Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Sci Data ; 11(1): 496, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750041

RESUMO

Meningiomas are the most common primary intracranial tumors and can be associated with significant morbidity and mortality. Radiologists, neurosurgeons, neuro-oncologists, and radiation oncologists rely on brain MRI for diagnosis, treatment planning, and longitudinal treatment monitoring. However, automated, objective, and quantitative tools for non-invasive assessment of meningiomas on multi-sequence MR images are not available. Here we present the BraTS Pre-operative Meningioma Dataset, as the largest multi-institutional expert annotated multilabel meningioma multi-sequence MR image dataset to date. This dataset includes 1,141 multi-sequence MR images from six sites, each with four structural MRI sequences (T2-, T2/FLAIR-, pre-contrast T1-, and post-contrast T1-weighted) accompanied by expert manually refined segmentations of three distinct meningioma sub-compartments: enhancing tumor, non-enhancing tumor, and surrounding non-enhancing T2/FLAIR hyperintensity. Basic demographic data are provided including age at time of initial imaging, sex, and CNS WHO grade. The goal of releasing this dataset is to facilitate the development of automated computational methods for meningioma segmentation and expedite their incorporation into clinical practice, ultimately targeting improvement in the care of meningioma patients.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias Meníngeas , Meningioma , Meningioma/diagnóstico por imagem , Humanos , Neoplasias Meníngeas/diagnóstico por imagem , Masculino , Feminino , Processamento de Imagem Assistida por Computador/métodos , Pessoa de Meia-Idade , Idoso
2.
Med Phys ; 51(4): 2413-2423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431967

RESUMO

BACKGROUND: Individuals with asthma can vary widely in clinical presentation, severity, and pathobiology. Hyperpolarized xenon-129 (Xe129) MRI is a novel imaging method to provide 3-D mapping of both ventilation and gas exchange in the human lung. PURPOSE: To evaluate the functional changes in adults with asthma as compared to healthy controls using Xe129 MRI. METHODS: All subjects (20 controls and 20 asthmatics) underwent lung function measurements and Xe129 MRI on the same day. Outcome measures included the pulmonary ventilation defect and transfer of inspired Xe129 into two soluble compartments: tissue and blood. Ten asthmatics underwent Xe129 MRI before and after bronchodilator to test whether gas transfer measures change with bronchodilator effects. RESULTS: Initial analysis of the results revealed striking differences in gas transfer measures based on age, hence we compared outcomes in younger (n = 24, ≤ 35 years) versus older (n = 16, > 45 years) asthmatics and controls. The younger asthmatics exhibited significantly lower Xe129 gas uptake by lung tissue (Asthmatic: 0.98% ± 0.24%, Control: 1.17% ± 0.12%, P = 0.035), and higher Xe129 gas transfer from tissue to the blood (Asthmatic: 0.40 ± 0.10, Control: 0.31% ± 0.03%, P = 0.035) than the younger controls. No significant difference in Xe129 gas transfer was observed in the older group between asthmatics and controls (P > 0.05). No significant change in Xe129 transfer was observed before and after bronchodilator treatment. CONCLUSIONS: By using Xe129 MRI, we discovered heterogeneous alterations of gas transfer that have associations with age. This finding suggests a heretofore unrecognized physiological derangement in the gas/tissue/blood interface in young adults with asthma that deserves further study.


Assuntos
Asma , Broncodilatadores , Adulto Jovem , Humanos , Adulto , Broncodilatadores/uso terapêutico , Barreira Alveolocapilar , Pulmão/diagnóstico por imagem , Asma/diagnóstico por imagem , Asma/tratamento farmacológico , Isótopos de Xenônio , Imageamento por Ressonância Magnética/métodos , Xenônio/uso terapêutico
3.
ArXiv ; 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37608937

RESUMO

Meningiomas are the most common primary intracranial tumor in adults and can be associated with significant morbidity and mortality. Radiologists, neurosurgeons, neuro-oncologists, and radiation oncologists rely on multiparametric MRI (mpMRI) for diagnosis, treatment planning, and longitudinal treatment monitoring; yet automated, objective, and quantitative tools for non-invasive assessment of meningiomas on mpMRI are lacking. The BraTS meningioma 2023 challenge will provide a community standard and benchmark for state-of-the-art automated intracranial meningioma segmentation models based on the largest expert annotated multilabel meningioma mpMRI dataset to date. Challenge competitors will develop automated segmentation models to predict three distinct meningioma sub-regions on MRI including enhancing tumor, non-enhancing tumor core, and surrounding nonenhancing T2/FLAIR hyperintensity. Models will be evaluated on separate validation and held-out test datasets using standardized metrics utilized across the BraTS 2023 series of challenges including the Dice similarity coefficient and Hausdorff distance. The models developed during the course of this challenge will aid in incorporation of automated meningioma MRI segmentation into clinical practice, which will ultimately improve care of patients with meningioma.

4.
Radiol Cardiothorac Imaging ; 5(3): e220096, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37404786

RESUMO

Purpose: To assess the effect of lung volume on measured values and repeatability of xenon 129 (129Xe) gas uptake metrics in healthy volunteers and participants with chronic obstructive pulmonary disease (COPD). Materials and Methods: This Health Insurance Portability and Accountability Act-compliant prospective study included data (March 2014-December 2015) from 49 participants (19 with COPD [mean age, 67 years ± 9 (SD)]; nine women]; 25 older healthy volunteers [mean age, 59 years ± 10; 20 women]; and five young healthy women [mean age, 23 years ± 3]). Thirty-two participants underwent repeated 129Xe and same-breath-hold proton MRI at residual volume plus one-third forced vital capacity (RV+FVC/3), with 29 also undergoing one examination at total lung capacity (TLC). The remaining 17 participants underwent imaging at TLC, RV+FVC/3, and residual volume (RV). Signal ratios between membrane, red blood cell (RBC), and gas-phase compartments were calculated using hierarchical iterative decomposition of water and fat with echo asymmetry and least-squares estimation (ie, IDEAL). Repeatability was assessed using coefficient of variation and intraclass correlation coefficient, and volume relationships were assessed using Spearman correlation and Wilcoxon rank sum tests. Results: Gas uptake metrics were repeatable at RV+FVC/3 (intraclass correlation coefficient = 0.88 for membrane/gas; 0.71 for RBC/gas, and 0.88 for RBC/membrane). Relative ratio changes were highly correlated with relative volume changes for membrane/gas (r = -0.97) and RBC/gas (r = -0.93). Membrane/gas and RBC/gas measured at RV+FVC/3 were significantly lower in the COPD group than the corresponding healthy group (P ≤ .001). However, these differences lessened upon correction for individual volume differences (P = .23 for membrane/gas; P = .09 for RBC/gas). Conclusion: Dissolved-phase 129Xe MRI-derived gas uptake metrics were repeatable but highly dependent on lung volume during measurement.Keywords: Blood-Air Barrier, MRI, Chronic Obstructive Pulmonary Disease, Pulmonary Gas Exchange, Xenon Supplemental material is available for this article © RSNA, 2023.

5.
Tomography ; 8(5): 2574-2587, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36287814

RESUMO

3D Single-breath Chemical Shift Imaging (3D-SBCSI) is a hybrid MR-spectroscopic imaging modality that uses hyperpolarized xenon-129 gas (Xe-129) to differentiate lung diseases by probing functional characteristics. This study tests the efficacy of 3D-SBCSI in differentiating physiology among pulmonary diseases. A total of 45 subjects-16 healthy, 11 idiopathic pulmonary fibrosis (IPF), 13 cystic fibrosis (CF), and 5 chronic obstructive pulmonary disease (COPD)-were given 1/3 forced vital capacity (FVC) of hyperpolarized Xe-129, inhaled for a ~7 s MRI acquisition. Proton, Xe-129 ventilation, and 3D-SBCSI images were acquired with separate breath-holds using a radiofrequency chest coil tuned to Xe-129. The Xe-129 spectrum was analyzed in each lung voxel for ratios of spectroscopic peaks, chemical shifts, and T2* relaxation. CF and COPD subjects had significantly more ventilation defects than IPF and healthy subjects, which correlated with FEV1 predicted (R = -0.74). FEV1 predicted correlated well with RBC/Gas ratio (R = 0.67). COPD and IPF had significantly higher Tissue/RBC ratios than other subjects, longer RBC T2* relaxation times, and greater RBC chemical shifts. CF subjects had more ventilation defects than healthy subjects, elevated Tissue/RBC ratio, shorter Tissue T2* relaxation, and greater RBC chemical shift. 3D-SBCSI may be helpful in the detection and characterization of pulmonary disease, following treatment efficacy, and predicting disease outcomes.


Assuntos
Fibrose Cística , Fibrose Pulmonar Idiopática , Doença Pulmonar Obstrutiva Crônica , Humanos , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Prótons , Imageamento por Ressonância Magnética/métodos , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , Gases
6.
Acad Radiol ; 29 Suppl 2: S82-S90, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33487537

RESUMO

PURPOSE: In this study, we compared hyperpolarized 3He and 129Xe images from patients with cystic fibrosis using two commonly applied magnetic resonance sequences, standard gradient echo (GRE) and balanced steady-state free precession (TrueFISP) to quantify regional similarities and differences in signal distribution and defect analysis. MATERIALS AND METHODS: Ten patients (7M/3F) with cystic fibrosis underwent hyperpolarized gas MR imaging with both 3He and 129Xe. Six had MRI with both GRE, and TrueFISP sequences and four patients had only GRE sequence but not TrueFISP. Ventilation defect percentages (VDPs) were calculated as lung voxels with <60% of the whole-lung hyperpolarized gas signal mean and was measured in all datasets. The voxel signal distributions of both 129Xe and 3He gases were visualized and compared using violin plots. VDPs of hyperpolarized 3 He and 129 Xe were compared in Bland-Altman plots; Pearson correlation coefficients were used to evaluate the relationships between inter-gas and inter-scan to assess the reproducibility. RESULTS: A significant correlation was demonstrated between 129Xe VDP and 3He VDP for both GRE and TrueFISP sequences (ρ = 0.78, p<0.0004). The correlation between the GRE and TrueFISP VDP for 3He was ρ = 0.98 and was ρ = 0.91 for 129Xe. Overall, 129Xe (27.2±9.4) VDP was higher than 3He (24.3±6.9) VDP on average on cystic fibrosis patients. CONCLUSION: In patients with cystic fibrosis, the selection of hyperpolarized 129Xe or 3He gas is most likely inconsequential when it comes to measure the overall lung function by VDP although 129Xe may be more sensitive to starker lung defects, particularly when using a TrueFISP sequence.


Assuntos
Fibrose Cística , Fibrose Cística/diagnóstico por imagem , Hélio , Humanos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Masculino , Reprodutibilidade dos Testes , Isótopos de Xenônio
7.
Tomography ; 7(3): 452-465, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34564301

RESUMO

Idiopathic pulmonary fibrosis, a pattern of interstitial lung disease, is often clinically unpredictable in its progression. This paper presents hyperpolarized Xenon-129 chemical shift imaging as a noninvasive, nonradioactive method of probing lung physiology as well as anatomy to monitor subtle changes in subjects with IPF. Twenty subjects, nine healthy and eleven IPF, underwent HP Xe-129 ventilation MRI and 3D-SBCSI. Spirometry was performed on all subjects before imaging, and DLCO and hematocrit were measured in IPF subjects after imaging. Images were post-processed in MATLAB and segmented using ANTs. IPF subjects exhibited, on average, higher Tissue/Gas ratios and lower RBC/Gas ratios compared with healthy subjects, and quantitative maps were more heterogeneous in IPF subjects. The higher ratios are likely due to fibrosis and thickening of the pulmonary interstitium. T2* relaxation was longer in IPF subjects and corresponded with hematocrit scores, although the mechanism is not well understood. A lower chemical shift in the red blood cell spectroscopic peak correlated well with a higher Tissue/RBC ratio and may be explained by reduced blood oxygenation. Tissue/RBC also correlated well, spatially, with areas of fibrosis in HRCT images. These results may help us understand the underlying mechanism behind gas exchange impairment and disease progression.


Assuntos
Fibrose Pulmonar Idiopática , Isótopos de Xenônio , Humanos , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética
8.
Magn Reson Med ; 86(5): 2822-2836, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34227163

RESUMO

PURPOSE: To characterize the differences between histogram-based and image-based algorithms for segmentation of hyperpolarized gas lung images. METHODS: Four previously published histogram-based segmentation algorithms (ie, linear binning, hierarchical k-means, fuzzy spatial c-means, and a Gaussian mixture model with a Markov random field prior) and an image-based convolutional neural network were used to segment 2 simulated data sets derived from a public (n = 29 subjects) and a retrospective collection (n = 51 subjects) of hyperpolarized 129Xe gas lung images transformed by common MRI artifacts (noise and nonlinear intensity distortion). The resulting ventilation-based segmentations were used to assess algorithmic performance and characterize optimization domain differences in terms of measurement bias and precision. RESULTS: Although facilitating computational processing and providing discriminating clinically relevant measures of interest, histogram-based segmentation methods discard important contextual spatial information and are consequently less robust in terms of measurement precision in the presence of common MRI artifacts relative to the image-based convolutional neural network. CONCLUSIONS: Direct optimization within the image domain using convolutional neural networks leverages spatial information, which mitigates problematic issues associated with histogram-based approaches and suggests a preferred future research direction. Further, the entire processing and evaluation framework, including the newly reported deep learning functionality, is available as open source through the well-known Advanced Normalization Tools ecosystem.


Assuntos
Semântica , Isótopos de Xenônio , Algoritmos , Ecossistema , Humanos , Processamento de Imagem Assistida por Computador , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos Retrospectivos
9.
Thorax ; 76(2): 178-181, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139449

RESUMO

To investigate whether hyperpolarised xenon-129 MRI (HXeMRI) enables regional and physiological resolution of diffusing capacity limitations in chronic obstructive pulmonary disease (COPD), we evaluated 34 COPD subjects and 11 healthy volunteers. We report significant correlations between airflow abnormality quantified by HXeMRI and per cent predicted forced expiratory volume in 1 s; HXeMRI gas transfer capacity to red blood cells and carbon monoxide diffusion capacity (%DLCO); and HXeMRI gas transfer capacity to interstitium and per cent emphysema quantified by multidetector chest CT. We further demonstrate the capability of HXeMRI to distinguish varying pathology underlying COPD in subjects with low %DLCO and minimal emphysema.


Assuntos
Imageamento por Ressonância Magnética/métodos , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Troca Gasosa Pulmonar , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X , Isótopos de Xenônio
10.
J Magn Reson Imaging ; 52(5): 1306-1320, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31846139

RESUMO

Pulmonary MRI can now provide high-resolution images that are sensitive to early disease and specific to inflammation in cystic fibrosis (CF) lung disease. With specificity and function limited via computed tomography (CT), there are significant advantages to MRI. Many of the modern MRI techniques can be performed throughout life, and can be employed to understand changes over time, in addition to quantification of treatment response. Proton density and T1 /T2 contrast images can be obtained within a single breath-hold, providing depiction of structural abnormalities and active inflammation. Modern radial and/or spiral ultrashort echo-time (UTE) techniques rival CT in resolution for depiction and quantification of structure, for both airway and parenchymal abnormalities. Contrast perfusion MRI techniques are now utilized routinely to visualize changes in pulmonary and bronchial circulation that routinely occur in CF lung disease, and noncontrast techniques are moving closer to clinical translation. Functional information can be obtained from noncontrast proton images alone, using techniques such as Fourier decomposition. Hyperpolarized-gas MRI, increasingly using 129 Xe, is now becoming more widespread and has been demonstrated to have high sensitivity to early airway obstruction in CF via ventilation MRI. The sensitivity of 129 Xe MRI promises future use in personalized medicine, management of early CF lung disease, and in future clinical trials. By combining structural and functional techniques, with or without hyperpolarized gases, regional structure-function relationships can be obtained, giving insight into the pathophysiology of disease and improved clinical management. This article reviews the modern MRI techniques that can routinely be employed for CF lung disease in nearly any large medical center. Level of Evidence: 4 Technical Efficacy Stage: 5 J. Magn. Reson. Imaging 2019.


Assuntos
Fibrose Cística , Fibrose Cística/diagnóstico por imagem , Humanos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Respiração , Tomografia Computadorizada por Raios X
11.
Respir Res ; 20(1): 216, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31604436

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease involving progressive degeneration of lung capacity. Current diagnosis of IPF heavily relies on visual evaluation of fibrotic features in high-resolution computed tomography (HRCT) images of the lungs. Although the characteristics of this disease have been studied at the molecular and cellular levels, little is known about the mechanical characteristics of IPF lungs inferred from HRCT images. To this end, we performed a pilot study to investigate the radiographic and volumetric characteristics of lungs in subjects with IPF. METHODS: We collected HRCT images of healthy (N = 13) and IPF (N = 9) lungs acquired at breath-holds after full inspiration (expanded state) and full expiration (contracted state). We performed statistical analyses on Hounsfield unit (HU) histograms, lobar volumes (V: lobe volume normalized by the lung volume), and lobar flows (Q: the difference in lobe volume divided by the difference in lung volume between the expanded and contracted states). RESULTS: Parameters characterizing the HU histograms (i.e., mean, median, skewness, and kurtosis) significantly differed between healthy and IPF subjects, for all lobes in both expanded and contracted states. The distribution of V across lobes differed significantly between the groups in both states. The distribution of Q also differed significantly between the groups: Q values of the lower lobes for the IPF group were 33% (right) and 22% (left) smaller than those for the healthy group, consistent with the observation that radiographic scores were highest in the lower lung section in IPF. Notably, the root-mean-squared difference (RMSD) of Q, a measure of distance from the mean value of the healthy group, clearly distinguished the IPF subjects (RMSD of Q > 1.59) from the healthy group (RMSD of Q < 0.67). CONCLUSION: This study shows that lung volume and flow distribution change heterogeneously across the lung lobes of IPF subjects, with reduced capacity in the lower lobes. These volumetric changes may improve our understanding of the pathophysiology in IPF lungs.


Assuntos
Fibrose Pulmonar Idiopática/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Idoso , Feminino , Humanos , Fibrose Pulmonar Idiopática/fisiopatologia , Medidas de Volume Pulmonar , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Testes de Função Respiratória , Mecânica Respiratória
12.
Phys Med Biol ; 64(10): 105019, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30947154

RESUMO

The aim of this work was to develop a novel hybrid 3D hyperpolarized (HP) gas tagging MRI (t-MRI) technique and to evaluate it for lung respiratory motion measurement with comparison to deformable image registrations (DIR) methods. Three healthy subjects underwent a hybrid MRI which combines 3D HP gas t-MRI with a low resolution (Low-R, 4.5 mm isotropic voxels) 3D proton MRI (p-MRI), plus a high resolution (High-R, 2.5 mm isotropic voxels) 3D p-MRI, during breath-holds at the end-of-inhalation (EOI) and the end-of-exhalation (EOE). Displacement vector field (DVF) of the lung motion was determined from the t-MRI images by tracking tagging grids and from the High-R p-MRI using three DIR methods (B-spline based method implemented by Velocity, Free Form Deformation by MIM, and B-spline by an open source software Elastix: denoted as A, B, and C, respectively), labeled as tDVF and dDVF, respectively. The tDVF from the HP gas t-MRI was used as ground-truth reference to evaluate performance of the three DIR methods. Differences in both magnitude and angle between the tDVF and dDVFs were analyzed. The mean lung motion of the three subjects was 37.3 mm, 8.9 mm and 12.9 mm, respectively. Relatively large discrepancies were observed between the tDVF and the dDVFs as compared to previously reported DIR errors. The mean ± standard deviation (SD) DVF magnitude difference was 8.3 ± 5.6 mm, 9.2 ± 4.5 mm, and 9.3 ± 6.1 mm, and the mean ± SD DVF angular difference was 29.1 ± 12.1°, 50.1 ± 28.6°, and 39.0 ± 6.3°, for the DIR Methods A, B, and C, respectively. These preliminary results showed that the hybrid HP gas t-MRI technique revealed different lung motion patterns as compared to the DIR methods. It may provide unique perspectives in developing and evaluating DIR of the lungs. Novelty and Significance We designed a MRI protocol that includes a novel hybrid MRI technique (3D HP gas t-MRI with a low resolution 3D p-MRI) plus a high resolution 3D p-MRI. We tested the novel hybrid MRI technique on three healthy subjects for measuring regional lung respiratory motion with comparison to deformable image registrations (DIR) methods, and observed relatively large discrepancies in lung motion between HP gas t-MRI and DIR methods.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Pulmão/fisiologia , Imageamento por Ressonância Magnética/métodos , Prótons , Adulto , Estudos de Viabilidade , Feminino , Voluntários Saudáveis , Humanos , Pulmão/diagnóstico por imagem , Masculino , Projetos Piloto , Ventilação Pulmonar , Mecânica Respiratória , Adulto Jovem
14.
Acad Radiol ; 26(3): 355-366, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30522808

RESUMO

RATIONALE AND OBJECTIVES: Hyperpolarized xenon-129 magnetic resonance (MR) provides sensitive tools that may detect early stages of lung disease in smokers before it has progressed to chronic obstructive pulmonary disease (COPD) apparent to conventional spirometric measures. We hypothesized that the functional alveolar wall thickness as assessed by hyperpolarized xenon-129 MR spectroscopy would be elevated in clinically healthy smokers before xenon MR diffusion measurements would indicate emphysematous tissue destruction. MATERIALS AND METHODS: Using hyperpolarized xenon-129 MR we measured the functional septal wall thickness and apparent diffusion coefficient of the gas phase in 16 subjects with smoking-related COPD, 9 clinically healthy current or former smokers, and 10 healthy never smokers. All subjects were age-matched and characterized by conventional pulmonary function tests. A total of 11 data sets from younger healthy never smokers were added to determine the age dependence of the septal wall thickness measurements. RESULTS: In healthy never smokers the septal wall thickness increased by 0.04 µm per year of age. The healthy smoker cohort exhibited normal pulmonary function test measures that did not significantly differ from the never-smoker cohort. The age-corrected septal wall thickness correlated well with diffusion capacity for carbon monoxide (R2 = 0.56) and showed a highly significant difference between healthy subjects and COPD patients (8.8 µm vs 12.3 µm; p < 0.001), but was the only measure that actually discriminated healthy subjects from healthy smokers (8.8 µm vs 10.6 µm; p < 0.006). CONCLUSION: Functional alveolar wall thickness assessed by hyperpolarized xenon-129 MR allows discrimination between healthy subjects and healthy smokers and could become a powerful new measure of early-stage lung disease.


Assuntos
Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Alvéolos Pulmonares/patologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Adulto , Idoso , Estudos de Casos e Controles , Diagnóstico Precoce , Feminino , Humanos , Pulmão/fisiologia , Masculino , Pessoa de Meia-Idade , não Fumantes , Alvéolos Pulmonares/diagnóstico por imagem , Capacidade de Difusão Pulmonar , Fumantes , Fumar/fisiopatologia , Isótopos de Xenônio , Adulto Jovem
15.
Med Phys ; 45(12): 5535-5542, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30276819

RESUMO

BACKGROUND: Deformable image registration (DIR)-based lung ventilation mapping is attractive due to its simplicity, and also challenging due to its susceptibility to errors and uncertainties. In this study, we explored the use of 3D Hyperpolarized (HP) gas tagging MRI to evaluate DIR-based lung ventilation. METHOD AND MATERIAL: Three healthy volunteers included in this study underwent both 3D HP gas tagging MRI (t-MRI) and 3D proton MRI (p-MRI) using balanced steady-state free precession pulse sequence at end of inhalation and end of exhalation. We first obtained the reference displacement vector fields (DVFs) from the t-MRIs by tracking the motion of each tagging grid between the exhalation and the inhalation phases. Then, we determined DIR-based DVFs from the p-MRIs by registering the images at the two phases with two commercial DIR algorithms. Lung ventilations were calculated from both the reference DVFs and the DIR-based DVFs using the Jacobian method and then compared using cross correlation and mutual information. RESULTS: The DIR-based lung ventilations calculated using p-MRI varied considerably from the reference lung ventilations based on t-MRI among all three subjects. The lung ventilations generated using Velocity AI were preferable for the better spatial homogeneity and accuracy compared to the ones using MIM, with higher average cross correlation (0.328 vs 0.262) and larger average mutual information (0.528 vs 0.323). CONCLUSION: We demonstrated that different DIR algorithms resulted in different lung ventilation maps due to underlining differences in the DVFs. HP gas tagging MRI provides a unique platform for evaluating DIR-based lung ventilation.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Pulmão/diagnóstico por imagem , Pulmão/fisiologia , Imageamento por Ressonância Magnética , Ventilação Pulmonar , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
16.
Clin Imaging ; 45: 105-110, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28646735

RESUMO

PURPOSE: To develop and evaluate a protocol for hyperpolarized helium-3 (HHe) ventilation magnetic resonance imaging (MRI) of the lungs of non-sedated infants and children. MATERIALS AND METHODS: HHe ventilation MRI was performed on seven children ≤4years old. Contiguous 2D-spiral helium-3 images were acquired sequentially with a scan time of ≤0.2s/slice. RESULTS: Motion-artifact-free, high signal-to-noise ratio (SNR) images of lung ventilation were obtained. Gas was homogeneously distributed in healthy individuals; focal ventilation defects were found in patients with respiratory diseases. CONCLUSION: HHe ventilation MRI can aid assessment of pediatric lung disease even at a young age.


Assuntos
Hélio/farmacologia , Isótopos/farmacologia , Pneumopatias/diagnóstico , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Estudo de Prova de Conceito , Pré-Escolar , Diagnóstico Diferencial , Feminino , Humanos , Lactente , Masculino , Reprodutibilidade dos Testes
17.
J Thorac Imaging ; 32(5): 323-332, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28221241

RESUMO

PURPOSE: The aim of the study was to determine whether hyperpolarized He diffusion-weighted magnetic resonance imaging detects abnormalities in the lungs in children with bronchopulmonary dysplasia (BPD) as compared with age-matched normal children. MATERIALS AND METHODS: All experiments were compliant with Health Insurance Portability and Accountability Act (HIPAA) and performed with Food and Drug Administration approval under an IND application. The protocol was approved by our Institutional Review Board, and written informed consent was obtained. Hyperpolarized He diffusion-weighted magnetic resonance imaging was performed in 16 subjects with a history of preterm birth complicated by BPD (age range, 6.8 to 13.5 y; mean, 9.0 y) and in 29 healthy term-birth subjects (age range, 4.5-14.7 y; mean, 9.2 y) using a gradient-echo sequence with bipolar diffusion gradients and with measurements at 2 b values (0 and 1.6 s/cm). Age-related comparison of the whole-lung mean apparent diffusion coefficient (ADC), 90th percentile ADC, and percentage of whole-lung volume with ADC>0.2 cm/s between the 2 groups was examined using ordinary least-squares multiple regression. RESULTS: The mean ADC was significantly greater in subjects with BPD (0.187 vs. 0.152 cm/s, P<0.001). The 90th percentile ADC and mean percentage lung volume with ADC>0.2 cm/s were also higher in the BPD group (0.258 vs. 0.215 cm/s, 30.3% vs. 11.9%, P<0.001 for both). The body surface area-adjusted ventilated lung volume was similar in the 2 groups (1.93 vs. 1.91 L, P=0.90). CONCLUSIONS: Children with BPD had higher ADCs and the same lung volumes when compared with age-matched healthy subjects, suggesting that children with BPD have enlarged alveoli that are reduced in number.


Assuntos
Displasia Broncopulmonar/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Hélio , Isótopos , Pulmão/anormalidades , Pulmão/diagnóstico por imagem , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino
18.
J Cyst Fibros ; 16(2): 267-274, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28132845

RESUMO

BACKGROUND: This pilot study evaluated the effect of short- and long-term ivacaftor treatment on hyperpolarized 3He-magnetic resonance imaging (MRI)-defined ventilation defects in patients with cystic fibrosis aged ≥12years with a G551D-CFTR mutation. METHODS: Part A (single-blind) comprised 4weeks of ivacaftor treatment; Part B (open-label) comprised 48weeks of treatment. The primary outcome was change from baseline in total ventilation defect (TVD; total defect volume:total lung volume ratio). RESULTS: Mean change in TVD ranged from -8.2% (p=0.0547) to -12.8% (p=0.0078) in Part A (n=8) and -6.3% (p=0.1953) to -9.0% (p=0.0547) in Part B (n=8) as assessed by human reader and computer algorithm, respectively. CONCLUSIONS: TVD responded to ivacaftor therapy. 3He-MRI provides an individual quantification of disease burden that may be able to detect aspects of the disease missed by population-based spirometry metrics. Assessments by human reader and computer algorithm exhibit similar trends, but the latter appears more sensitive. www.clinicaltrials.gov identifier: NCT01161537.


Assuntos
Aminofenóis/administração & dosagem , Fibrose Cística , Imageamento por Ressonância Magnética/métodos , Ventilação Pulmonar , Quinolonas/administração & dosagem , Adulto , Agonistas dos Canais de Cloreto/administração & dosagem , Fibrose Cística/diagnóstico , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Esquema de Medicação , Monitoramento de Medicamentos/métodos , Feminino , Volume Expiratório Forçado/efeitos dos fármacos , Hélio/farmacologia , Humanos , Isótopos/farmacologia , Masculino , Pessoa de Meia-Idade , Mutação , Avaliação de Resultados em Cuidados de Saúde , Projetos Piloto , Ventilação Pulmonar/efeitos dos fármacos , Ventilação Pulmonar/fisiologia , Método Simples-Cego
19.
Magn Reson Med ; 77(1): 265-272, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26778748

RESUMO

PURPOSE: Chronic obstructive pulmonary disease (COPD) is an irreversible lung disease characterized by small-airway obstruction and alveolar-airspace destruction. Hyperpolarized 129 Xe diffusion MRI of lung is a promising biomarker for assessing airspace enlargement, but has yet to be validated by direct comparison to lung histology. Here we have compared diffusion measurements of hyperpolarized (HP) 129 Xe in explanted lungs to regionally matched morphological measures of airspace size. METHODS: Explanted lungs from five COPD patients and two idiopathic pulmonary fibrosis (IPF) patients were imaged using MRI with hyperpolarized 129 Xe using a two-b-value gradient-echo diffusion sequence, and 34 histological samples were taken from these lungs for quantitative histology. Mean-linear-intercept (Lm ) was compared with spatially matched measures of apparent diffusion coefficient (ADC) from 129 Xe MRI. RESULTS: The mean ADC from COPD lung samples was 0.071 ± 0.011 cm2 /s, and for IPF lungs was 0.033 ± 0.001 cm2 /s (P < 10-15 between groups). The mean Lm in COPD samples was 0.076 ± 0.027 cm and 0.041 ± 0.004 cm in IPF (P = 2.7 × 10-7 between groups). The Pearson-correlation between ADC and Lm measurements was r = 0.59. CONCLUSIONS: Diffusion MRI of HP 129 Xe quantifies regional airspace enlargement in COPD. 129 Xe ADC showed much less overlap between groups than quantitative histology, consistent with our past experience with 3 He diffusion MRI in COPD. Magn Reson Med 77:265-272, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Histocitoquímica/métodos , Processamento de Imagem Assistida por Computador/métodos , Pulmão/diagnóstico por imagem , Isótopos de Xenônio/química , Adulto , Idoso , Feminino , Humanos , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Pulmão/química , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem
20.
J Thorac Imaging ; 31(5): 285-95, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27428024

RESUMO

The assessment of early pulmonary disease and its severity can be difficult in young children, as procedures such as spirometry cannot be performed on them. Computed tomography provides detailed structural images of the pulmonary parenchyma, but its major drawback is that the patient is exposed to ionizing radiation. In this context, magnetic resonance imaging (MRI) is a promising technique for the evaluation of pediatric lung disease, especially when serial imaging is needed. Traditionally, MRI played a small role in evaluating the pulmonary parenchyma. Because of its low proton density, the lungs display low signal intensity on conventional proton-based MRI. Hyperpolarized (HP) gases are inhaled contrast agents with an excellent safety profile and provide high signal within the lung, allowing for high temporal and spatial resolution imaging of the lung airspaces. Besides morphologic information, HP MR images also offer valuable information about pulmonary physiology. HP gas MRI has already made new contributions to the understanding of pediatric lung diseases and may become a clinically useful tool. In this article, we discuss the HP gas MRI technique, special considerations that need to be made when imaging children, and the role of MRI in 2 of the most common chronic pediatric lung diseases, asthma and cystic fibrosis. We also will discuss how HP gas MRI may be used to evaluate normal lung growth and development and the alterations occurring in chronic lung disease of prematurity and in patients with a congenital diaphragmatic hernia.


Assuntos
Pneumopatias/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adolescente , Criança , Pré-Escolar , Humanos , Lactente , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA