proteoma/metabolismo , Proteómica
13.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37628861

RESUMEN

Heat shock transcription factors (HSFs) are important regulatory factors in plant stress responses to various biotic and abiotic stresses and play important roles in growth and development. The HSF gene family has been systematically identified and analyzed in many plants but it is not in the tetraploid alfalfa genome. We detected 104 HSF genes (MsHSFs) in the tetraploid alfalfa genome ("Xinjiangdaye" reference genome) and classified them into three subgroups: 68 in HSFA, 35 in HSFB and 1 in HSFC subgroups. Basic bioinformatics analysis, including genome location, protein sequence length, protein molecular weight and conserved motif identification, was conducted. Gene expression analysis revealed tissue-specific expression for 13 MsHSFs and tissue-wide expression for 28 MsHSFs. Based on transcriptomic data analysis, 21, 11 and 27 MsHSFs responded to drought stress, cold stress and salt stress, respectively, with seven responding to all three. According to RT-PCR, MsHSF27/33 expression gradually increased with cold, salt and drought stress condition duration; MsHSF6 expression increased over time under salt and drought stress conditions but decreased under cold stress. Our results provide key information for further functional analysis of MsHSFs and for genetic improvement of stress resistance in alfalfa.


Asunto(s)
Medicago sativa , Tetraploidía , Factores de Transcripción del Choque Térmico/genética , Medicago sativa/genética , Respuesta al Choque por Frío/genética , Estrés Salino , Interleucina-6
14.
Methods Mol Biol ; 2693: 81-94, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37540428

RESUMEN

Mammalian heat shock factor HSF1 transcriptional activity is controlled by a multitude of phosphorylations that occur under physiological conditions or following exposure of cells to a variety of stresses. One set of HSF1 phosphorylation is on serine 303 and serine 307 (S303/S307). These HSF1 phosphorylation sites are known to repress its transcriptional activity. Here, we describe a knock-in mouse model where these two serine residues were replaced by alanine residues and have determined the impact of these mutations on cellular proliferation and drug resistance. Our previous study using this mouse model indicated the susceptibility of the mutant mice to become obese with age due to an increase in basal levels of heat shock proteins (HSPs) and chronic inflammation. Since HSF1 transcriptional activity is increased in many tumor types, this mouse model may be a useful tool for studies related to cellular transformation and cancer.


Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción , Ratones , Animales , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Fosforilación , Resistencia a Medicamentos , Proliferación Celular , Serina/metabolismo , Mamíferos/metabolismo
15.
Cell Death Dis ; 14(8): 535, 2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37598177

RESUMEN

Hyperthermic intraperitoneal administration of chemotherapy (HIPEC) increases local drug concentrations and reduces systemic side effects associated with prolonged adjuvant intraperitoneal exposure in patients affected by either peritoneal malignancies or metastatic diseases originating from gastric, colon, kidney, and ovarian primary tumors. Mechanistically, the anticancer effects of HIPEC have been poorly explored. Herein we documented that HIPEC treatment promoted miR-145-5p expression paired with a significant downregulation of its oncogenic target genes c-MYC, EGFR, OCT4, and MUC1 in a pilot cohort of patients with ovarian peritoneal metastatic lesions. RNA sequencing analyses of ovarian peritoneal metastatic nodules from HIPEC treated patients unveils HSF-1 as a transcriptional regulator factor of miR-145-5p expression. Notably, either depletion of HSF-1 expression or chemical inhibition of its transcriptional activity impaired miR-145-5p tumor suppressor activity and the response to cisplatin in ovarian cancer cell lines incubated at 42 °C. In aggregate, our findings highlight a novel transcriptional network involving HSF-1, miR145-5p, MYC, EGFR, MUC1, and OCT4 whose proper activity contributes to HIPEC anticancer efficacy in the treatment of ovarian metastatic peritoneal lesions.


Asunto(s)
MicroARNs , Neoplasias Ováricas , Humanos , Femenino , Quimioterapia Intraperitoneal Hipertérmica , Genes myc , Factores de Transcripción del Choque Térmico/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Factores de Transcripción/genética , Línea Celular , Receptores ErbB , MicroARNs/genética
16.
Food Funct ; 14(13): 6172-6186, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37338809

RESUMEN

Extreme heat caused by global warming accelerated the frequency of heat stress (HS). Proteotoxic stress induced by the aggregation of misfolded proteins and metabolic stress triggered by alterations in the metabolism were observed during HS. The activation of heat shock factor 1 (Hsf1) and its interaction with adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) are critical in addressing proteotoxicity and metabolic stress in heat-stressed organisms. Previous studies have shown that L-theanine (LTA) can regulate nutrient metabolism through the AMPK pathway and can alleviate HS. Therefore, we hypothesize that LTA may help in restoring homeostasis by regulating nutrient metabolism under HS. Here, we investigated the effects of LTA on nutrient metabolism in heat-stressed rats and characterized the underlying mechanisms using RNA sequencing and metabonomics. The results showed that LTA alleviated HS-induced liver damage, promoted body weight gain, decreased serum cortisol and enhanced the total protein content. Besides, it regulated the expression of genes related to carbohydrate, lipid and amino acid metabolism and altered metabolite levels. Moreover, LTA inhibited the expression of Hsf1 and heat shock protein 70 (Hsp70), promoted AMPK phosphorylation and the expression of glucose-6-phosphatase catalytic subunit 1 (G6pc), and inhibited the phosphorylation of acetyl-CoA carboxylase 1 (ACC1) in heat-stressed rats. Mechanistically, LTA alleviated HS-induced proteotoxic stress by acting on Hsf1/Hsp70; simultaneously, it promoted AMPK phosphorylation by suppressing Hsf1 expression, which in turn inhibited fatty acid synthesis and hepatic gluconeogenesis, thus alleviating HS-induced metabolic stress. These results suggest that LTA regulates nutrient metabolism through Hsf1/AMPK and alleviates HS-induced proteotoxicity via Hsf1/Hsp70.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Metabolismo de los Lípidos , Ratas , Animales , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Respuesta al Choque Térmico , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Adenosina Monofosfato , Carbohidratos , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo
17.
Theranostics ; 13(7): 2281-2300, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153737

RESUMEN

Heat Shock Factor 1 (HSF1) is a master regulator of heat shock responsive signaling. In addition to playing critical roles in cellular heat shock response, emerging evidence suggests that HSF1 also regulates a non-heat shock responsive transcriptional network to handle metabolic, chemical, and genetic stress. The function of HSF1 in cellular transformation and cancer development has been extensively studied in recent years. Due to important roles for HSF1 for coping with various stressful cellular states, research on HSF1 has been very active. New functions and molecular mechanisms underlying these functions have been continuously discovered, providing new targets for novel cancer treatment strategies. In this article, we review the essential roles and mechanisms of HSF1 action in cancer cells, focusing more on recently discovered functions and their underlying mechanisms to reflect the new advances in cancer biology. In addition, we emphasize new advances with regard to HSF1 inhibitors for cancer drug development.


Asunto(s)
Neoplasias , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Transformación Celular Neoplásica , Respuesta al Choque Térmico
18.
Cell Rep ; 42(6): 112557, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37224019

RESUMEN

Despite its pivotal roles in biology, how the transcriptional activity of c-MYC is tuned quantitatively remains poorly defined. Here, we show that heat shock factor 1 (HSF1), the master transcriptional regulator of the heat shock response, acts as a prime modifier of the c-MYC-mediated transcription. HSF1 deficiency diminishes c-MYC DNA binding and dampens its transcriptional activity genome wide. Mechanistically, c-MYC, MAX, and HSF1 assemble into a transcription factor complex on genomic DNAs, and surprisingly, the DNA binding of HSF1 is dispensable. Instead, HSF1 physically recruits the histone acetyltransferase general control nonderepressible 5 (GCN5), promoting histone acetylation and augmenting c-MYC transcriptional activity. Thus, we find that HSF1 specifically potentiates the c-MYC-mediated transcription, discrete from its canonical role in countering proteotoxic stress. Importantly, this mechanism of action engenders two distinct c-MYC activation states, primary and advanced, which may be important to accommodate diverse physiological and pathological conditions.


Asunto(s)
Proteínas de Unión al ADN , Respuesta al Choque Térmico , Factores de Transcripción , ADN , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Respuesta al Choque Térmico/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción/metabolismo , Humanos , Línea Celular Tumoral
19.
Med Oncol ; 40(6): 172, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37165174

RESUMEN

Patients with adult T-cell leukemia (ATL), which is caused by human T-cell leukemia virus type 1 (HTLV-1), show poor prognosis because of drug resistance. Heat shock protein (HSP) 90 is reportedly essential for ATL cell survival as it regulates important signaling pathways, thereby making HSP90 inhibitors new therapeutic candidates for ATL. However, HSP90 inhibition increases the expression of other HSPs, suggesting that HSPs may contribute to drug resistance. The heat shock factor 1 (HSF1) transcription factor is the primary regulator of the expression of HSPs. Furthermore, targeting HSF1 disrupts the HSP90 chaperone function. Herein, we demonstrated that HSF1 is overexpressed in HTLV-1-infected T cells. HSF1 knockdown inhibited the proliferation of HTLV-1-infected T cells. HSF1 inhibitor KRIBB11 reduced the expression and phosphorylation of HSF1, downregulated HSP70 and HSP27 expression, and suppressed Akt, nuclear factor-κB, and AP-1 signals. KRIBB11 treatment induced DNA damage, upregulated p53 and p21, and reduced the expression of cyclin D2/E, CDK2/4, c-Myc, MDM2, and ß-catenin, thereby preventing retinoblastoma protein phosphorylation and inhibiting G1-S cell cycle progression. KRIBB11 also induced caspase-mediated apoptosis concomitant with the suppression of Bcl-xL, Mcl-1, XIAP, c-IAP1/2, and survivin expression. KRIBB11 inhibited HSP70 and HSP90 upregulation through treatment with AUY922, an HSP90 inhibitor, and enhanced the cytotoxic effect of AUY922, suggesting a salvage role of HSF1-dependent HSP induction in response to drug treatment. Finally, treatment of mice with KRIBB11 reduced ATL tumor growth. Therefore, this study provides a strong rationale to target HSF1 and validates the anti-ATL activity of KRIBB11.


Asunto(s)
Antineoplásicos , Leucemia-Linfoma de Células T del Adulto , Adulto , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción del Choque Térmico/genética , Respuesta al Choque Térmico , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Leucemia-Linfoma de Células T del Adulto/tratamiento farmacológico , Leucemia-Linfoma de Células T del Adulto/genética
20.
Nat Commun ; 14(1): 2498, 2023 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120615

RESUMEN

The survival of malignant tumors is highly dependent on their intrinsic self-defense pathways such as heat shock protein (HSP) during cancer therapy. However, precisely dismantling self-defenses to amplify antitumor potency remains unexplored. Herein, we demonstrate that nanoparticle-mediated transient receptor potential vanilloid member 1 (TRPV1) channel blockade potentiates thermo-immunotherapy via suppressing heat shock factor 1 (HSF1)-mediated dual self-defense pathways. TRPV1 blockade inhibits hyperthermia-induced calcium influx and subsequent nuclear translocation of HSF1, which selectively suppresses stressfully overexpressed HSP70 for enhancing thermotherapeutic efficacy against a variety of primary, metastatic and recurrent tumor models. Particularly, the suppression of HSF1 translocation further restrains the transforming growth factor ß (TGFß) pathway to degrade the tumor stroma, which improves the infiltration of antitumor therapeutics (e.g. anti-PD-L1 antibody) and immune cells into highly fibrotic and immunosuppressive pancreatic cancers. As a result, TRPV1 blockade retrieves thermo-immunotherapy with tumor-eradicable and immune memory effects. The nanoparticle-mediated TRPV1 blockade represents as an effective approach to dismantle self-defenses for potent cancer therapy.


Asunto(s)
Antineoplásicos , Hipertermia Inducida , Canales de Potencial de Receptor Transitorio , Humanos , Recurrencia Local de Neoplasia , Respuesta al Choque Térmico , Inmunoterapia , Factores de Transcripción del Choque Térmico/genética , Canales Catiónicos TRPV/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA