Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.905
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Gene Med ; 26(7): e3710, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38967229

RESUMEN

BACKGROUND: Patients with non-small cell lung cancer (NSCLC) are susceptible to coronavirus disease-2019 (COVID-19), but current treatments are limited. Icariside II (IS), a flavonoid compound derived from the plant epimedin, showed anti-cancer,anti-inflammation and immunoregulation effects. The present study aimed to evaluate the possible effect and underlying mechanisms of IS on NSCLC patients with COVID-19 (NSCLC/COVID-19). METHODS: NSCLC/COVID-19 targets were defined as the common targets of NSCLC (collected from The Cancer Genome Atlas database) and COVID-19 targets (collected from disease database of Genecards, OMIM, and NCBI). The correlations of NSCLC/COVID-19 targets and survival rates in patients with NSCLC were analyzed using the survival R package. Prognostic analyses were performed using univariate and multivariate Cox proportional hazards regression models. Furthermore, the targets in IS treatment of NSCLC/COVID-19 were defined as the overlapping targets of IS (predicted from drug database of TMSCP, HERBs, SwissTarget Prediction) and NSCLC/COVID-19 targets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of these treatment targets were performed aiming to understand the biological process, cellular component, molecular function and signaling pathway. The hub targets were analyzed by a protein-protein interaction network and the binding capacity with IS was characterized by molecular docking. RESULTS: The hub targets for IS in the treatment of NSCLC/COVID-19 includes F2, SELE, MMP1, MMP2, AGTR1 and AGTR2, and the molecular docking results showed that the above target proteins had a good binding degree to IS. Network pharmacology showed that IS might affect the leucocytes migration, inflammation response and active oxygen species metabolic process, as well as regulate the interleukin-17, tumor necrosus factor and hypoxia-inducible factor-1 signaling pathway in NSCLC/COVID-19. CONCLUSIONS: IS may enhance the therapeutic efficacy of current clinical anti-inflammatory and anti-cancer therapy to benefit patients with NSCLC combined with COVID-19.


Asunto(s)
COVID-19 , Carcinoma de Pulmón de Células no Pequeñas , Flavonoides , Neoplasias Pulmonares , Simulación del Acoplamiento Molecular , Farmacología en Red , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , COVID-19/virología , COVID-19/metabolismo , Flavonoides/uso terapéutico , Flavonoides/química , Flavonoides/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , Tratamiento Farmacológico de COVID-19 , Mapas de Interacción de Proteínas/efectos de los fármacos , Pronóstico
2.
J Biotechnol ; 391: 106-116, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38871028

RESUMEN

Icaritin, a hydrolysate from total flavonoids of Epimedii (TFE), which has better anti-hepatoma activity than its glycosylated form. In this work, immobilized enzymes 4LP-Tpebgl3@Na-Y and DtRha@ES-107 were used to hydrolyze TFE to prepare icaritin. Five different hydrophobic deep eutectic solvents (HDES) were prepared and the most ideal HDES was successfully selected, which was composed of dodecyl alcohol and thymol with the molar ratio of 2:1. The relative enzyme activity of 4LP-Tpebgl3@Na-Y and DtRha@ES-107 was about 102.4 % and 112.5 %, respectively. In addition, the thermal and binding stability of 4LP-Tpebgl3@Na-Y and DtRha@ES-107 in HDES was not affected negatively. In the biphasic system composed of 50 % (v/v) HDES and Na2HPO4-citric acid buffer (50 mM, pH 5.5), 4LP-Tpebgl3@Na-Y (1.0 U/mL) and TFE (1 g/L) were reacted at 80 °C for 1 h, and then reacted with DtRha@ES-107 (20 U/mL) at 80 °C for 2 h. Finally, TFE was completely converted to 301.8 mg/L icaritin (0.82 mM). After 10 cycles, 4LP-Tpebgl3@Na-Y/DtRha@ES-107 still maintained 84.1 % original activity. In this study, we developed an efficient methodology for icaritin preparation through the integration of enzymatic catalysis and adsorption separation, presenting a viable approach for large-scale, cost-effective production of icaritin.


Asunto(s)
Biotransformación , Enzimas Inmovilizadas , Flavonoides , Interacciones Hidrofóbicas e Hidrofílicas , Flavonoides/metabolismo , Flavonoides/química , Enzimas Inmovilizadas/metabolismo , Enzimas Inmovilizadas/química , Disolventes Eutécticos Profundos/química , Disolventes Eutécticos Profundos/metabolismo , Epimedium/química , Epimedium/metabolismo , Hidrólisis , Solventes/química
3.
Mar Drugs ; 22(6)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38921551

RESUMEN

In this research, the chemical compositions of various extracts obtained from Ulva lactuca, a type of green seaweed collected from the Nador lagoon in the northern region of Morocco, were compared. Their antioxidant and anti-diabetic properties were also studied. Using GC-MS technology, the fatty acid content of the samples was analyzed, revealing that palmitic acid, eicosenoic acid, and linoleic acid were the most abundant unsaturated fatty acids present in all samples. The HPLC analysis indicated that sinapic acid, naringin, rutin, quercetin, cinnamic acid, salicylic acid, apigenin, flavone, and flavanone were the most prevalent phenolic compounds. The aqueous extract obtained by maceration showed high levels of polyphenols and flavonoids, with values of 379.67 ± 0.09 mg GAE/g and 212.11 ± 0.11 mg QE/g, respectively. This extract also exhibited an impressive ability to scavenge DPPH radicals, as indicated by its IC50 value of 0.095 ± 0.12 mg/mL. Additionally, the methanolic extract obtained using the Soxhlet method demonstrated antioxidant properties by preventing ß-carotene discoloration, with an IC50 of 0.087 ± 0.14 mg/mL. Results from in-vitro studies showed that extracts from U. lactuca were able to significantly inhibit the enzymatic activity of α-amylase and α-glucosidase. Among the various extracts, methanolic extract (S) has been identified as the most potent inhibitor, exhibiting a statistically similar effect to that of acarbose. Furthermore, molecular docking models were used to evaluate the interaction between the primary phytochemicals found in these extracts and the human pancreatic α-amylase and α-glucosidase enzymes. These findings suggest that U. lactuca extracts contain bioactive substances that are capable of reducing enzyme activity more effectively than the commercially available drug, acarbose.


Asunto(s)
Antioxidantes , Hipoglucemiantes , Fitoquímicos , Extractos Vegetales , Ulva , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Antioxidantes/farmacología , Antioxidantes/química , Ulva/química , Fitoquímicos/farmacología , Fitoquímicos/química , Fitoquímicos/análisis , Extractos Vegetales/farmacología , Extractos Vegetales/química , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , alfa-Amilasas/antagonistas & inhibidores , alfa-Glucosidasas/metabolismo , Simulación del Acoplamiento Molecular , Marruecos , Humanos , Cromatografía Líquida de Alta Presión , Polifenoles/farmacología , Polifenoles/química , Flavonoides/farmacología , Flavonoides/química , Algas Comestibles
4.
J Org Chem ; 89(12): 8676-8690, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38861646

RESUMEN

A comprehensive quantum mechanical investigation delved into the antioxidative activity of galangin (Glg). Thermochemical and kinetic data were used to assess antiradical, chelating, and renewal potential under physiological conditions. A brief comparison with reference antioxidants and other flavonoids characterized Glg as a moderate antioxidative agent. The substance showed significantly lower performance in lipid compared to aqueous solvent─the reaction rates for scavenging •OOH in both media were established at 3.77 × 103 M-1 s-1 and 6.21 × 104 M-1 s-1, respectively, accounting for the molar fraction of both interacting molecules at the given pH. The impact of pH value on the kinetics was assessed. Although efficient at chelating Cu(II) ions, the formed complexes can still undergo the Fenton reaction. On the other hand, they persistently scavenge •OH in statu nascendi. The flavonoid effectively repairs oxidatively damaged biomolecules except model lipid acids. All Glg radicals are readily restored by physiologically prevailing O2•-. Given this, the polyphenol is expected to participate in antiradical and regenerating activities multiple times, amplifying its antioxidative potential.


Asunto(s)
Antioxidantes , Teoría Funcional de la Densidad , Flavonoides , Flavonoides/química , Flavonoides/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Estructura Molecular , Cinética , Concentración de Iones de Hidrógeno
5.
Artículo en Inglés | MEDLINE | ID: mdl-38917653

RESUMEN

Cortex Morin Radicis (CMR) is the dried root bark of Morus alba. L. It has a variety of effects such as antibacterial, anti-tumour, treatment of cardiovascular diseases or upper respiratory tract disease and so on. The pursuit for drugs selected from Cortex Mori Radicis having improved therapeutic efficacy necessitates increasing research on new assays for screening bioactive compounds with multi-targets. In this work, we applied immobilized ß1-AR and ß2-AR as the stationary phase in chromatographic column to screen bioactive compounds from Cortex Morin Radicis. Specific ligands of the two receptors (e.g. esmolol, metoprolol, atenolol, salbutamol, methoxyphenamine, tulobuterol and clorprenaline) were utilized to characterize the specificity and bioactivity of the columns. We used high performance affinity chromatography coupled with ESI-MS to screen targeted compounds of Cortex Morin Radicis. By zonal elution, we identified morin as a bioactive compound simultaneously binding to ß1-AR and ß2-AR. The compound exhibited the association constants of 3.10 × 104 and 2.60 × 104 M-1 on the ß1-AR and ß2-AR column. On these sites, the dissociation rate constants were calculated to be 0.131 and 0.097 s-1. Molecular docking indicated that the binding of morin to the two receptors occurred on Asp200, Asp121, and Val122 of ß1-AR, Asn312, Thr110, Asp113, Tyr316, Gly90, Phe193, Ile309, and Trp109 of ß2-AR. Likewise, mulberroside C was identified as the bioactive compound binding to ß2-AR. The association constants and dissociation rate constants were calculated to be 1.08 × 104 M-1 and 0.900 s-1. Molecular docking also indicated that mulberroside C could bind to ß2-AR receptor on its agonist site. Taking together, we demonstrated that the chromatographic strategy to identify bioactive natural products based on the ß1-AR and ß2-AR immobilization, has potential for screening bioactive compounds with multi-targets from complex matrices including traditional Chinese medicines.


Asunto(s)
Morus , Receptores Adrenérgicos beta 1 , Receptores Adrenérgicos beta 2 , Morus/química , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 1/química , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Cromatografía de Afinidad/métodos , Humanos , Cromatografía Líquida de Alta Presión/métodos , Flavonoides/análisis , Flavonoides/química
6.
Steroids ; 208: 109450, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38823755

RESUMEN

Breast cancer ranks as the most prevalent malignancy, presenting persistent therapeutic challenges encompassing issues such as drug resistance, recurrent occurrences, and metastatic progression. Therefore, there is a need for targeted drugs that are less toxic and more effective against breast cancer. Kuwanon C, an isoamylated flavonoid derived from mulberry resources, has shown promise as a potential candidate due to its strong cytotoxicity against cancer cells. The present study focused on investigating the anticancer activity of kuwanon C in two human breast cancer cell lines, MDA-MB231 and T47D cells. MTS assay results indicated a decrease in cell proliferation with increasing concentrations of kuwanon C. Furthermore, kuwanon C upregulated the expression levels of the cyclin-dependent kinase inhibitor p21 and effectively inhibited cell DNA replication and induced DNA damage. Flow cytometry confirmed that kuwanon C induced cell apoptosis and upregulated the expression levels of pro-apoptotic proteins (Bax and c-caspase3). Additionally, it stimulated the production of reactive oxygen species (ROS) in the cells. Transmission electron microscopy and Fluo-4 AM-calcium ion staining experiments provided insights into the endoplasmic reticulum (ER), revealing that kuwanon C induced ER stress. Kuwanon C upregulated the expression levels of unfolded protein response-related proteins (ATF4, GADD34, HSPA5, and DDIT3). Overall, the present findings suggested that kuwanon C exerts a potent inhibitory effect on breast cancer cell proliferation through modulating of the p21, induction of mitochondrial-mediated apoptosis, activation of ER stress and induction of DNA damage. These results position kuwanon C as a potential targeted therapeutic agent for breast cancer.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Proliferación Celular , Chaperón BiP del Retículo Endoplásmico , Humanos , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Femenino , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/farmacología , Antineoplásicos/química , Relación Dosis-Respuesta a Droga , Flavonoides/farmacología , Flavonoides/química , Transducción de Señal/efectos de los fármacos
7.
Am J Chin Med ; 52(4): 1087-1135, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38864547

RESUMEN

Sophora flavescens has been widely used in traditional Chinese medicine for over 1700 years. This plant is known for its heat-clearing, damp-drying, insecticidal, and diuretic properties. Phytochemical research has identified prenylated flavonoids as a unique class of bioactive compounds in S. flavescens. Recent pharmacological studies reveal that the prenylated flavonoids from S. flavescens (PFS) exhibit potent antitumor, anti-inflammatory, and glycolipid metabolism-regulating activities, offering significant therapeutic benefits for various diseases. However, the pharmacokinetics and toxicological profiles of PFS have not been systematically studied. Despite the diverse biological effects of prenylated flavonoid compounds against similar diseases, their structure-activity relationship is not yet fully understood. This review aims to summarize the latest findings regarding the chemical composition, drug metabolism, pharmacological properties, toxicity, and structure-activity relationship of prenylated flavonoids from S. flavescens. It seeks to highlight their potential for clinical use and suggest directions for future related studies.


Asunto(s)
Flavonoides , Prenilación , Sophora , Sophora/química , Flavonoides/química , Flavonoides/farmacología , Flavonoides/aislamiento & purificación , Humanos , Relación Estructura-Actividad , Antiinflamatorios/química , Antiinflamatorios/farmacología , Fitoquímicos/farmacología , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Animales , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Fitoterapia , Sophora flavescens
8.
Drug Discov Today ; 29(7): 104050, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38830502

RESUMEN

Flavonoids are polyphenolic compounds that have multiple benefits in treating various life-threatening diseases. Despite their diverse pharmacological activities, the market potential of flavonoids is hampered due to their poor solubility and low bioavailability after oral administration. The current review highlights the role of co-crystals and co-amorphous systems (CAMs) in enhancing the solubility, permeability, bioavailability, and therapeutic efficacy of flavonoids. It also explains the significance of flavonoid-based co-formers in the formation of co-crystals and CAMs with other APIs to improve their efficacy. Future perspectives, patented formulations, commercial medications (including their phases of clinical trials), and challenges associated with the use of flavonoid-based co-crystals and CAMs are also mentioned in the review.


Asunto(s)
Disponibilidad Biológica , Flavonoides , Solubilidad , Flavonoides/química , Flavonoides/farmacología , Humanos , Animales , Cristalización
9.
J Mass Spectrom ; 59(7): e5045, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38837562

RESUMEN

Soybean is scientifically known as Glycine max. It belongs to the Fabaceae family. It consists of a lot of bioactive phytochemicals like saponin, phenolic acid, flavonoid, sphingolipids and phytosterols. It also owns excellent immune-active effects in the physiological system. Soy and its phytochemicals have been found to have pharmacological properties that include anticancer, antioxidant, anti-hypercholesterolaemic, anti-diabetic, oestrogenic, anti-hyperlipidaemic, anti-inflammatory, anti-obesity, anti-hypertensive, anti-mutagenic, immunomodulatory, anti-osteoporotic, antiviral, hepatoprotective, antimicrobial, goitrogenic anti-skin ageing, wound healing, neuroprotective and anti-photoageing activities. Present study has been designed to set standard pharmacognostical extraction method, complexation of compounds, qualitative evaluation through phytochemical screening, identification by TLC, physicochemical properties, solubility profile, total phenolic, flavonoid content as well as analytical evaluation or characterisation like UV and FT-IR of methanolic extract of G. max. The final observations like physicochemical properties such as total ash value, LOD and pH were recorded. Phytochemical screenings show the presence of flavonoid, alkaloid, saponin, carbohydrate, tannins, protein, gums and mucilage, fixed oils and fats. The results were found significant. Further in silico studies proved creatinine and euparin to be potent wound healing agents.


Asunto(s)
Flavonoides , Glycine max , Fitoquímicos , Extractos Vegetales , Semillas , Espectrometría de Masas en Tándem , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Espectrometría de Masas en Tándem/métodos , Semillas/química , Glycine max/química , Fitoquímicos/análisis , Fitoquímicos/química , Fitoquímicos/farmacología , Flavonoides/análisis , Flavonoides/química , Flavonoides/farmacología , Metanol/química , Simulación por Computador , Fenoles/análisis , Fenoles/química , Fenoles/farmacología , Animales
10.
Sci Rep ; 14(1): 12638, 2024 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-38825591

RESUMEN

In this study, changes in bioactive compound contents and the in vitro biological activity of mixed grains, including oats, sorghum, finger millet, adzuki bean, and proso millet, with eight different blending ratios were investigated. The total phenolic compounds and flavonoid contents ranged from 14.43-16.53 mg gallic acid equivalent/g extract and 1.22-5.37 mg catechin equivalent/g extract, respectively, depending on the blending ratio. The DI-8 blend (30% oats, 30% sorghum, 15% finger millet, 15% adzuki bean, and 10% proso millet) exhibited relatively higher antioxidant and anti-diabetic effects than other blending samples. The levels of twelve amino acids and eight organic acids in the grain mixes were measured. Among the twenty metabolites, malonic acid, asparagine, oxalic acid, tartaric acid, and proline were identified as key metabolites across the blending samples. Moreover, the levels of lactic acid, oxalic acid, and malonic acid, which are positively correlated with α-glucosidase inhibition activity, were considerably higher in the DI-blending samples. The results of this study suggest that the DI-8 blend could be used as a functional ingredient as it has several bioactive compounds and biological activities, including anti-diabetic activity.


Asunto(s)
Antioxidantes , Grano Comestible , Antioxidantes/farmacología , Antioxidantes/química , Grano Comestible/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Flavonoides/análisis , Flavonoides/química , Flavonoides/farmacología , Fenoles/análisis , Extractos Vegetales/farmacología , Extractos Vegetales/química , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Aminoácidos/metabolismo , Aminoácidos/análisis
11.
Molecules ; 29(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38893465

RESUMEN

Yerba Mate drink made from dried and crushed leaves and twigs of Paraguayan holly (Ilex paraguariensis A. St.-Hil.), which is a valuable source of bioactive substances, in particular antioxidants. The available literature lacks data on changes in the content and profile of bioactive compounds such as tannins, caffeine, the phenolic acid profile of flavonoids and carotenoids, as well as total polyphenol content and antioxidant activity in Yerba Mate infusions depending on different brewing conditions, and how different brewing conditions affect the physicochemical properties of these infusions. Therefore, this study evaluated the physicochemical properties of dried and Yerba Mate infusions prepared via single and double brewing processes at 70 °C and 100 °C. The organoleptic evaluation, as well as the instrumental color measurement, showed significant changes in the total color difference (ΔE) and the L*a*b* chromatic coordinates of dried Yerba Mate samples and their infusions. Moreover, the research showed higher contents of tannins (mean 1.36 ± 0.14 g/100 g d.m.), caffeine (mean 17.79 ± 3.49 mg/g d.m.), carotenoids (mean 12.90 ± 0.44 µg/g d.m.), phenolic acids (mean 69.97 ± 7.10 mg/g d.m.), flavonoids (mean 5.47 ± 1.78 mg/g d.m.), total polyphenols (mean 55.26 ± 8.51 mg GAE/g d.m.), and antioxidant activity (mean 2031.98 ± 146.47 µM TEAC/g d.m.) in single-brewed Yerba Mate infusions compared to double-brewed (0.77 ± 0.12 g/100 g d.m., 14.28 ± 5.80 mg/g d.m., 12.67 ± 0.62 µg/g d.m., 57.75 ± 8.73 mg/g d.m., 3.64 ± 0.76 mg/g d.m., 33.44 ± 6.48 mg GAE/g d.m. and 1683.09 ± 155.34 µM TEAC/g d.m., respectively). In addition, infusions prepared at a lower temperature (70 °C) were characterized by a higher content of total polyphenols and higher antioxidant activity, in contrast to the tannin and carotenoid contents, the levels of which were higher at 100 °C than at 70 °C. Considering the high amount of bioactive ingredients, in particular antioxidants, and a wide range of health benefits, it is worth including Yerba Mate in the daily diet.


Asunto(s)
Antioxidantes , Ilex paraguariensis , Polifenoles , Ilex paraguariensis/química , Antioxidantes/química , Antioxidantes/análisis , Polifenoles/química , Polifenoles/análisis , Taninos/análisis , Taninos/química , Flavonoides/análisis , Flavonoides/química , Carotenoides/química , Carotenoides/análisis , Extractos Vegetales/química , Hojas de la Planta/química , Cafeína/análisis , Cafeína/química , Hidroxibenzoatos/química , Hidroxibenzoatos/análisis , Bebidas/análisis
12.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892186

RESUMEN

Flavonoids are an abundant class of naturally occurring compounds with broad biological activities, but their limited abundance in nature restricts their use in medicines and food additives. Here we present the synthesis and determination of the antibacterial and antioxidant activities of twenty-two structurally related flavonoids (five of which are new) by scientifically validated methods. Flavanones (FV1-FV11) had low inhibitory activity against the bacterial growth of MRSA 97-7. However, FV2 (C5,7,3',4' = OH) and FV6 (C5,7 = OH; C4' = SCH3) had excellent bacterial growth inhibitory activity against Gram-negative E. coli (MIC = 25 µg/mL for both), while Chloramphenicol (MIC = 25 µg/mL) and FV1 (C5,7,3' = OCH3; 4' = OH) showed inhibitory activity against Gram-positive L. monocytogenes (MIC = 25 µg/mL). From the flavone series (FO1-FO11), FO2 (C5,7,3',4' = OH), FO3 (C5,7,4' = OH; 3' = OCH3), and FO5 (C5,7,4' = OH) showed good inhibitory activity against Gram-positive MRSA 97-7 (MIC = 50, 12, and 50 µg/mL, respectively), with FO3 being more active than the positive control Vancomycin (MIC = 25 µg/mL). FO10 (C5,7= OH; 4' = OCH3) showed high inhibitory activity against E. coli and L. monocytogenes (MIC = 25 and 15 µg/mL, respectively). These data add significantly to our knowledge of the structural requirements to combat these human pathogens. The positions and number of hydroxyl groups were key to the antibacterial and antioxidant activities.


Asunto(s)
Antibacterianos , Antioxidantes , Flavonoides , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/síntesis química , Flavonoides/farmacología , Flavonoides/química , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/crecimiento & desarrollo , Flavanonas/farmacología , Flavanonas/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos
13.
Sci Rep ; 14(1): 13192, 2024 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851826

RESUMEN

Water eutrophication has emerged as a pressing concern for massive algal blooms, and these harmful blooms can potentially generate harmful toxins, which can detrimentally impact the aquatic environment and human health. Consequently, it is imperative to identify a safe and efficient approach to combat algal blooms to safeguard the ecological safety of water. This study aimed to investigate the procedure for extracting total flavonoids from Z. bungeanum residue and assess its antioxidant properties. The most favorable parameters for extracting total flavonoids from Z. bungeanum residue were a liquid-solid ratio (LSR) of 20 mL/g, a solvent concentration of 60%, an extraction period of 55 min, and an ultrasonic temperature of 80 °C. Meanwhile, the photosynthetic inhibitory mechanism of Z. bungeanum residue extracts against M. aeruginosa was assessed with a particular focus on the concentration-dependent toxicity effect. Z. bungeanum residue extracts damaged the oxygen-evolving complex structure, influenced energy capture and distribution, and inhibited the electron transport of PSII in M. aeruginosa. Furthermore, the enhanced capacity for ROS detoxification enables treated cells to sustain their photosynthetic activity. The findings of this study hold considerable relevance for the ecological management community and offer potential avenues for the practical utilization of resources in controlling algal blooms.


Asunto(s)
Flavonoides , Microcystis , Fotosíntesis , Zanthoxylum , Flavonoides/química , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Zanthoxylum/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Alelopatía , Floraciones de Algas Nocivas , Especies Reactivas de Oxígeno/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo
14.
Carbohydr Polym ; 340: 122316, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38858029

RESUMEN

Epimedium, a traditional Chinese medicine commonly used as a dietary supplement, contains polysaccharides and flavonoids as its main bioactive ingredients. In this study, a neutral homogeneous polysaccharide (EPSN-1) was isolated from Epimedium brevicornu Maxim. EPSN-1 was identified as a glucan with a backbone of →4)-α-D-Glcp-(1→, branched units comprised α-D-Glcp-(1→6)-α-D-Glcp-(1→, ß-D-Glcp-(1→6)-ß-D-Glcp-(1→ and α-D-Glcp-(1→ connected to the C6 position of backbone. The conformation of EPSN-1 in aqueous solution indicated its potential to form nanoparticles. This paper aims to investigate the carrier and pharmacodynamic activity of EPSN-1. The findings demonstrated that, on the one hand, EPSN-1, as a functional ingredient, may load Icariin (ICA) through non-covalent interactions, improving its biopharmaceutical properties such as solubility and stability, thereby improving its intestinal absorption. Additionally, as an effective ingredient, EPSN-1 could help maintain the balance of the intestinal environment by increasing the abundance of Parabacteroides, Lachnospiraceae UGG-001, Anaeroplasma, and Eubacterium xylanophilum group, while decreasing the abundance of Allobaculum, Blautia, and Adlercreutzia. Overall, this dual action of EPSN-1 sheds light on the potential applications of natural polysaccharides, highlighting their dual role as carriers and contributors to biological activity.


Asunto(s)
Epimedium , Flavonoides , Glucanos , Hiperplasia Prostática , Epimedium/química , Masculino , Glucanos/química , Glucanos/farmacología , Glucanos/aislamiento & purificación , Hiperplasia Prostática/tratamiento farmacológico , Flavonoides/química , Flavonoides/farmacología , Flavonoides/aislamiento & purificación , Animales , Portadores de Fármacos/química , Humanos , Microbioma Gastrointestinal/efectos de los fármacos
15.
J Food Drug Anal ; 32(2): 194-212, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38934692

RESUMEN

Investigation of utilization possibilities of natural sources has been an important area for research. Tyrosinase inhibitory activity plays a key role in food and medicine industry. Strawberry tree (Arbutus unedo), a widely distributed plant among Mediterranean countries, possess fruits and leaves with rich bioactive phytochemicals, especially polyphenolic compounds. In this study, we aimed to investigate the antityrosinase activity of the fruit and leaf extracts of the plant, and to determine the phenolic compounds that contribute to the antityrosinase activity. In this regard, we evaluated the effect of solvent composition on the extraction of phenolic compounds from A. unedo and on its antityrosinase activity using a simplex centroid design approach, and used chromatographic and LC-MS/MS techniques. The leaf extracts prepared using EtOH:water (50:50) provided higher TPC (456.39 mg GAE/g extract) and acetone:EtOH:water (33:33:33) provided higher TFC (56.15 mg QE/g extract) values than of fruit extracts. LC-MS/MS analysis revealed 23 phenolic/flavonoid compounds in leaf extracts (L1-8), and major metabolites were detected as quercitrin, quinic acid, catechin, tannic acid, isoquercitrin, gallic acid, and ellagic acid. Among the leaf extracts, L3 (aceton:water, 50:50) exhibited 72.01% tyrosinase inhibition at 500 µg/mL. After fractionation studies guided by antityrosinase activity, its subfraction L3-Fr2 exhibited 40.06% inhibition at 50 µg/mL concentration (IC50: 146 ± 7.75 µg/mL), and catechin (113.19 mg/g), tannic acid (53.14 mg/g), ellagic acid (22.14 mg/g), gallic acid (10.27 mg/g), and epicatechin gallate (8.65 mg/g) were determined as major metabolites. Its subfraction L3-Fr2-sub7 exhibited better antityrosinase activity (IC50: 206.23 ± 9.87 µg/mL), and quantitative analysis results revealed the presence of tannic acid (127.40 mg/g), gallic acid (13.96 mg/g), ellagic acid (7.66 mg/g), quercetin-3-O-glucuronide (5.06 mg/g), and quinic acid (3.2 mg/g) as major metabolites, and correlation analysis showed that ellagic acid and quinic acid were positively correlated with antityrosinase activity.


Asunto(s)
Frutas , Monofenol Monooxigenasa , Extractos Vegetales , Espectrometría de Masas en Tándem , Extractos Vegetales/química , Extractos Vegetales/farmacología , Monofenol Monooxigenasa/antagonistas & inhibidores , Frutas/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Hojas de la Planta/química , Cromatografía Liquida/métodos , Fenoles/química , Fenoles/análisis , Fenoles/farmacología , Cromatografía Líquida de Alta Presión , Anacardiaceae/química , Flavonoides/análisis , Flavonoides/farmacología , Flavonoides/química , Cromatografía Líquida con Espectrometría de Masas
16.
Molecules ; 29(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38930941

RESUMEN

BACKGROUND: Androgenetic alopecia (AGA) causes thinning hair, but poor hair quality in balding areas and damage from UV radiation have been overlooked. Plant extracts like Platycladus orientalis flavonoids (POFs) may improve hair quality in AGA. This study examines POFs' effectiveness in treating AGA-affected hair and repairing UV-induced damage. METHODS: Hair samples were analyzed using scanning electron microscopy (SEM) to examine surface characteristics, electron paramagnetic resonance (EPR) spectroscopy to measure free radicals in the hair, and spectrophotometry to assess changes in hair properties. RESULTS: POFs effectively removed hydroxyl radicals from keratinocytes and had antioxidant properties. They also reduced UV-induced damage to AGA hair by mitigating the production of melanin free radicals. Following POF treatment, the reduction in peroxidized lipid loss in AGA hair was notable at 59.72%, thereby effectively delaying the progression of hair color change. Moreover, protein loss decreased by 191.1 µ/g and tryptophan loss by 15.03%, ultimately enhancing hair's tensile strength. CONCLUSION: compared to healthy hair, hair damaged by AGA shows more pronounced signs of damage when exposed to UV radiation. POFs help protect balding hair by reducing oxidative damage and slowing down melanin degradation.


Asunto(s)
Alopecia , Antioxidantes , Flavonoides , Cabello , Extractos Vegetales , Rayos Ultravioleta , Alopecia/tratamiento farmacológico , Rayos Ultravioleta/efectos adversos , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Cabello/efectos de los fármacos , Cabello/efectos de la radiación , Cabello/química , Flavonoides/farmacología , Flavonoides/química , Flavonoides/análisis , Extractos Vegetales/farmacología , Extractos Vegetales/química , Melaninas/metabolismo , Queratinocitos/efectos de los fármacos
17.
Molecules ; 29(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38792084

RESUMEN

Labdanum resin or "gum" can be obtained from Cistus ladanifer L. by two different extraction methods: the Zamorean and the Andalusian processes. Although its main use is in the fragrance and perfumery sectors, ethnobotanical reports describe its use for medicinal purposes in managing hyperglycemia and mental illnesses. However, data concerning the bioactivities and pharmacological applications are scarce. In this work, it was found that the yield of labdanum resin extracted by the Andalusian process was 25-fold higher than the Zamorean one. Both resins were purified as absolutes, and the Andalusian absolute was purified into diterpenoid and flavonoid fractions. GC-EI-MS analysis confirmed the presence of phenylpropanoids, labdane-type diterpenoids, and methylated flavonoids, which are already described in the literature, but revealed other compounds, and showed that the different extracts presented distinct chemical profile. The potential antidiabetic activity, by inhibition of α-amylase and α-glucosidase, and the potential neuroprotective activity, by inhibition of acetylcholinesterase, were investigated. Diterpenoid fraction produced the higher α-amylase inhibitory effect (~30% and ~40% at 0.5 and 1 mg/mL, respectively). Zamorean absolute showed the highest α-glucosidase inhibitory effect (~14% and ~24%, at 0.5 and 1 mg/mL, respectively). Andalusian absolute showed the highest acetylcholinesterase inhibitory effect (~70% and ~75%, at 0.5 and 1 mg/mL, respectively). Using Caco-2 and HepG2 cell lines, Andalusian absolute and its purified fractions showed moderate cytotoxic/anti-proliferative activity at 24 h exposure (IC50 = 45-70 µg/mL, for Caco-2; IC50 = 60-80 µg/mL, for HepG2), whereas Zamorean absolute did not produce cytotoxicity (IC50 ≥ 200.00 µg/mL). Here we show, for the first time, that labdanum resin obtained by the Andalusian process, and its fractions, are composed of phytochemicals with anti-diabetic, neuroprotective and anti-proliferative potential, which are worth investigating for the pharmaceutical industry. However, toxic side-effects must also be addressed when using these products by ingestion, as done traditionally.


Asunto(s)
Cistus , Hipoglucemiantes , Fármacos Neuroprotectores , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/aislamiento & purificación , Humanos , Cistus/química , Resinas de Plantas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Proliferación Celular/efectos de los fármacos , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Células Hep G2 , Flavonoides/farmacología , Flavonoides/química , Flavonoides/aislamiento & purificación
18.
Molecules ; 29(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38792119

RESUMEN

To investigate the bioactivities of fresh garlic and its processed product, black garlic, we conducted comparative analyses of antioxidant, anti-inflammatory, innate immune activation, and anti-cancer activities in addition to the chemical composition (sugar, amino acid, and polyphenol contents) of these materials. Simultaneous assay using neutrophil-like cells showed that fresh garlic exhibited antioxidant and innate immunostimulatory activities, whereas black garlic displayed a potent anti-inflammatory effect. The antioxidant activity index was correlated with phenol and flavonoid contents, while the innate immunostimulatory activity was correlated with fructan content. Furthermore, some black garlics with low fructose content were found to inhibit the proliferation of UM-UC-3 cancer cells, while other black garlics rich in fructose increased UM-UC-3 cell proliferation. It was shown that the processing of fresh garlic could change the composition of sugars, antioxidants, and amino acids, which have different effects on neutrophil-like cells and UM-UC-3 cells, as well as on bioactivities.


Asunto(s)
Antioxidantes , Proliferación Celular , Ajo , Ajo/química , Antioxidantes/farmacología , Antioxidantes/química , Humanos , Proliferación Celular/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Línea Celular Tumoral , Aminoácidos/análisis , Aminoácidos/química , Polifenoles/análisis , Polifenoles/química , Polifenoles/farmacología , Fenoles/análisis , Fenoles/química , Fenoles/farmacología , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Flavonoides/análisis , Flavonoides/química , Flavonoides/farmacología
19.
Molecules ; 29(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38792128

RESUMEN

The main varieties of Echinopsis Radix recorded in the Chinese Pharmacopoeia are the roots of Echinops latifolius Tausch or Echinops grijsii Hance. However, the chemical constituents and biological activities of this herb have not been reviewed. In order to clarify the chemical constituents of the main varieties of this herb and improve the quality of Chinese medicinal material resources, this paper systematically reviewed their chemical constituents and related biological activities. Phytochemical investigations reveal eighty-five compounds including fort y-nine thiophenes (1-49), eight flavonoids (50-57), seven caffeic acids and its derivatives (58-64), eight sesquiterpenoids (65-72), and thirteen triterpenoids and other compounds (73-85) were reported from Echinopsis Radix. The review of biological activities suggests that thiophenes are the main secondary metabolites of the medicinal material which exert antitumor, insecticidal and antifungal activities. In addition, caffeic acid and its derivatives and sesquiterpenes are potential active ingredients worthy of further study. This review provides an important scientific basis for the development of active ingredients and resource quality evaluation of Echinopsis Radix.


Asunto(s)
Fitoquímicos , Fitoquímicos/química , Fitoquímicos/farmacología , Echinops (Planta)/química , Humanos , Raíces de Plantas/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Animales , Extractos Vegetales/química , Extractos Vegetales/farmacología , Flavonoides/química , Flavonoides/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología
20.
Molecules ; 29(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38792130

RESUMEN

Lycium ruthenicum Murray possesses significant applications in both food and medicine, including antioxidative, anti-tumor, anti-fatigue, anti-inflammatory, and various other effects. Consequently, there has been a surge in research endeavors dedicated to exploring its potential benefits, necessitating the organization and synthesis of these findings. This article systematically reviews the extraction and content determination methods of active substances such as polysaccharides, anthocyanins, flavonoids, and polyphenols in LRM in the past five years, as well as some active ingredient composition determination methods, biological activities, and product development. This review is divided into three main parts: extraction and determination methods, their bioactivity, and product development. Building upon prior research, we also delve into the economic and medicinal value of Lycium ruthenicum Murray, thereby contributing significantly to its further exploration and development. It is anticipated that this comprehensive review will serve as a valuable resource for advancing research on Lycium ruthenicum Murray.


Asunto(s)
Lycium , Extractos Vegetales , Lycium/química , Extractos Vegetales/química , Antocianinas/química , Humanos , Flavonoides/química , Antioxidantes/química , Antioxidantes/farmacología , Polifenoles/química , Fitoquímicos/química , Fitoquímicos/farmacología , Polisacáridos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA