Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Med Chem ; 15(6): 2045-2062, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38911150

RESUMO

Alzheimer's disease (AD) and cancer are among the most devastating diseases of the 21st century. Although the clinical manifestations are different and the cellular mechanisms underlying the pathologies are opposite, there are different classes of molecules that are effective in both diseases, such as quinone-based compounds and histone deacetylase inhibitors (HDACIs). Herein, we investigate the biological effects of a series of compounds built to exploit the beneficial effects of quinones and histone deacetylase inhibition (compounds 1-8). Among the different compounds, compound 6 turned out to be a potent cytotoxic agent in SH-SY5Y cancer cell line, with a half maximal inhibitory concentration (IC50) value lower than vorinostat and a pro-apoptotic activity. On the other hand, compound 8 was nontoxic up to the concentration of 100 µM and was highly effective in stimulating the proliferation of neural precursor cells (NPCs), as well as inducing differentiation into neurons, at low micromolar concentrations. In particular, it was able to induce NPC differentiation solely towards a neuronal-specific phenotype, without affecting glial cells commitment.

2.
Arch Pharm (Weinheim) ; 357(7): e2300575, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593283

RESUMO

A series of tacrine-donepezil hybrids were synthesized as potential multifunctional anti-Alzheimer's disease (AD) compounds. For this purpose, tacrine and the benzylpiperidine moiety of donepezil were fused with a hydrazone group to achieve a small library of tacrine-donepezil hybrids. In agreement with the design, all compounds showed inhibitory activity toward both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50 values in the low micromolar range. Kinetic studies on the most potent cholinesterase (ChE) inhibitors within the series showed a mixed-type inhibition mechanism on both enzymes. Also, the docking studies indicated that the compounds inhibit ChEs by dual binding site (DBS) interactions. Notably, tacrine-donepezil hybrids also exhibited significant neuroprotection against H2O2-induced cell death in a differentiated human neuroblastoma (SH-SY5Y) cell line at concentrations close to their IC50 values on ChEs and showed high to medium blood-brain barrier (BBB) permeability on human cerebral microvascular endothelial cells (HBEC-5i). Besides, the compounds do not cause remarkable toxicity in a human hepatocellular carcinoma cell line (HepG2) and SH-SY5Y cells. Additionally, the compounds were predicted to also have good bioavailability. Among the tested compounds, H4, H16, H17, and H24 stand out with their biological profile. Taken together, the proposed novel tacrine-donepezil scaffold represents a promising starting point for the development of novel anti-ChE multifunctional agents against AD.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Barreira Hematoencefálica , Butirilcolinesterase , Inibidores da Colinesterase , Donepezila , Desenho de Fármacos , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores , Tacrina , Tacrina/farmacologia , Tacrina/química , Humanos , Donepezila/farmacologia , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase/metabolismo , Relação Estrutura-Atividade , Acetilcolinesterase/metabolismo , Barreira Hematoencefálica/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Estrutura Molecular , Relação Dose-Resposta a Droga , Células Hep G2 , Linhagem Celular Tumoral
3.
Bioorg Med Chem ; 91: 117419, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37487339

RESUMO

Multi-target drug discovery is one of the most active fields in the search for new drugs against Alzheimer's disease (AD). This is because the complexity of AD pathological network might be adequately tackled by multi-target-directed ligands (MTDLs) aimed at modulating simultaneously multiple targets of such a network. In a continuation of our efforts to develop MTDLs for AD, we have been focusing on the molecular hybridization of the acetylcholinesterase inhibitor tacrine with the aim of expanding its anti-AD profile. Herein, we manipulated the structure of a previously developed tacrine-quinone hybrid (1). We designed and synthesized a novel set of MTDLs (2-6) by replacing the naphthoquinone scaffold of 1 with that of 2,5,8-quinolinetrione. The most interesting hybrid 3 inhibited cholinesterase enzymes at nanomolar concentrations. In addition, 3 exerted antioxidant effects in menadione-induced oxidative stress of SH-SY5Y cells. Importantly, 3 also showed low hepatotoxicity and good anti-amyloid aggregation properties. Remarkably, we uncovered the potential of the quinolinetrione scaffold, as a novel anti-amyloid aggregation and antioxidant motif to be used in further anti-AD MTDL drug discovery endeavors.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Tacrina/farmacologia , Tacrina/química , Doença de Alzheimer/tratamento farmacológico , Acetilcolinesterase , Ligantes , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Antioxidantes/farmacologia , Peptídeos beta-Amiloides
4.
ACS Chem Neurosci ; 14(11): 1963-1970, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37218653

RESUMO

Glycogen synthase kinase 3ß (GSK-3ß) is a serine/threonine kinase and an attractive therapeutic target for Alzheimer's disease. Based on proteolysis-targeting chimera (PROTAC) technology, a small set of novel GSK-3ß degraders was designed and synthesized by linking two different GSK-3ß inhibitors, SB-216763 and tideglusib, to pomalidomide, as E3 recruiting element, through linkers of different lengths. Compound 1 emerged as the most effective PROTAC being nontoxic up to 20 µM to neuronal cells and already able to degrade GSK-3ß starting from 0.5 µM in a dose-dependent manner. PROTAC 1 significantly reduced the neurotoxicity induced by Aß25-35 peptide and CuSO4 in SH-SY5Y cells in a dose-dependent manner. Based on its encouraging features, PROTAC 1 may serve as a starting point to develop new GSK-3ß degraders as potential therapeutic agents.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Doença de Alzheimer/tratamento farmacológico , Glicogênio Sintase Quinase 3 beta , Proteínas Serina-Treonina Quinases , Fosforilação
5.
Molecules ; 27(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36500608

RESUMO

The concept of polypharmacology embraces multiple drugs combined in a therapeutic regimen (drug combination or cocktail), fixed dose combinations (FDCs), and a single drug that binds to different targets (multi-target drug). A polypharmacology approach is widely applied in the treatment of acquired immunodeficiency syndrome (AIDS), providing life-saving therapies for millions of people living with HIV. Despite the success in viral load suppression and patient survival of combined antiretroviral therapy (cART), the development of new drugs has become imperative, owing to the emergence of resistant strains and poor adherence to cART. 3'-azido-2',3'-dideoxythymidine, also known as azidothymidine or zidovudine (AZT), is a widely applied starting scaffold in the search for new compounds, due to its good antiretroviral activity. Through the medicinal chemistry tool of molecular hybridization, AZT has been included in the structure of several compounds allowing for the development of multi-target-directed ligands (MTDLs) as antiretrovirals. This review aims to systematically explore and critically discuss AZT-based compounds as potential MTDLs for the treatment of AIDS. The review findings allowed us to conclude that: (i) AZT hybrids are still worth exploring, as they may provide highly active compounds targeting different steps of the HIV-1 replication cycle; (ii) AZT is a good starting point for the preparation of co-drugs with enhanced cell permeability.


Assuntos
Síndrome da Imunodeficiência Adquirida , Fármacos Anti-HIV , HIV-1 , Humanos , Zidovudina/farmacologia , Zidovudina/uso terapêutico , Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Farmacóforo , Carga Viral , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico
6.
ACS Chem Neurosci ; 13(15): 2252-2260, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35868251

RESUMO

Polypharmacology is a new trend in amyotrophic lateral sclerosis (ALS) therapy and an effective way of addressing a multifactorial etiology involving excitotoxicity, mitochondrial dysfunction, oxidative stress, and microglial activation. Inspired by a reported clinical trial, we converted a riluzole (1)-rasagiline (2) combination into single-molecule multi-target-directed ligands. By a ligand-based approach, the highly structurally integrated hybrids 3-8 were designed and synthesized. Through a target- and phenotypic-based screening pipeline, we identified hit compound 6. It showed monoamine oxidase A (MAO-A) inhibitory activity (IC50 = 6.9 µM) rationalized by in silico studies as well as in vitro brain permeability. By using neuronal and non-neuronal cell models, including ALS-patient-derived cells, we disclosed for 6 a neuroprotective/neuroinflammatory profile similar to that of the parent compounds and their combination. Furthermore, the unexpected MAO inhibitory activity of 1 (IC50 = 8.7 µM) might add a piece to the puzzle of its anti-ALS molecular profile.


Assuntos
Esclerose Lateral Amiotrófica , Fármacos Neuroprotetores , Esclerose Lateral Amiotrófica/tratamento farmacológico , Humanos , Indanos , Ligantes , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Riluzol/farmacologia , Riluzol/uso terapêutico
7.
Pharmaceutics ; 14(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35214125

RESUMO

The transcriptional regulators YAP (Yes-associated protein) and TAZ (transcriptional co-activator with PDZ-binding motif) are the major downstream effectors in the Hippo pathway and are involved in cancer progression through modulation of the activity of TEAD (transcriptional enhanced associate domain) transcription factors. To exploit the advantages of drug repurposing in the search of new drugs, we developed a similar approach for the identification of new hits interfering with TEAD target gene expression. In our study, a 27-member in-house library was assembled, characterized, and screened for its cancer cell growth inhibition effect. In a secondary luciferase-based assay, only seven compounds confirmed their specific involvement in TEAD activity. IA5 bearing a p-quinoid structure reduced the cytoplasmic level of phosphorylated YAP and the YAP-TEAD complex transcriptional activity and reduced cancer cell growth. IA5 is a promising hit compound for TEAD activity modulator development.

8.
Pharmaceutics ; 13(6)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201089

RESUMO

Vascular and traumatic injuries of the central nervous system are recognized as global health priorities. A polypharmacology approach that is able to simultaneously target several injury factors by the combination of agents having synergistic effects appears to be promising. Herein, we designed a polymeric delivery system loaded with two drugs, ibuprofen (Ibu) and thyroid hormone triiodothyronine (T3) to in vitro release the suitable amount of the anti-inflammation and the remyelination drug. As a production method, electrospinning technology was used. First, Ibu-loaded micro (diameter circa 0.95-1.20 µm) and nano (diameter circa 0.70 µm) fibers were produced using poly(l-lactide) PLLA and PLGA with different lactide/glycolide ratios (50:50, 75:25, and 85:15) to select the most suitable polymer and fiber diameter. Based on the in vitro release results and in-house knowledge, PLLA nanofibers (mean diameter = 580 ± 120 nm) loaded with both Ibu and T3 were then successfully produced by a co-axial electrospinning technique. The in vitro release studies demonstrated that the final Ibu/T3 PLLA system extended the release of both drugs for 14 days, providing the target sustained release. Finally, studies in cell cultures (RAW macrophages and neural stem cell-derived oligodendrocyte precursor cells-OPCs) demonstrated the anti-inflammatory and promyelinating efficacy of the dual drug-loaded delivery platform.

9.
Curr Med Chem ; 28(38): 7910-7936, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33820509

RESUMO

BACKGROUND: Molecules with a phenothiazine scaffold have been considered versatile organic structures with a wide variety of biological activities, such as antipsychotic, anticancer, antibacterial, antifungal, antiviral, anti-inflammatory, antimalarial, and trypanocidal, etc. It was first discovered in the 19th century as a histochemical dye, phenothiazine methylene blue. Since then, its derivatives have been studied, showing new activities; moreover, they have also been repurposed. OBJECTIVE: This review aims to describe the main synthetic routes of phenothiazines and, particularly, the anticancer and antiprotozoal activities reported during the second decade of the 2000s (2010 - 2020). RESULTS: Several studies on phenothiazines against cancer and protozoa have revealed that these compounds show IC50 values in the micromolar and near nanomolar range. The structural analyses have revealed that compounds bearing halogens or electron-withdrawing groups at 2-position have favorable anticancer activity. Phenothiazine dyes have shown a photosensitizing activity against trypanosomatids at a micromolar range. Tetra and pentacyclic azaphenothiazines are structures with a high broad-spectrum anticancer activity. CONCLUSION: The phenothiazine scaffold is favorable for developing anticancer agents, especially those bearing halogens and electron-withdrawing groups bound at 2-position with enhanced biological activities through a variety of aromatic, aliphatic and heterocyclic substituents in the thiazine nitrogen. Further studies are warranted along these investigation lines to attain more active anticancer and antiprotozoal compounds with minimal to negligible cytotoxicity.


Assuntos
Antineoplásicos , Antiprotozoários , Antipsicóticos , Antineoplásicos/farmacologia , Antiprotozoários/farmacologia , Antipsicóticos/farmacologia , Química Farmacêutica , Humanos , Fenotiazinas/farmacologia , Relação Estrutura-Atividade
10.
Molecules ; 26(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669839

RESUMO

Despite Alzheimer's disease (AD) incidence being projected to increase worldwide, the drugs currently on the market can only mitigate symptoms. Considering the failures of the classical paradigm "one target-one drug-one disease" in delivering effective medications for AD, polypharmacology appears to be a most viable therapeutic strategy. Polypharmacology can involve combinations of multiple drugs and/or single chemical entities modulating multiple targets. Taking inspiration from an ongoing clinical trial, this work aims to convert a promising cromolyn-ibuprofen drug combination into single-molecule "codrugs." Such codrugs should be able to similarly modulate neuroinflammatory and amyloid pathways, while showing peculiar pros and cons. By exploiting a linking strategy, we designed and synthesized a small set of cromolyn-ibuprofen conjugates (4-6). Preliminary plasma stability and neurotoxicity assays allowed us to select diamide 5 and ethanolamide 6 as promising compounds for further studies. We investigated their immunomodulatory profile in immortalized microglia cells, in vitro anti-aggregating activity towards Aß42-amyloid self-aggregation, and their cellular neuroprotective effect against Aß42-induced neurotoxicity. The fact that 6 effectively reduced Aß-induced neuronal death, prompted its investigation into an in vivo model. Notably, 6 was demonstrated to significantly increase the longevity of Aß42-expressing Drosophila and to improve fly locomotor performance.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Cromolina Sódica/uso terapêutico , Ibuprofeno/uso terapêutico , Polifarmacologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromolina Sódica/síntese química , Cromolina Sódica/química , Cromolina Sódica/farmacologia , Drosophila/efeitos dos fármacos , Desenho de Fármacos , Endocitose/efeitos dos fármacos , Ibuprofeno/síntese química , Ibuprofeno/química , Ibuprofeno/farmacologia , Imunomodulação/efeitos dos fármacos , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/toxicidade , Agregados Proteicos/efeitos dos fármacos , Ratos Wistar
11.
ChemMedChem ; 16(1): 187-198, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-32716144

RESUMO

Thanks to the widespread use and safety profile of donepezil (1) in the treatment of Alzheimer's disease (AD), one of the most widely adopted multi-target-directed ligand (MTDL) design strategies is to modify its molecular structure by linking a second fragment carrying an additional AD-relevant biological property. Herein, supported by a proposed combination therapy of 1 and the quinone drug idebenone, we rationally designed novel 1-based MTDLs targeting Aß and oxidative pathways. By exploiting a bioisosteric replacement of the indanone core of 1 with a 1,4-naphthoquinone, we ended up with a series of highly merged derivatives, in principle devoid of the "physicochemical challenge" typical of large hybrid-based MTDLs. A preliminary investigation of their multi-target profile identified 9, which showed a potent and selective butyrylcholinesterase inhibitory activity, together with antioxidant and antiaggregating properties. In addition, it displayed a promising drug-like profile.


Assuntos
Donepezila/química , Ligantes , Fármacos Neuroprotetores/química , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Donepezila/metabolismo , Donepezila/farmacologia , Donepezila/uso terapêutico , Desenho de Fármacos , Humanos , Indanos/química , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade
12.
ACS Med Chem Lett ; 11(12): 2406-2413, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33329762

RESUMO

Multiple sclerosis (MS) is a complex inflammatory, degenerative, and demyelinating disease of the central nervous system. Although treatments exist, MS cannot be cured by available drugs, which primarily target neuroinflammation. Thus, it is feasible that a well concerted polypharmacological approach able to act at multiple points within the intricate network of inflammation, neurodegeneration, and demyelination/remyelination pathways would succeed where other drugs have failed. Starting from reported beneficial effects of α-linolenic acid (ALA) and valproic acid (VPA) in MS, and by applying a rational strategy, we developed a small set of codrugs obtained by conjugating VPA and ALA through proper linkers. A cellular profiling identified 1 as a polypharmacological tool able not only to modulate microglia polarization, but also to counteract neurodegeneration and demyelination and induce oligodendrocyte precursor cell differentiation, by acting on multiple biochemical and epigenetic pathways.

13.
Eur J Med Chem ; 196: 112295, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32325366

RESUMO

Prion diseases or transmissible spongiform encephalopathies (TSEs) are a group of rare neurodegenerative disorders. TSEs are characterized by the accumulation of prions (PrPSc) that represent pathological isoforms of the physiological cellular prion protein PrPC. Although the conversion of PrPC to PrPSc is still not completely understood, blocking this process may lead to develop new therapies. Here, we have generated a pharmacophore model, based on anti-prion molecules reported in literature to be effective in phenotypic assay. The model was used to conduct a virtual screen of commercial compound databases that selected a small library of ten compounds. These molecules were then screened in mouse neuroblastoma cell line chronically infected with prions (ScN2a) after excluding neurotoxicity. 1 has been identified as the therapeutic hit on the basis of the following evidence: chronic treatments of ScN2a cells using 1 eliminate PrPSc loaded in both Western blotting analysis and Real-Time Quaking-Induced Conversion (RT-QuIC) assay. We also proposed the mechanism of action of 1 by which it has the ability to bind PrPC and consequentially blocks prion conversion. Herein we describe the results of these efforts.


Assuntos
Fenotiazinas/farmacologia , Proteínas Priônicas/antagonistas & inibidores , Animais , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Camundongos , Modelos Moleculares , Estrutura Molecular , Fenotiazinas/química , Proteínas Priônicas/isolamento & purificação , Proteínas Priônicas/metabolismo , Relação Quantitativa Estrutura-Atividade
14.
Bioorg Chem ; 98: 103753, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32200328

RESUMO

Our goal was the evaluation of a series of N-1,2,3-triazole-isatin derivatives for multi-target activity which included cholinesterase (ChE) inhibition and ß-amyloid (Aß) peptide anti-aggregation. The compounds have shown considerable promise as butyrylcholinesterase (BuChE) inhibitors. Although the inhibition of eel acetylcholinesterase (eeAChE) was weak, the inhibitions against equine BuChE (eqBuChE) and human BuChE (hBuChE) were more significant with a best inhibition against eqBuChE of 0.46 µM. In some cases, these molecules gave better inhibitions for hBuChE than eqBuChE. For greater insights into their mode of action, molecular docking studies were carried out, followed by STD-NMR validation. In addition, some of these compounds showed weak Aß anti-aggregation activity. Hepatotoxicity studies showed that they were non-hepatoxic and neurotoxicity studies using neurite outgrowth experiments led to the conclusion that these compounds are only weakly neurotoxic.


Assuntos
Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Isatina/farmacologia , Triazóis/farmacologia , Peptídeos beta-Amiloides/metabolismo , Animais , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Electrophorus , Células Hep G2 , Cavalos , Humanos , Isatina/química , Estrutura Molecular , Agregados Proteicos , Relação Estrutura-Atividade , Triazóis/química
15.
Eur J Med Chem ; 189: 112047, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31982652

RESUMO

The LIBRA compound library is a collection of 522 non-commercial molecules contributed by various Italian academic laboratories. These compounds have been designed and synthesized during different medicinal chemistry programs and are hosted by the Italian Institute of Technology. We report the screening of the LIBRA compound library against Trypanosoma brucei and Leishmania major pteridine reductase 1, TbPTR1 and LmPTR1. Nine compounds were active against parasitic PTR1 and were selected for cell-based parasite screening, as single agents and in combination with methotrexate (MTX). The most interesting TbPTR1 inhibitor identified was 4-(benzyloxy)pyrimidine-2,6-diamine (LIB_66). Subsequently, six new LIB_66 derivatives were synthesized to explore its Structure-Activity-Relationship (SAR) and absorption, distribution, metabolism, excretion and toxicity (ADMET) properties. The results indicate that PTR1 has a preference to bind inhibitors, which resemble its biopterin/folic acid substrates, such as the 2,4-diaminopyrimidine derivatives.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Macrófagos/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Pirimidinas/química , Trypanosoma brucei brucei/enzimologia , Células A549 , Antimetabólitos Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células , Sinergismo Farmacológico , Inibidores Enzimáticos/química , Humanos , Metotrexato/farmacologia , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
16.
Eur J Med Chem ; 182: 111596, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31419776

RESUMO

Facing the complexity of Alzheimer's disease (AD), it is now currently admitted that a therapeutic pleiotropic intervention is needed to alter its progression. Among the major hallmarks of the disease, the amyloid pathology and the oxidative stress are closely related. We propose in this study to develop original Multi-Target Directed Ligands (MTDL) able to impact at the same time Aß protein accumulation and toxicity of Reactive Oxygen Species (ROS) in neuronal cells. Such MTDL were obtained by linking on a central piperidine two scaffolds of interest: a typical aminochlorobenzophenone present in numerous 5-HT4R agonists, and diverse antioxidant chemotypes. Interestingly, the most active compound 9g possesses a Ki of 12.7 nM towards 5-HT4R and an antioxidant activity in vitro and in cellulo.


Assuntos
Antioxidantes/farmacologia , Receptores 5-HT4 de Serotonina/metabolismo , Agonistas do Receptor 5-HT4 de Serotonina/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Antioxidantes/síntese química , Antioxidantes/química , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/metabolismo , Células COS , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Estrutura Molecular , Picratos/antagonistas & inibidores , Picratos/metabolismo , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Agonistas do Receptor 5-HT4 de Serotonina/síntese química , Agonistas do Receptor 5-HT4 de Serotonina/química , Relação Estrutura-Atividade
17.
ACS Med Chem Lett ; 10(3): 273-275, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30891125

RESUMO

Polypharmacology has expanded enormously over the last ten years, with several multitarget drugs (MTDs) already in the market. This Viewpoint provides a basis for a discussion about the critical need to develop MTDs in a more rationale and conscious way. A checklist to maximize success in polypharmacology is proposed.

18.
ChemMedChem ; 14(6): 621-635, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30664325

RESUMO

In the search for effective and sustainable drugs for human African trypanosomiasis (HAT), we developed hybrid compounds by merging the structural features of quinone 4 (2-phenoxynaphthalene-1,4-dione) with those of phenolic constituents from cashew nut shell liquid (CNSL). CNSL is a waste product from cashew nut processing factories, with great potential as a source of drug precursors. The synthesized compounds were tested against Trypanosoma brucei brucei, including three multidrug-resistant strains, T. congolense, and a human cell line. The most potent activity was found against T. b. brucei, the causative agent of HAT. Shorter-chain derivatives 20 (2-(3-(8-hydroxyoctyl)phenoxy)-5-methoxynaphthalene-1,4-dione) and 22 (5-hydroxy-2-(3-(8-hydroxyoctyl)phenoxy)naphthalene-1,4-dione) were more active than 4, displaying rapid micromolar trypanocidal activity, and no human cytotoxicity. Preliminary studies probing their mode of action on trypanosomes showed ATP depletion, followed by mitochondrial membrane depolarization and mitochondrion ultrastructural damage. This was accompanied by reactive oxygen species production. We envisage that such compounds, obtained from a renewable and inexpensive material, might be promising bio-based sustainable hits for anti-trypanosomatid drug discovery.


Assuntos
Trifosfato de Adenosina/biossíntese , Anacardium/química , Descoberta de Drogas , Mitocôndrias/efeitos dos fármacos , Extratos Vegetais/farmacologia , Tripanossomicidas/química , Tripanossomicidas/uso terapêutico , Trypanosoma brucei brucei/efeitos dos fármacos , Tripanossomíase/tratamento farmacológico , Animais , Humanos , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/microbiologia
19.
ACS Chem Neurosci ; 10(1): 279-294, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30253086

RESUMO

Overcoming the lack of effective treatments and the continuous clinical trial failures in neurodegenerative drug discovery might require a shift from the prevailing paradigm targeting pathogenesis to the one targeting simultaneously neuroprotection and neuroregeneration. In the studies reported herein, we sought to identify small molecules that might exert neuroprotective and neuroregenerative potential as tools against neurodegenerative diseases. In doing so, we started from the reported neuroprotective/neuroregenerative mechanisms of psychotropic drugs featuring a tricyclic alkylamine scaffold. Thus, we designed a focused-chemical library of 36 entries aimed at exploring the structural requirements for efficient neuroprotective/neuroregenerative cellular activity, without the manifestation of toxicity. To this aim, we developed a synthetic protocol, which overcame the limited applicability of previously reported procedures. Next, we evaluated the synthesized compounds through a phenotypic screening pipeline, based on primary neuronal systems. Phenothiazine 2Bc showed improved neuroregenerative and neuroprotective properties with respect to reference drug desipramine (2Aa). Importantly, we have also shown that 2Bc outperformed currently available drugs in cell models of Alzheimer's and Parkinson's diseases and attenuates microglial activation by reducing iNOS expression.


Assuntos
Descoberta de Drogas/métodos , Regeneração Nervosa/efeitos dos fármacos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Psicotrópicos/química , Psicotrópicos/farmacologia , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regeneração Nervosa/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar
20.
Cancers (Basel) ; 10(9)2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30223434

RESUMO

Drug repurposing is a fast and consolidated approach for the research of new active compounds bypassing the long streamline of the drug discovery process. Several drugs in clinical practice have been reported for modulating the major Hippo pathway's terminal effectors, namely YAP (Yes1-associated protein), TAZ (transcriptional co-activator with PDZ-binding motif) and TEAD (transcriptional enhanced associate domains), which are directly involved in the regulation of cell growth and tissue homeostasis. Since this pathway is known to have many cross-talking phenomena with cell signaling pathways, many efforts have been made to understand its importance in oncology. Moreover, this could be relevant to obtain new molecular tools and potential therapeutic assets. In this review, we discuss the main mechanisms of action of the best-known compounds, clinically approved or investigational drugs, able to cross-talk and modulate the Hippo pathway, as an attractive strategy for the discovery of new potential lead compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA