Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood Cells Mol Dis ; 95: 102660, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35366607

RESUMO

Polymerization of deoxygenated sickle hemoglobin (HbS) leads to erythrocyte sickling. Enhancing activity of the erythrocyte glycolytic pathway has anti-sickling potential as this reduces 2,3-diphosphoglycerate (2,3-DPG) and increases ATP, factors that decrease HbS polymerization and improve erythrocyte membrane integrity. These factors can be modulated by mitapivat, which activates erythrocyte pyruvate kinase (PKR) and improves sickling kinetics in SCD patients. We investigated mechanisms by which mitapivat may impact SCD by examining its effects in the Townes SCD mouse model. Control (HbAA) and sickle (HbSS) mice were treated with mitapivat or vehicle. Surprisingly, HbSS had higher PKR protein, higher ATP, and lower 2,3-DPG levels, compared to HbAA mice, in contrast with humans with SCD, in whom 2,3-DPG is elevated compared to healthy subjects. Despite our inability to investigate 2,3-DPG-mediated sickling and hemoglobin effects, mitapivat yielded potential benefits in HbSS mice. Mitapivat further increased ATP without significantly changing 2,3-DPG or hemoglobin levels, and decreased levels of leukocytosis, erythrocyte oxidative stress, and the percentage of erythrocytes that retained mitochondria in HbSS mice. These data suggest that, even though Townes HbSS mice have increased PKR activity, further activation of PKR with mitapivat yields potentially beneficial effects that are independent of changes in sickling or hemoglobin levels.


Assuntos
Anemia Falciforme , 2,3-Difosfoglicerato/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Modelos Animais de Doenças , Eritrócitos/metabolismo , Hemoglobina Falciforme/metabolismo , Hemoglobinas/análise , Humanos , Camundongos , Mitocôndrias/metabolismo , Estresse Oxidativo , Piperazinas , Quinolinas
3.
Lab Invest ; 101(1): 4-11, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32980855

RESUMO

ßcysteine 93 residue plays a key role in oxygen (O2)-linked conformational changes in the hemoglobin (Hb) molecule. This solvent accessible residue is also a target for binding of thiol reagents that can remotely alter O2 affinity, cooperativity, and Hb's sensitivity to changes in pH. In recent years, ßCys93 was assigned a new physiological role in the transport of nitric oxide (NO) through a process of S-nitrosylation as red blood cells (RBCs) travel from lungs to tissues. ßCys93 is readily and irreversibly oxidized in the presence of a mild oxidant to cysteic acid, which causes destabilization of Hb resulting in improper protein folding and the loss of heme. Under these oxidative conditions, ferryl heme (HbFe4+), a higher oxidation state of Hb is formed together with its protein radical (.HbFe4+). This radical migrates to ßCys93 and interacts with other "hotspot" amino acids that are highly susceptible to oxidative modifications. Oxidized ßCys93 may therefore be used as a biomarker of oxidative stress, reflecting the deterioration of Hb within RBCs intended for transfusion or RBCs from patients with hemoglobinopathies. Site specific mutation of a redox active amino acid(s) to reduce the ferryl heme or direct chemical modifications that can shield ßCys93 have been proposed to improve oxidative resistance of Hb and may offer a protective therapeutic strategy.


Assuntos
Cisteína/metabolismo , Hemoglobinas/metabolismo , Regulação Alostérica , Animais , Biomarcadores/metabolismo , Haptoglobinas/metabolismo , Hemoglobinas/genética , Humanos , Óxido Nítrico/fisiologia , Oxirredução
4.
Int J Mol Sci ; 21(24)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322551

RESUMO

The highly toxic oxidative transformation of hemoglobin (Hb) to the ferryl state (HbFe4+) is known to occur in both in vitro and in vivo settings. We recently constructed oxidatively stable human Hbs, based on the Hb Providence (ßK82D) mutation in sickle cell Hb (ßE6V/ßK82D) and in a recombinant crosslinked Hb (rHb0.1/ßK82D). Using High Resolution Accurate Mass (HRAM) mass spectrometry, we first quantified the degree of irreversible oxidation of ßCys93 in these proteins, induced by hydrogen peroxide (H2O2), and compared it to their respective controls (HbA and HbS). Both Hbs containing the ßK82D mutation showed considerably less cysteic acid formation, a byproduct of cysteine irreversible oxidation. Next, we performed a novel study aimed at exploring the impact of introducing ßK82D containing Hbs on vascular endothelial redox homeostasis and energy metabolism. Incubation of the mutants carrying ßK82D with endothelial cells resulted in altered bioenergetic function, by improving basal cellular glycolysis and glycolytic capacity. Treatment of cells with Hb variants containing ßK82D resulted in lower heme oxygenase-1 and ferritin expressions, compared to native Hbs. We conclude that the presence of ßK82D confers oxidative stability to Hb and adds significant resistance to oxidative toxicity. Therefore, we propose that ßK82D is a potential gene-editing target in the treatment of sickle cell disease and in the design of safe and effective oxygen therapeutics.


Assuntos
Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Hemoglobinas/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Oxirredução
5.
Redox Rep ; 25(1): 95-103, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33059548

RESUMO

The ß subunit substitutions, F41Y and K82D, in sickle cell hemoglobin (Hb) (ßE6 V) provides significant resistance to oxidative stress by shielding ßCys93 from the oxidizing ferryl heme. We evaluated the oxidative resistance of ßCys93 to hydrogen peroxide (H2O2) in α subunit mutations in ßE6 V (at both the putative and lateral contact regions) that included (1) αH20Q/ßE6 V; (2) αH50Q/ßE6 V; (3) αH20Q/H50Q/ßE6 V; (4) αH20R/ßE6 V; and (5) αH20R/H50Q/ßE6 V. Estimation by mass spectrometry of irreversible oxidation of ßCys93 to cysteic acid (CA) was unchanged or moderately increased in the single mutants harboring a H20Q or H50Q substitution when compared to control (ßE6 V). The introduction of Arg (R) singularly or in combination with Q enhanced the pseudoperoxidative cycle by slightly decreasing the ferryl in favor of ferrous and ferric species after treatment with H2O2. Higher rates for heme loss from the ferric forms of the Q species to the receptor high affinity recombinant apomyglobin were observed in contrast to the R mutants and control. Because of their improved solubility, a combination of Q and R substitutions together with mutations carrying redox active variants (F41Y/K82D) may provide dual antioxidant and antisickling targets in the design of gene therapy-based candidates.


Assuntos
Cisteína/genética , Hemoglobina Falciforme/química , Hemoglobina Falciforme/genética , Substituição de Aminoácidos , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Heme/química , Heme/genética , Hemoglobina Falciforme/metabolismo , Humanos , Peróxido de Hidrogênio/química , Focalização Isoelétrica , Espectrometria de Massas , Mutação , Oxirredução , Estresse Oxidativo , Estabilidade Proteica , Subunidades Proteicas
6.
Front Physiol ; 10: 931, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396101

RESUMO

Sickle cell disease is a genetic blood disorder caused by a single point mutation in the ß globin gene where glutamic acid is replaced by valine at the sixth position of the ß chain of hemoglobin (Hb). At low oxygen tension, the polymerization of deoxyHbS into fibers occurs in red blood cells (RBCs) leading to an impaired blood vessel transit. Sickle cell hemoglobin (HbS), when oxidized with hydrogen peroxide (H2O2), stays longer in a highly oxidizing ferryl (Fe4+) form causing irreversible oxidation of ßCys93 to a destabilizing cysteic acid. We have previously reported that an antisickling drug can be designed to bind specifically to ßCys93 and effectively protect against its irreversible oxidation by H2O2. Here, we report oxygen dissociation, oxidation, and polymerization kinetic reactions for four antisickling drugs (under different preclinical/clinical developmental stages) that either site-specifically target ßCys93 or other sites on the HbS molecule. Molecules that specifically bind to or modify ßCys93, such as 4,4'-di(1,2,3-triazolyl) disulfide (TD-3) and hydroxyurea (HU) were contrasted with molecules that target other sites on Hb including 5-hydroxymethyl-2-furfural (5-HMF) and L-glutamine. All reagents induced a left shift in the oxygen dissociation curve (ODC) except L-glutamine. In the presence of H2O2 (2.5:1, H2O2:heme), both TD-3 and HU reduced the ferryl heme by 22 and 37%, respectively, which corresponded to a 3- to 2-fold reduction in the levels of ßCys93 oxidation as verified by mass spectrometry. Increases in the delay times prior to polymerization of HbS under hypoxia were in the following order: TD-3 > HU > 5-HMF = L-glutamine. Designing antisickling agents that can specifically target ßCys93 may provide a dual antioxidant and antisickling therapeutic benefits in treating this disease.

7.
J Biol Chem ; 294(11): 4145-4159, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30630954

RESUMO

After reacting with hydrogen peroxide (H2O2), sickle-cell hemoglobin (HbS, ßE6V) remains longer in a highly oxidizing ferryl form (HbFe4+=O) and induces irreversible oxidation of "hot-spot" amino acids, including ßCys-93. To control the damaging ferryl heme, here we constructed three HbS variants. The first contained a redox-active Tyr in ß subunits (F41Y), a substitution present in Hb Mequon; the second contained the Asp (K82D) found in the ß cleft of Hb Providence; and the third had both of these ß substitutions. Both the single Tyr-41 and Asp-82 constructs lowered the oxygen affinity of HbS but had little or no effects on autoxidation or heme loss kinetics. In the presence of H2O2, both rHbS ßF41Y and ßF41Y/K82D enhanced ferryl Hb reduction by providing a pathway for electrons to reduce the heme via the Tyr-41 side chain. MS analysis of ßCys-93 revealed moderate inhibition of thiol oxidation in the HbS single F41Y variant and dramatic 3- to 8-fold inhibition of cysteic acid formation in rHbS ßK82D and ßF41Y/K82D, respectively. Under hypoxia, ßK82D and ßF41Y/K82D HbS substitutions increased the delay time by ∼250 and 600 s before the onset of polymerization compared with the rHbS control and rHbS ßF41Y, respectively. Moreover, at 60 °C, rHbS ßK82D exhibited superior structural stability. Asp-82 also enhanced the function of Tyr as a redox-active amino acid in the rHbS ßF41Y/K82D variant. We conclude that the ßK82D and ßF41Y substitutions add significant resistance to oxidative stress and anti-sickling properties to HbS and therefore could be potential genome-editing targets.


Assuntos
Anemia Falciforme/metabolismo , Hemoglobina Falciforme/metabolismo , Hemoglobina Falciforme/análise , Hemoglobina Falciforme/genética , Humanos , Cinética , Oxirredução , Estabilidade Proteica , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura , Fatores de Tempo
8.
Redox Biol ; 19: 218-225, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30193183

RESUMO

Redox active cysteine residues including ßCys93 are part of hemoglobin's "oxidation hotspot". Irreversible oxidation of ßCys93 ultimately leads to the collapse of the hemoglobin structure and release of heme. Human fetal hemoglobin (HbF), similarly to the adult hemoglobin (HbA), carries redox active γCys93 in the vicinity of the heme pocket. Site-directed mutagenesis has been used in this study to examine the impact of removal and/or addition of cysteine residues in HbF. The redox activities of the recombinant mutants were examined by determining the spontaneous autoxidation rate, the hydrogen peroxide induced ferric to ferryl oxidation rate, and irreversible oxidation of cysteine by quantitative mass spectrometry. We found that substitution of γCys93Ala resulted in oxidative instability characterized by increased oxidation rates. Moreover, the addition of a cysteine residue at α19 on the exposed surface of the α-chain altered the regular electron transfer pathway within the protein by forming an alternative oxidative site. This may also create an accessible site for di-sulfide bonding between Hb subunits. Engineering of cysteine residues at suitable locations may be useful as a tool for managing oxidation in a protein, and for Hb, a way to stave off oxidation reactions resulting in a protein structural collapse.


Assuntos
Cisteína/genética , Hemoglobina Fetal/genética , Cisteína/química , Hemoglobina Fetal/química , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredução , Estresse Oxidativo , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
9.
Biochem J ; 474(24): 4171-4192, 2017 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-29070524

RESUMO

Previous work suggested that hemoglobin (Hb) tetramer formation slows autoxidation and hemin loss and that the naturally occurring mutant, Hb Providence (HbProv; ßK82D), is much more resistant to degradation by H2O2 We have examined systematically the effects of genetic cross-linking of Hb tetramers with and without the HbProv mutation on autoxidation, hemin loss, and reactions with H2O2, using native HbA and various wild-type recombinant Hbs as controls. Genetically cross-linked Hb Presbyterian (ßN108K) was also examined as an example of a low oxygen affinity tetramer. Our conclusions are: (a) at low concentrations, all the cross-linked tetramers show smaller rates of autoxidation and hemin loss than HbA, which can dissociate into much less stable dimers and (b) the HbProv ßK82D mutation confers more resistance to degradation by H2O2, by markedly inhibiting oxidation of the ß93 cysteine side chain, particularly in cross-linked tetramers and even in the presence of the destabilizing Hb Presbyterian mutation. These results show that cross-linking and the ßK82D mutation do enhance the resistance of Hb to oxidative degradation, a critical element in the design of a safe and effective oxygen therapeutic.


Assuntos
Hemoglobinas/química , Hemoglobinas/genética , Mutação de Sentido Incorreto , Reagentes de Ligações Cruzadas/química , Dimerização , Hemoglobinas/metabolismo , Humanos , Peróxido de Hidrogênio/química , Oxirredução , Engenharia de Proteínas
10.
Metallomics ; 9(9): 1260-1270, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28770911

RESUMO

Sickle cell disease (SCD) is an inherited blood disorder caused by a ß globin gene mutation of hemoglobin (HbS). The polymerization of deoxyHbS and its subsequent aggregation (into long fibers) is the primary molecular event which leads to red blood cell (RBC) sickling and ultimately hemolytic anemia. We have recently suggested that HbS oxidative toxicity may also contribute to SCD pathophysiology due to its defective pseudoperoxidase activity. As a consequence, a persistently higher oxidized ferryl heme is formed which irreversibly oxidizes "hotspot" residues (particularly ßCys93) causing protein unfolding and subsequent heme loss. In this report we confirmed first, the allosteric effect of a newly developed reagent (di(5-(2,3-dihydro-1,4-benzodioxin-2-yl)-4H-1,2,4-triazol-3-yl)disulfide) (TD-1) on oxygen affinity within SS RBCs. There was a considerable left shift in oxygen equilibrium curves (OECs) representing treated SS cells. Under hypoxic conditions, TD-1 treatment of HbS resulted in an approximately 200 s increase in the delay time of HbS polymerization over the untreated HbS control. The effect of TD-1 binding to HbS was also tested on oxidative reactions by incrementally treating HbS with increasing hydrogen peroxide (H2O2) concentrations. Under these experimental conditions, ferryl levels were consistently reduced by approximately 35% in the presence of TD-1. Mass spectrometric analysis confirmed that upon binding to ßCys93, TD-1 effectively blocked irreversible oxidation of this residue. In conclusion, TD-1 appears to shield ßCys93 (the end point of radical formation in HbS) and when coupled with its allosteric effect on oxygen affinity may provide new therapeutic modalities for the treatment of SCD.


Assuntos
Antioxidantes/farmacologia , Antidrepanocíticos/farmacologia , Cisteína/antagonistas & inibidores , Hemoglobina Falciforme/antagonistas & inibidores , Anemia Falciforme/sangue , Anemia Falciforme/metabolismo , Cisteína/metabolismo , Dissulfetos/farmacologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Hemoglobina Falciforme/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Oxidantes/farmacologia , Oxirredução/efeitos dos fármacos , Oxigênio/metabolismo , Triazóis/farmacologia
11.
PLoS One ; 11(12): e0166657, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27959920

RESUMO

Reliance on volunteer blood donors can lead to transfusion product shortages, and current liquid storage of red blood cells (RBCs) is associated with biochemical changes over time, known as 'the storage lesion'. Thus, there is a need for alternative sources of transfusable RBCs to supplement conventional blood donations. Extracorporeal production of stem cell-derived RBCs (stemRBCs) is a potential and yet untapped source of fresh, transfusable RBCs. A number of groups have attempted RBC differentiation from CD34+ cells. However, it is still unclear whether these stemRBCs could eventually be effective substitutes for traditional RBCs due to potential differences in oxygen carrying capacity, viability, deformability, and other critical parameters. We have generated ex vivo stemRBCs from primary human cord blood CD34+ cells and compared them to donor-derived RBCs based on a number of in vitro parameters. In vivo, we assessed stemRBC circulation kinetics in an animal model of transfusion and oxygen delivery in a mouse model of exercise performance. Our novel, chronically anemic, SCID mouse model can evaluate the potential of stemRBCs to deliver oxygen to tissues (muscle) under resting and exercise-induced hypoxic conditions. Based on our data, stem cell-derived RBCs have a similar biochemical profile compared to donor-derived RBCs. While certain key differences remain between donor-derived RBCs and stemRBCs, the ability of stemRBCs to deliver oxygen in a living organism provides support for further development as a transfusion product.


Assuntos
Transfusão de Sangue/métodos , Eritrócitos/citologia , Células-Tronco Mesenquimais/citologia , Animais , Antígenos CD34/genética , Antígenos CD34/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Eritrócitos/metabolismo , Sangue Fetal/citologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Oxigênio/metabolismo
12.
Br J Haematol ; 175(4): 714-723, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27507623

RESUMO

There is growing evidence that extracellular haemoglobin and haem mediate inflammatory and oxidative damage in sickle cell disease. Haptoglobin (Hp), the scavenger for free haemoglobin, is depleted in most patients with sickle cell disease due to chronic haemolysis. Although single infusions of Hp can ameliorate vaso-occlusion in mouse models of sickle cell disease, prior studies have not examined the therapeutic benefits of more chronic Hp dosing on sickle cell disease manifestations. In the present study, we explored the effect of Hp treatment over a 3-month period in sickle mice at two dosing regimens: the first at a moderate dose of 200 mg/kg thrice weekly and the second at a higher dose of 400 mg/kg thrice weekly. We found that only the higher dosing regimen resulted in increased haem-oxygenase-1 and heavy chain ferritin (H-ferritin) expression and decreased iron deposition in the kidney. Despite the decreased kidney iron deposition following Hp treatment, there was no significant improvement in kidney function. However, there was a nearly significant trend towards decreased liver infarction.


Assuntos
Anemia Falciforme/metabolismo , Apoferritinas/metabolismo , Haptoglobinas/farmacologia , Ferro/metabolismo , Nefropatias/metabolismo , Nefropatias/patologia , Anemia Falciforme/complicações , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/genética , Animais , Apoferritinas/genética , Contagem de Células Sanguíneas , Modelos Animais de Doenças , Feminino , Expressão Gênica , Haptoglobinas/administração & dosagem , Haptoglobinas/efeitos adversos , Haptoglobinas/farmacocinética , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Nefropatias/etiologia , Nefropatias/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Resultado do Tratamento
13.
Biochim Biophys Acta ; 1864(1): 29-41, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26497278

RESUMO

BACKGROUND: α1-Microglobulin (A1M) is a reductase and radical scavenger involved in physiological protection against oxidative damage. These functions were previously shown to be dependent upon cysteinyl-, C34, and lysyl side-chains, K(92, 118,130). A1M binds heme and the crystal structure suggests that C34 and H123 participate in a heme binding site. We have investigated the involvement of these five residues in the interactions with heme. METHODS: Four A1M-variants were expressed: with cysteine to serine substitution in position 34, lysine to threonine substitutions in positions (92, 118, 130), histidine to serine substitution in position 123 and a wt without mutations. Heme binding was investigated by tryptophan fluorescence quenching, UV-Vis spectrophotometry, circular dichroism, SPR, electrophoretic migration shift, gel filtration, catalase-like activity and molecular simulation. RESULTS: All A1M-variants bound to heme. Mutations in C34, H123 or K(92, 118, 130) resulted in significant absorbance changes, CD spectral changes, and catalase-like activity, suggesting involvement of these side-groups in coordination of the heme-iron. Molecular simulation support a model with two heme-binding sites in A1M involving the mutated residues. Binding of the first heme induces allosteric stabilization of the structure predisposing for a better fit of the second heme. CONCLUSIONS: The results suggest that one heme-binding site is located in the lipocalin pocket and a second binding site between loops 1 and 4. Reactions with the hemes involve the side-groups of C34, K(92, 118, 130) and H123. GENERAL SIGNIFICANCE: The model provides a structural basis for the functional activities of A1M: heme binding activity of A1M.


Assuntos
alfa-Globulinas/química , Heme/química , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , alfa-Globulinas/genética , alfa-Globulinas/metabolismo , Sítios de Ligação/genética , Western Blotting , Dicroísmo Circular , Heme/metabolismo , Humanos , Mutagênese Sítio-Dirigida/métodos , Mutação , Oxirredução , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Ressonância de Plasmônio de Superfície
14.
J Biol Chem ; 290(46): 27939-58, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26396189

RESUMO

Polymerization of intraerythrocytic deoxyhemoglobin S (HbS) is the primary molecular event that leads to hemolytic anemia in sickle cell disease (SCD). We reasoned that HbS may contribute to the complex pathophysiology of SCD in part due to its pseudoperoxidase activity. We compared oxidation reactions and the turnover of oxidation intermediates of purified human HbS and HbA. Hydrogen peroxide (H2O2) drives a catalytic cycle that includes the following three distinct steps: 1) initial oxidation of ferrous (oxy) to ferryl Hb; 2) autoreduction of the ferryl intermediate to ferric (metHb); and 3) reaction of metHb with an additional H2O2 molecule to regenerate the ferryl intermediate. Ferrous and ferric forms of both proteins underwent initial oxidation to the ferryl heme in the presence of H2O2 at equal rates. However, the rate of autoreduction of ferryl to the ferric form was slower in the HbS solutions. Using quantitative mass spectrometry and the spin trap, 5,5-dimethyl-1-pyrroline-N-oxide, we found more irreversibly oxidized ßCys-93in HbS than in HbA. Incubation of the ferric or ferryl HbS with cultured lung epithelial cells (E10) induced a drop in mitochondrial oxygen consumption rate and impairment of cellular bioenergetics that was related to the redox state of the iron. Ferryl HbS induced a substantial drop in the mitochondrial transmembrane potential and increases in cytosolic heme oxygenase (HO-1) expression and mitochondrial colocalization in E10 cells. Thus, highly oxidizing ferryl Hb and heme, the product of oxidation, may be central to the evolution of vasculopathy in SCD and may suggest therapeutic modalities that interrupt heme-mediated inflammation.


Assuntos
Cisteína/química , Hemoglobina Falciforme/química , Ferro/química , Mitocôndrias/metabolismo , Mucosa Respiratória/enzimologia , Anemia Hemolítica/enzimologia , Anemia Falciforme/enzimologia , Catálise , Óxidos N-Cíclicos/química , Metabolismo Energético , Heme/química , Heme Oxigenase (Desciclizante)/química , Humanos , Peróxido de Hidrogênio/química , Pulmão/enzimologia , Metemoglobina/química , Oxirredução , Consumo de Oxigênio , Mucosa Respiratória/ultraestrutura
15.
J Biol Chem ; 289(32): 22342-57, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-24939847

RESUMO

A pathogenic V67M mutation occurs at the E11 helical position within the heme pockets of variant human fetal and adult hemoglobins (Hb). Subsequent post-translational modification of Met to Asp was reported in γ subunits of human fetal Hb Toms River (γ67(E11)Val → Met) and ß subunits of adult Hb (HbA) Bristol-Alesha (ß67(E11)Val → Met) that were associated with hemolytic anemia. Using kinetic, proteomic, and crystal structural analysis, we were able to show that the Met → Asp transformation involves heme cycling through its oxoferryl state in the recombinant versions of both proteins. The conversion to Met and Asp enhanced the spontaneous autoxidation of the mutants relative to wild-type HbA and human fetal Hb, and the levels of Asp were elevated with increasing levels of hydrogen peroxide (H2O2). Using H2(18)O2, we verified incorporation of (18)O into the Asp carboxyl side chain confirming the role of H2O2 in the oxidation of the Met side chain. Under similar experimental conditions, there was no conversion to Asp at the αMet(E11) position in the corresponding HbA Evans (α62(E11)Val → Met). The crystal structures of the three recombinant Met(E11) mutants revealed similar thioether side chain orientations. However, as in the solution experiments, autoxidation of the Hb mutant crystals leads to electron density maps indicative of Asp(E11) formation in ß subunits but not in α subunits. This novel post-translational modification highlights the nonequivalence of human Hb α, ß, and γ subunits with respect to redox reactivity and may have direct implications to α/ß hemoglobinopathies and design of oxidatively stable Hb-based oxygen therapeutics.


Assuntos
Heme/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Ferro/metabolismo , Adulto , Sequência de Aminoácidos , Substituição de Aminoácidos , Ácido Aspártico/química , Cristalografia por Raios X , Hemoglobina Fetal/química , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Heme/química , Hemoglobina A/química , Hemoglobina A/genética , Hemoglobina A/metabolismo , Hemoglobinas/genética , Hemoglobinas Anormais/química , Hemoglobinas Anormais/genética , Hemoglobinas Anormais/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Ferro/química , Metionina/química , Modelos Moleculares , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Oxirredução , Processamento de Proteína Pós-Traducional , Subunidades Proteicas , Proteômica , Eletricidade Estática
16.
Blood ; 123(3): 377-90, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24277079

RESUMO

Treatment of sickle cell disease (SCD) is hampered by incomplete understanding of pathways linking hemolysis to vaso-occlusion. We investigated these pathways in transgenic sickle mice. Infusion of hemoglobin or heme triggered vaso-occlusion in sickle, but not normal, mice. Methemoglobin, but not heme-stabilized cyanomethemoglobin, induced vaso-occlusion, indicating heme liberation is necessary. In corroboration, hemoglobin-induced vaso-occlusion was blocked by the methemoglobin reducing agent methylene blue, haptoglobin, or the heme-binding protein hemopexin. Untreated HbSS mice, but not HbAA mice, exhibited ∼10% vaso-occlusion in steady state that was inhibited by haptoglobin or hemopexin infusion. Antibody blockade of adhesion molecules P-selectin, von Willebrand factor (VWF), E-selectin, vascular cell adhesion molecule 1, intercellular adhesion molecule 1, platelet endothelial cell (EC) adhesion molecule 1, α4ß1, or αVß3 integrin prevented vaso-occlusion. Heme rapidly (5 minutes) mobilized Weibel-Palade body (WPB) P-selectin and VWF onto EC and vessel wall surfaces and activated EC nuclear factor κB (NF-κB). This was mediated by TLR4 as TAK-242 blocked WPB degranulation, NF-κB activation, vaso-occlusion, leukocyte rolling/adhesion, and heme lethality. TLR4(-/-) mice transplanted with TLR4(+/+) sickle bone marrow exhibited no heme-induced vaso-occlusion. The TLR4 agonist lipopolysaccharide (LPS) activated ECs and triggered vaso-occlusion that was inhibited by TAK-242, linking hemolysis- and infection-induced vaso-occlusive crises to TLR4 signaling. Heme and LPS failed to activate VWF and NF-κB in TLR4(-/-) ECs. Anti-LPS immunoglobulin G blocked LPS-induced, but not heme-induced, vaso-occlusion, illustrating LPS-independent TLR4 signaling by heme. Inhibition of protein kinase C, NADPH oxidase, or antioxidant treatment blocked heme-mediated stasis, WPB degranulation, and oxidant production. We conclude that intravascular hemolysis in SCD releases heme that activates endothelial TLR4 signaling leading to WPB degranulation, NF-κB activation, and vaso-occlusion.


Assuntos
Anemia Falciforme/metabolismo , Células Endoteliais/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Vasoconstrição , Animais , Células da Medula Óssea/citologia , Adesão Celular , Haptoglobinas/metabolismo , Heme/química , Hemoglobinas/química , Hemólise , Hemopexina/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação , Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Subunidade p50 de NF-kappa B/metabolismo , Estresse Oxidativo , Fenótipo , Fator de von Willebrand/metabolismo
17.
Antioxid Redox Signal ; 18(17): 2264-73, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-22702311

RESUMO

AIM: Hemoglobin (Hb) becomes toxic when released from the erythrocyte. The acute phase protein haptoglobin (Hp) binds avidly to Hb and decreases oxidative damage to Hb itself and to the surrounding proteins and lipids. However, the molecular mechanism underpinning Hp protection is to date unclear. The aim of this study was to use electron paramagnetic resonance (EPR) spectroscopy, stopped flow optical spectrophotometry, and site-directed mutagenesis to explore the mechanism and specifically the role of specific tyrosine residues in this protection. RESULTS: Following peroxide challenge Hb produces reactive oxidative intermediates in the form of ferryl heme and globin free radicals. Hp binding increases the steady state level of ferryl formation during Hb-catalyzed lipid peroxidation, while at the same time dramatically inhibiting the overall reaction rate. This enhanced ferryl stability is also seen in the absence of lipids and in the presence of external reductants. Hp binding is not accompanied by a decrease in the pK of ferryl protonation; the protonated ferryl species still forms, but is intrinsically less reactive. Ferryl stabilization is accompanied by a significant increase in the concentration of the peroxide-induced tyrosine free radical. EPR spectral parameters and mutagenesis studies suggest that this radical is located on tyrosine 145, the penultimate C-terminal amino acid on the beta Hb subunit. INNOVATION: Hp binding decreases both the ferryl iron and free radical reactivity of Hb. CONCLUSION: Hp protects against Hb-induced damage in the vasculature, not by preventing the primary reactivity of heme oxidants, but by rendering the resultant protein products less damaging.


Assuntos
Haptoglobinas/metabolismo , Hemoglobinas/metabolismo , Ferro/metabolismo , Tirosina/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Radicais Livres/metabolismo , Haptoglobinas/química , Heme/química , Heme/metabolismo , Hemoglobinas/química , Humanos , Concentração de Íons de Hidrogênio , Peroxidação de Lipídeos , Oxirredução , Ligação Proteica , Estabilidade Proteica
18.
Biochemistry ; 50(45): 9752-66, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21977904

RESUMO

We have previously shown that hydrogen peroxide (H(2)O(2)) triggers irreversible oxidation of amino acids exclusive to the ß-chains of purified human hemoglobin (HbAo). However, it is not clear, whether α- or ß-subunit Hb variants exhibit different oxidative resistance to H(2)O(2) when compared to their native HbAo. Hb Providence contains two ß-subunit variants with single amino acid mutations at ßLys82→Asp (ßK82D) and at ßLys82→Asn (ßK82N) positions and binds oxygen at lower affinity than wild type HbA. We have separated Hb Providence into its 3 component fractions, and contrasted oxidative reactions of its ß-mutant fractions with HbAo. Relative to HbAo, both ßK82N and ßK82D fractions showed similar autoxidation kinetics and similar initial oxidation reaction rates with H(2)O(2). However, a more profound pattern of changes was seen in HbAo than in the two Providence fractions. The structural changes in HbAo include a collapse of ß-subunits, and α-α dimer formation in the presence of excess H(2)O(2). Mass spectrometric and amino acid analysis revealed that ßCys93 and ßCys112 were oxidized in the HbAo fraction, consistent with oxidative pathways driven by a ferrylHb and its protein radical. These amino acids were oxidized at a lesser extent in ßK82D fraction. While the 3 isolated components of Hb Providence exhibited similar ligand binding and oxidation reaction kinetics, the variant fractions were more effective in consuming H(2)O(2) and safely internalizing radicals through the ferric/ferryl pseudoperoxidase cycle.


Assuntos
Hemoglobina A/química , Hemoglobina A/metabolismo , Hemoglobina J/química , Hemoglobina J/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Óxidos N-Cíclicos , Ácido Cisteico/química , Dimerização , Globinas/química , Heme/química , Hemoglobina A/genética , Hemoglobina J/genética , Humanos , Técnicas In Vitro , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estresse Oxidativo , Estabilidade Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas , Espectrometria de Massas por Ionização por Electrospray , Marcadores de Spin , Espectrometria de Massas em Tandem
19.
Biochim Biophys Acta ; 1809(4-6): 262-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21558026

RESUMO

Hypoxia inducible factor (HIF-1α) is a master regulator of tissue adaptive responses to hypoxia whose stability is controlled by an iron containing prolyl hydroxylase domain (PHD) protein. A catalytic redox cycle in the PHD's iron center that results in the formation of a ferryl (Fe(+4)) intermediate has been reported to be responsible for the hydroxylation and subsequent degradation of HIF-1α under normoxia. We show that induction of HIF-1α in rat kidneys can be achieved by iron reduction by the hydroxypyridin-4 one (CP94), an iron chelator administered intraperitoneally in rats. The extent of HIF protein stabilization as well as the expression of HIF target genes, including erythropoietin (EPO), in kidney tissues was comparable to those induced by known inhibitors of the PHD enzyme, such as desferrioxamine (DFO) and cobalt chloride (CoCl(2)). In human kidney cells and in vitro PHD activity assay, we were able to show that the HIF-1α protein can be stabilized by addition of CP94. This appears to inactivate PHD; and thus prevents the hydroxylation of HIF-1α. In conclusion, we have identified the inhibition of iron-binding pocket of PHD as an underlying mechanism of HIF induction in vivo and in vitro by a bidentate hydroxypyridinone.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Quelantes de Ferro/farmacologia , Rim/efeitos dos fármacos , Piridonas/farmacologia , Animais , Sítios de Ligação , Western Blotting , Linhagem Celular , Cobalto/farmacologia , Deferiprona , Desferroxamina/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Hidroxilação/efeitos dos fármacos , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Injeções Intraperitoneais , Quelantes de Ferro/administração & dosagem , Rim/metabolismo , Pró-Colágeno-Prolina Dioxigenase/antagonistas & inibidores , Pró-Colágeno-Prolina Dioxigenase/genética , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Piridonas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sideróforos/farmacologia
20.
Antioxid Redox Signal ; 14(9): 1713-28, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20954814

RESUMO

Throughout their life span, circulating red blood cells (RBCs) transport oxygen (O(2)) primarily from the lungs to tissues and return with carbon dioxide (CO(2)) from respiring tissues for final elimination by lungs. This simplistic view of RBCs as O(2) transporter has changed in recent years as other gases, for example, nitric oxide (NO), and small molecules, such as adenosine triphosphate (ATP), have been shown to either be produced and/or carried by RBCs to perform other signaling and O(2) sensing functions. In spite of the numerous biochemical and metabolic changes occurring within RBCs during storage, prior to, and after transfusion, perturbations of RBC membrane are likely to affect blood flow in the microcirculation. Subsequent hemolysis due to storage conditions and/or hemolytic disorders may have some pathophysiological consequences as a result of the release of Hb. In this review, we show that evolution has provided a multitude of protection and intervention strategies against free Hb from "cradle" to "death"; from early biosynthesis to its final degradation and a lot more in between. Furthermore, some of the same naturally occurring protective mechanisms can potentially be employed to oxidatively inactivate this redox active protein and control its damaging side reactions when released outside of the RBC.


Assuntos
Eritrócitos/citologia , Eritrócitos/metabolismo , Animais , Preservação de Sangue , Senescência Celular/fisiologia , Hemoglobinas/metabolismo , Humanos , Microcirculação/fisiologia , Oxirredução , Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA