Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
NMR Biomed ; 35(1): e4621, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34609036

RESUMO

MR spectroscopic imaging (MRSI) noninvasively maps the metabolism of human brains. In particular, the imaging of D-2-hydroxyglutarate (2HG) produced by glioma isocitrate dehydrogenase (IDH) mutations has become a key application in neuro-oncology. However, the performance of full field-of-view MRSI is limited by B0 spatial nonuniformity and lipid artifacts from tissues surrounding the brain. Array coils that multiplex RF-receive and B0 -shim electrical currents (AC/DC mixing) over the same conductive loops provide many degrees of freedom to improve B0 uniformity and reduce lipid artifacts. AC/DC coils are highly efficient due to compact design, requiring low shim currents (<2 A) that can be switched fast (0.5 ms) with high interscan reproducibility (10% coefficient of variation for repeat measurements). We measured four tumor patients and five volunteers at 3 T and show that using AC/DC coils in addition to the vendor-provided second-order spherical harmonics shim provides 19% narrower spectral linewidth, 6% higher SNR, and 23% less lipid content for unrestricted field-of-view MRSI, compared with the vendor-provided shim alone. We demonstrate that improvement in MRSI data quality led to 2HG maps with higher contrast-to-noise ratio for tumors that coincide better with the FLAIR-enhancing lesions in mutant IDH glioma patients. Smaller Cramér-Rao lower bounds for 2HG quantification are obtained in tumors by AC/DC shim, corroborating with simulations that predicted improved accuracy and precision for narrower linewidths. AC/DC coils can be used synergistically with optimized acquisition schemes to improve metabolic imaging for precision oncology of glioma patients. Furthermore, this methodology has broad applicability to other neurological disorders and neuroscience.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Glutaratos/análise , Isocitrato Desidrogenase/fisiologia , Imageamento por Ressonância Magnética/métodos , Adulto , Neoplasias Encefálicas/metabolismo , Feminino , Glioma/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Masculino , Mutação
2.
Sci Rep ; 10(1): 15029, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929121

RESUMO

Metabolic imaging of the human brain by in-vivo magnetic resonance spectroscopic imaging (MRSI) can non-invasively probe neurochemistry in healthy and disease conditions. MRSI at ultra-high field (≥ 7 T) provides increased sensitivity for fast high-resolution metabolic imaging, but comes with technical challenges due to non-uniform B0 field. Here, we show that an integrated RF-receive/B0-shim (AC/DC) array coil can be used to mitigate 7 T B0 inhomogeneity, which improves spectral quality and metabolite quantification over a whole-brain slab. Our results from simulations, phantoms, healthy and brain tumor human subjects indicate improvements of global B0 homogeneity by 55%, narrower spectral linewidth by 29%, higher signal-to-noise ratio by 31%, more precise metabolite quantification by 22%, and an increase by 21% of the brain volume that can be reliably analyzed. AC/DC shimming provide the highest correlation (R2 = 0.98, P = 0.001) with ground-truth values for metabolite concentration. Clinical translation of AC/DC and MRSI is demonstrated in a patient with mutant-IDH1 glioma where it enables imaging of D-2-hydroxyglutarate oncometabolite with a 2.8-fold increase in contrast-to-noise ratio at higher resolution and more brain coverage compared to previous 7 T studies. Hence, AC/DC technology may help ultra-high field MRSI become more feasible to take advantage of higher signal/contrast-to-noise in clinical applications.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Espectroscopia de Ressonância Magnética/instrumentação , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Feminino , Glioma/metabolismo , Glutaratos/metabolismo , Humanos , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/normas , Masculino , Sensibilidade e Especificidade
3.
Int J Hyperthermia ; 34(1): 87-100, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28540815

RESUMO

PURPOSE: We introduce a method for calculation of the ultimate specific absorption rate (SAR) amplification factors (uSAF) in non-uniform body models. The uSAF is the greatest possible SAF achievable by any hyperthermia (HT) phased array for a given frequency, body model and target heating volume. METHODS: First, we generate a basis-set of solutions to Maxwell's equations inside the body model. We place a large number of electric and magnetic dipoles around the body model and excite them with random amplitudes and phases. We then compute the electric fields created in the body model by these excitations using an ultra-fast volume integral solver called MARIE. We express the field pattern that maximises the SAF in the target tumour as a linear combination of these basis fields and optimise the combination weights so as to maximise SAF (concave problem). We compute the uSAFs in the Duke body models at 10 frequencies in the 20-900 MHz range and for twelve 3 cm-diameter tumours located at various depths in the head and neck. RESULTS: For both shallow and deep tumours, the frequency yielding the greatest uSAF was ∼900 MHz. Since this is the greatest frequency that we simulated, we hypothesise that the globally optimal frequency is actually greater. CONCLUSIONS: The uSAFs computed in this work are very large (40-100 for shallow tumours and 4-17 for deep tumours), indicating that there is a large room for improvement of the current state-of-the-art head and neck HT devices.


Assuntos
Fenômenos Eletromagnéticos , Hipertermia Induzida/métodos , Terapia por Radiofrequência , Humanos , Neoplasias
4.
Neuroimage ; 104: 146-55, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25300201

RESUMO

There is an unmet medical need for noninvasive imaging of regional brain oxygenation to manage stroke, tumor, and neurodegenerative diseases. Oxygenation imaging from magnetic susceptibility in MRI is a promising new technique to measure local venous oxygen extraction fraction (OEF) along the cerebral venous vasculature. However, this approach has not been tested in vivo at different levels of oxygenation. The primary goal of this study was to test whether susceptibility imaging of oxygenation can detect OEF changes induced by hypercapnia, via CO2 inhalation, within selected a priori brain regions. Ten healthy subjects were scanned at 3T with a 32-channel head coil. The end-tidal CO2 (ETCO2) was monitored continuously and inspired gases were adjusted to achieve steady-state conditions of eucapnia (41±3mmHg) and hypercapnia (50±4mmHg). Gradient echo phase images and pseudo-continuous arterial spin labeling (pcASL) images were acquired to measure regional OEF and CBF respectively during eucapnia and hypercapnia. By assuming constant cerebral oxygen consumption throughout both gas states, regional CBF values were computed to predict the local change in OEF in each brain region. Hypercapnia induced a relative decrease in OEF of -42.3% in the straight sinus, -39.9% in the internal cerebral veins, and approximately -50% in pial vessels draining each of the occipital, parietal, and frontal cortical areas. Across volunteers, regional changes in OEF correlated with changes in ETCO2. The reductions in regional OEF (via phase images) were significantly correlated (P<0.05) with predicted reductions in OEF derived from CBF data (via pcASL images). These findings suggest that susceptibility imaging is a promising technique for OEF measurements, and may serve as a clinical biomarker for brain conditions with aberrant regional oxygenation.


Assuntos
Veias Cerebrais/metabolismo , Hipercapnia/sangue , Consumo de Oxigênio/fisiologia , Adulto , Mapeamento Encefálico , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacologia , Artérias Cerebrais/anatomia & histologia , Artérias Cerebrais/metabolismo , Veias Cerebrais/anatomia & histologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Masculino , Córtex Pré-Frontal/metabolismo , Marcadores de Spin , Adulto Jovem
5.
IEEE Trans Med Imaging ; 34(1): 339-53, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25248179

RESUMO

There is increasing evidence that iron deposition occurs in specific regions of the brain in normal aging and neurodegenerative disorders such as Parkinson's, Huntington's, and Alzheimer's disease. Iron deposition changes the magnetic susceptibility of tissue, which alters the MR signal phase, and allows estimation of susceptibility differences using quantitative susceptibility mapping (QSM). We present a method for quantifying susceptibility by inversion of a perturbation model, or "QSIP." The perturbation model relates phase to susceptibility using a kernel calculated in the spatial domain, in contrast to previous Fourier-based techniques. A tissue/air susceptibility atlas is used to estimate B0 inhomogeneity. QSIP estimates in young and elderly subjects are compared to postmortem iron estimates, maps of the Field-Dependent Relaxation Rate Increase, and the L1-QSM method. Results for both groups showed excellent agreement with published postmortem data and in vivo FDRI: statistically significant Spearman correlations ranging from Rho=0.905 to Rho=1.00 were obtained. QSIP also showed improvement over FDRI and L1-QSM: reduced variance in susceptibility estimates and statistically significant group differences were detected in striatal and brainstem nuclei, consistent with age-dependent iron accumulation in these regions.


Assuntos
Química Encefálica , Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Adulto Jovem
6.
Z Med Phys ; 25(1): 77-85, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24636672

RESUMO

The non-invasive assessment of (patho-)physiological parameters such as, perfusion and oxygenation, is of great importance for the characterization of pathologies e.g., tumors, which may be helpful to better predict treatment response and potential outcome. To better understand the influence of physiological parameters on the investigated oxygenation and perfusion sensitive MRI methods, MRI measurements were correlated with subsequent invasive micro probe measurements during free breathing conditions of air, air+10% CO2 and 100% O2 in healthy mice brain. MRI parameters were the irreversible (R2), reversible (R2') and effective (R2*) transverse relaxation rates, venous blood oxygenation level assessed by quantitative blood oxygenation level dependent (qBOLD) method and cerebral blood flow (CBF) assessed by arterial spin labeling (ASL) using a 7 T small animal MRI scanner. One to two days after MRI, tissue perfusion and pO2 were measured by Laser-Doppler flowmetry and fluorescence quenching micro probes, respectively. The tissue pO2 values were converted to blood oxygen saturation by using the Hill equation. The animals were anesthetized by intra peritoneal injection of ketamine-xylazine-acepromazine (10-2-0.3 mg/ml · kg). Results for normal/hypercapnia/hyperoxia conditions were: R2[s(∧)-1] = 20.7/20.4/20.1, R2*[s(∧)-1] = 31.6/29.6/25.9, R2'[s-(∧)1] = 10.9/9.2/5.7, qBOLD venous blood oxygenation level = 0.43/0.51/0.56, CBF[ml · min(∧)-1 · 100 g(∧)-1] = 70.6/105.5/81.8, Laser-Doppler flowmetry[a.u.] = 89.2/120.2/90.6 and pO2[mmHg] = 6.3/32.3/46.7. All parameters were statistically significantly different with P < 0.001 between all breathing conditions. All MRI and the corresponding micro probe measurements were also statistically significantly (P ≤ 0.03) correlated with each other. However, converting the tissue pO2 to blood oxygen saturation = 0.02/0.34/0.63, showed only very limited agreement with the qBOLD venous blood oxygenation level. We found good correlation between MRI and micro probe measurements. However, direct conversion of tissue pO2 to blood oxygen saturation by using the Hill equation is very limited. Furthermore, adverse effects of anesthesia and trauma due to micro probe insertion are strong confounding factors and need close attention for study planning and conduction of experiments. Investigation of the correlation of perfusion and oxygenation sensitive MRI methods with micro probe measurements in pathologic tissue such as tumors is now of compelling interest.


Assuntos
Encéfalo/metabolismo , Circulação Cerebrovascular/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Oximetria/métodos , Oxigênio/metabolismo , Animais , Velocidade do Fluxo Sanguíneo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estatística como Assunto
7.
Neuroimage ; 59(3): 2625-35, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21925274

RESUMO

Quantifying tissue iron concentration in vivo is instrumental for understanding the role of iron in physiology and in neurological diseases associated with abnormal iron distribution. Herein, we use recently-developed Quantitative Susceptibility Mapping (QSM) methodology to estimate the tissue magnetic susceptibility based on MRI signal phase. To investigate the effect of different regularization choices, we implement and compare ℓ1 and ℓ2 norm regularized QSM algorithms. These regularized approaches solve for the underlying magnetic susceptibility distribution, a sensitive measure of the tissue iron concentration, that gives rise to the observed signal phase. Regularized QSM methodology also involves a pre-processing step that removes, by dipole fitting, unwanted background phase effects due to bulk susceptibility variations between air and tissue and requires data acquisition only at a single field strength. For validation, performances of the two QSM methods were measured against published estimates of regional brain iron from postmortem and in vivo data. The in vivo comparison was based on data previously acquired using Field-Dependent Relaxation Rate Increase (FDRI), an estimate of MRI relaxivity enhancement due to increased main magnetic field strength, requiring data acquired at two different field strengths. The QSM analysis was based on susceptibility-weighted images acquired at 1.5 T, whereas FDRI analysis used Multi-Shot Echo-Planar Spin Echo images collected at 1.5 T and 3.0 T. Both datasets were collected in the same healthy young and elderly adults. The in vivo estimates of regional iron concentration comported well with published postmortem measurements; both QSM approaches yielded the same rank ordering of iron concentration by brain structure, with the lowest in white matter and the highest in globus pallidus. Further validation was provided by comparison of the in vivo measurements, ℓ1-regularized QSM versus FDRI and ℓ2-regularized QSM versus FDRI, which again yielded perfect rank ordering of iron by brain structure. The final means of validation was to assess how well each in vivo method detected known age-related differences in regional iron concentrations measured in the same young and elderly healthy adults. Both QSM methods and FDRI were consistent in identifying higher iron concentrations in striatal and brain stem ROIs (i.e., caudate nucleus, putamen, globus pallidus, red nucleus, and substantia nigra) in the older than in the young group. The two QSM methods appeared more sensitive in detecting age differences in brain stem structures as they revealed differences of much higher statistical significance between the young and elderly groups than did FDRI. However, QSM values are influenced by factors such as the myelin content, whereas FDRI is a more specific indicator of iron content. Hence, FDRI demonstrated higher specificity to iron yet yielded noisier data despite longer scan times and lower spatial resolution than QSM. The robustness, practicality, and demonstrated ability of predicting the change in iron deposition in adult aging suggest that regularized QSM algorithms using single-field-strength data are possible alternatives to tissue iron estimation requiring two field strengths.


Assuntos
Envelhecimento/fisiologia , Química Encefálica/fisiologia , Mapeamento Encefálico/métodos , Ferro/análise , Ferro/metabolismo , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Encéfalo/fisiologia , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiologia , Cadáver , Corpo Estriado/metabolismo , Corpo Estriado/fisiologia , Feminino , Análise de Fourier , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Tálamo/metabolismo , Tálamo/fisiologia , Adulto Jovem
8.
NMR Biomed ; 25(2): 195-209, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21774010

RESUMO

In this work we introduce the concept of correlation chemical shift imaging (CCSI). Novel CCSI pulse sequences are demonstrated on clinical scanners for two-dimensional Correlation Spectroscopy (COSY) and Total Correlation Spectroscopy (TOCSY) imaging experiments. To date there has been limited progress reported towards a feasible and robust multivoxel 2D COSY. Localized 2D TOCSY imaging is shown for the first time in this work. Excitation with adiabatic GOIA-W(16,4) pulses (Gradient Offset Independent Adiabaticity Wurst modulation) provides minimal chemical shift displacement error, reduced lipid contamination from subcutaneous fat, uniform optimal flip angles, and efficient mixing for coupled spins, while enabling short repetition times due to low power requirements. Constant-density spiral readout trajectories are used to acquire simultaneously two spatial dimensions and f(2) frequency dimension in (k(x),k(y),t(2)) space in order to speed up data collection, while f(1) frequency dimension is encoded by consecutive time increments of t(1) in (k(x),k(y),t(1),t(2)) space. The efficient spiral sampling of the k-space enables the acquisition of a single-slice 2D COSY dataset with an 8 × 8 matrix in 8:32 min on 3 T clinical scanners, which makes it feasible for in vivo studies on human subjects. Here we present the first results obtained on phantoms, human volunteers and patients with brain tumors. The patient data obtained by us represent the first clinical demonstration of a feasible and robust multivoxel 2D COSY. Compared to the 2D J-resolved method, 2D COSY and TOCSY provide increased spectral dispersion which scales up with increasing main magnetic field strength and may have improved ability to unambiguously identify overlapping metabolites. It is expected that the new developments presented in this work will facilitate in vivo application of 2D chemical shift correlation MRS in basic science and clinical studies.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Encéfalo/metabolismo , Encéfalo/patologia , Simulação por Computador , Humanos , Processamento de Imagem Assistida por Computador , Pessoa de Meia-Idade , Imagens de Fantasmas , Razão Sinal-Ruído
9.
Neurobiol Aging ; 31(3): 482-93, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18513834

RESUMO

Diffusion tensor imaging (DTI) of the brain has become a mainstay in the study of normal aging of white matter, and only recently has attention turned to the use of DTI to examine aging effects in gray matter structures. Of the many changes in the brain that occur with advancing age is increased presence of iron, notable in selective deep gray matter structures. In vivo detection and measurement of iron deposition is possible with magnetic resonance imaging (MRI) because of iron's effect on signal intensity. In the process of a DTI study, a series of diffusion-weighted images (DWI) is collected, and while not normally considered as a major dependent variable in research studies, they are used clinically and they reveal striking conspicuity of the globus pallidus and putamen caused by signal loss in these structures, presumably due to iron accumulation with age. These iron deposits may in turn influence DTI metrics, especially of deep gray matter structures. The combined imaging modality approach has not been previously used in the study of normal aging. The present study used legacy DTI data collected in 10 younger (22-37 years) and 10 older (65-79 years) men and women at 3.0T and fast spin-echo (FSE) data collected at 1.5T and 3.0T to derive an estimate of the field-dependent relaxation rate increase (the "FDRI estimate") in the putamen, caudate nucleus, globus pallidus, thalamus, and a frontal white matter sample comparison region. The effect of age on the diffusion measures in the deep gray matter structures was distinctly different from that reported in white matter. In contrast to lower anisotropy and higher diffusivity typical in white matter of older relative to younger adults observed with DTI, both anisotropy and diffusivity were higher in the older than younger group in the caudate nucleus and putamen; the thalamus showed little effect of age on anisotropy or diffusivity. Signal intensity measured with DWI was lower in the putamen of elderly than young adults, whereas the opposite was observed for the white matter region and thalamus. As a retrospective study based on legacy data, the FDRI estimates were based on FSE sequences, which underestimated the classical FDRI index of brain iron. Nonetheless, the differential effects of age on DTI metrics in subcortical gray matter structures compared with white matter tracts appears to be related, at least in part, to local iron content, which in the elderly of the present study was prominent in the FDRI estimate of the putamen and visibly striking in the diffusion-weighted image of the basal ganglia structures.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Ferro/metabolismo , Fibras Nervosas Amielínicas/metabolismo , Adulto , Idoso , Envelhecimento/patologia , Anisotropia , Encéfalo/patologia , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Masculino , Fibras Nervosas Amielínicas/patologia , Vias Neurais/metabolismo , Vias Neurais/patologia , Estudos Retrospectivos , Adulto Jovem
10.
NMR Biomed ; 22(8): 891-7, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19588450

RESUMO

Traditional methods of measuring magnetization in magnetic fluid samples, such as vibrating sample magnetometry (VSM), are typically limited to maximum field strengths of about 1 T. This work demonstrates the ability of MRI to measure the magnetization associated with two commercial MRI contrast agents at 3 T by comparing analytical solutions to experimental imaging results for the field pattern associated with agents in cylindrical vials. The results of the VSM and fitted MRI data match closely. The method represents an improvement over VSM measurements since results are attainable at imaging field strengths. The agents investigated are Feridex, a superparamagnetic iron oxide suspension used primarily for liver imaging, and Magnevist, a paramagnetic, gadolinium-based compound used for tumors, inflammation and vascular lesions. MR imaging of the agents took place in sealed cylindrical vials in the presence of a surrounding volume of deionized water where the effects of the contrast agents had a measurable effect on the water's magnetization in the vicinity of the compartment of contrast agent. A pair of phase images were used to reconstruct a B(0) fieldmap. The resultant B(0) maps in the water region, corrected for shimming and container edge effects, were used to predict the agent's magnetization at 3 T. The results were compared with the results from VSM measurements up to 1.2 T and close correlation was observed. The technique should be of interest to those seeking quantification of the magnetization associated with magnetic suspensions beyond the traditional scope of VSM. The magnetization needs to be sufficiently strong (M(s) >or= 50 Am(2)/kg Fe for Feridex and X(m) >or=5 x 10(-5) m(3)/kg Gd for Magnevist) for a measurable dipole field in the surrounding water. For this reason, the technique is mostly suitable for undiluted agents.


Assuntos
Meios de Contraste/química , Gadolínio/química , Imageamento por Ressonância Magnética/métodos , Dextranos , Óxido Ferroso-Férrico/química , Imageamento por Ressonância Magnética/instrumentação , Magnetismo/métodos , Nanopartículas de Magnetita , Modelos Teóricos
11.
Neuroimage ; 47(2): 493-500, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19442747

RESUMO

Different brain structures accumulate iron at different rates throughout the adult life span. Typically, striatal and brain stem structures are higher in iron concentrations in older than younger adults, whereas cortical white matter and thalamus have lower concentrations in the elderly than young adults. Brain iron can be measured in vivo with MRI by estimating the relaxivity increase across magnetic field strengths, which yields the Field-Dependent Relaxation Rate Increase (FDRI) metric. The influence of local iron deposition on susceptibility, manifests as MR phase effects, forms the basis for another approach for iron measurement, Susceptibility-Weighted Imaging (SWI), for which imaging at only one field strength is sufficient. Here, we compared the ability of these two methods to detect and quantify brain iron in 11 young (5 men, 6 women; 21 to 29 years) and 12 elderly (6 men, 6 women; 64 to 86 years) healthy adults. FDRI was acquired at 1.5 T and 3.0 T, and SWI was acquired at 1.5 T. The results showed that both methods detected high globus pallidus iron concentration regardless of age and significantly greater iron in putamen with advancing age. The SWI measures were more sensitive when the phase signal intensities themselves were used to define regions of interest, whereas FDRI measures were robust to the method of region of interest selection. Further, FDRI measures were more highly correlated than SWI iron estimates with published postmortem values and were more sensitive than SWI to iron concentration differences across basal ganglia structures. Whereas FDRI requires more imaging time than SWI, two field strengths, and across-study image registration for iron concentration calculation, FDRI appears more specific to age-dependent accumulation of non-heme brain iron than SWI, which is affected by heme iron and non-iron source effects on phase.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Ferro/análise , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valores de Referência , Distribuição Tecidual , Adulto Jovem
12.
Brain Imaging Behav ; 3(2): 167-175, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20161183

RESUMO

Iron deposition increases in normal aging, has its greatest presence in structures of the extrapyramidal system, and may contribute to functional decline. MR imaging provides a method for indexing iron deposition in brain structures because of iron's ferromagnetic properties, which interact with the MRI environment to cause signal intensity attenuation that is quantifiable by comparing images collected at 1.5 and 3.0 T. We tested functional correlates of an MR-based iron index in 10 healthy, elderly individuals previously reported to have a higher iron burden in the putamen and lower in the thalamus than young individuals. Lower scores on the Dementia Rating Scale and longer reaction times on a two-choice attention test correlated with higher iron estimates in the caudate nucleus and putamen; poorer Mini-Mental State Examination and Digit Symbol scores correlated with lower iron estimates in the thalamus. Further analyses based on multiple regression, which considered regional FDRI estimates and volume measures as predictors of performance, identified iron but not the sampled volume as the unique predictor in each case. These exploratory correlations suggest a substrate of performance degradation in aging and have implications for regional signal darkening in an array of MR-based imaging protocols.

13.
Magn Reson Med ; 59(6): 1355-64, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18506800

RESUMO

A novel radio-frequency (RF) pulse design algorithm is presented that generates fast slice-selective excitation pulses that mitigate B+1 inhomogeneity present in the human brain at high field. The method is provided an estimate of the B+1 field in an axial slice of the brain and then optimizes the placement of sinc-like "spokes" in kz via an L1-norm penalty on candidate (kx, ky) locations; an RF pulse and gradients are then designed based on these weighted points. Mitigation pulses are designed and demonstrated at 7T in a head-shaped water phantom and the brain; in each case, the pulses mitigate a significantly nonuniform transmit profile and produce nearly uniform flip angles across the field of excitation (FOX). The main contribution of this work, the sparsity-enforced spoke placement and pulse design algorithm, is derived for conventional single-channel excitation systems and applied in the brain at 7T, but readily extends to lower field systems, nonbrain applications, and multichannel parallel excitation arrays.


Assuntos
Algoritmos , Mapeamento Encefálico/métodos , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Humanos , Imageamento Tridimensional , Imagens de Fantasmas , Ondas de Rádio
14.
Int J Radiat Oncol Biol Phys ; 57(4): 1159-73, 2003 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-14575849

RESUMO

PURPOSE: Spatially resolved metabolite maps, as measured by magnetic resonance spectroscopic imaging (MRSI) methods, are being increasingly used to acquire metabolic information to guide therapy, with metabolite ratio maps perhaps providing the most diagnostic information. We present a quality assurance procedure for MRSI-derived metabolic data acquired ultimately for guiding conformal radiotherapy. METHODS AND MATERIALS: An MRSI phantom filled with brain-mimicking solutions was custom-built with an insert holding eight vials containing calibration solutions of precisely varying metabolite concentrations that emulated increasing grade/density of brain tumor. Phantom metabolite ratios calculated from fully relaxed 1D, 2D, and 3D MRS data for each vial were compared with calibrated metabolite ratios acquired at 9.4 T. Additionally, 3D ratio maps were "discretized" to eight pseudoabnormality levels on a slice-by-slice basis and the accuracy of this procedure was verified. RESULTS: Regression analysis revealed expected linear relationships between experimental and calibration metabolite ratios with intercepts close to zero for the three acquisition modes. 1D MRS data agreed most with theoretical considerations (regression coefficient, b = 0.969; intercept 0.008). The 2D (b = 1.049; intercept -0.199) and 3D (correlation coefficient r(2) = 0.9978-0.7336 for five slices) MRSI indicated reduced MRS data quality in regions of degraded B(0) and B(1) homogeneity. Pseudoabnormality levels were found to be consistent with expectations within regions of adequate B(0) homogeneity. CONCLUSIONS: This simple phantom-based approach to generate baseline calibration curves for all MRS acquisition modes may be useful to identify temporal deviations from acceptable data quality in a routine clinical environment or for testing new MRS and MRSI acquisition software.


Assuntos
Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Encéfalo/metabolismo , Colina/metabolismo , Espectroscopia de Ressonância Magnética/normas , Imagens de Fantasmas/normas , Radioterapia Conformacional/normas , Biomarcadores , Calibragem , Imageamento por Ressonância Magnética/normas , Radioterapia Conformacional/instrumentação , Análise de Regressão , Tomografia Computadorizada por Raios X/normas
15.
Phys Med Biol ; 47(20): 3567-78, 2002 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-12433120

RESUMO

Radiation therapy is an image-guided process whose success critically depends on the imaging modality used for treatment planning and the level of integration of the available imaging information. In this work, we establish a dose optimization framework for incorporating metabolic information from functional imaging modalities into the intensity-modulated radiation therapy (IMRT) inverse planning process and to demonstrate the technical feasibility of planning deliberately non-uniform dose distributions in accordance with functional imaging data. For this purpose, a metabolic map from functional images is discretized into a number of abnormality levels (ALs) and then fused with CT images. To escalate dose to the metabolically abnormal regions, we assume, for a given spatial point, a linear relation between the AL and the prescribed dose. But the formalism developed here is independent of the assumption and any other relation between AL and prescription is applicable. For a given AL and prescription relation, it is only necessary to prescribe the dose to the lowest AL in the target and the desired doses to other regions with higher AL values are scaled accordingly. To accomplish differential sparing of a sensitive structure when its functional importance (FI) distribution is known, we individualize the tolerance doses of the voxels within the structure according to their Fl levels. An iterative inverse planning algorithm in voxel domain is used to optimize the system with in homogeneous dose prescription. To model intra-structural trade-off, a mechanism is introduced through the use of voxel-dependent weighting factors, in addition to the conventional structure specific weighting factors which model the inter-structural trade-off. The system is used to plan a phantom case with a few hypothetical functional distributions and a brain tumour treatment with incorporation of magnetic resonance spectroscopic imaging data. The results indicated that it is technically feasible to produce deliberately non-uniform dose distributions according to the functional imaging requirements. Integration of functional imaging information into radiation therapy dose optimization allows for consideration of patient-specific biologic information and provides a significant opportunity to truly individualize radiation treatment. This should enhance our capability to safely and intelligently escalate dose and lays the technical foundation for future clinical studies of the efficacy of functional imaging-guided IMRT.


Assuntos
Algoritmos , Neoplasias Encefálicas/radioterapia , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Tomografia Computadorizada por Raios X/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Estudos de Viabilidade , Glioma/diagnóstico por imagem , Glioma/radioterapia , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Controle de Qualidade , Doses de Radiação , Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador/instrumentação , Radioterapia Conformacional/instrumentação , Sensibilidade e Especificidade , Técnica de Subtração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA