Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38766133

RESUMO

Over the past decade, the connection between APOBEC3 cytosine deaminases and cancer mutagenesis has become increasingly apparent. This growing awareness has created a need for biochemical tools that can be used to identify and characterize potential inhibitors of this enzyme family. In response to this challenge, we have developed a Real-time APOBEC3-mediated DNA Deamination (RADD) assay. This assay offers a single-step set-up and real-time fluorescent read-out, and it is capable of providing insights into enzyme kinetics and also offering a high-sensitivity and easily scalable method for identifying APOBEC3 inhibitors. This assay serves as a crucial addition to the existing APOBEC3 biochemical and cellular toolkit and possesses the versatility to be readily adapted into a high-throughput format for inhibitor discovery.

2.
J Biol Chem ; 300(6): 107410, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38796062

RESUMO

Over the past decade, the connection between APOBEC3 cytosine deaminases and cancer mutagenesis has become increasingly apparent. This growing awareness has created a need for biochemical tools that can be used to identify and characterize potential inhibitors of this enzyme family. In response to this challenge, we have developed a Real-time APOBEC3-mediated DNA Deamination assay. This assay offers a single-step set-up and real-time fluorescent read-out, and it is capable of providing insights into enzyme kinetics. The assay also offers a high-sensitivity and easily scalable method for identifying APOBEC3 inhibitors. This assay serves as a crucial addition to the existing APOBEC3 biochemical and cellular toolkit and possesses the versatility to be readily adapted into a high-throughput format for inhibitor discovery.


Assuntos
Citidina Desaminase , DNA , Humanos , Desaminação , Citidina Desaminase/metabolismo , DNA/metabolismo , DNA/química , Cinética , Desaminases APOBEC/metabolismo , Inibidores Enzimáticos/farmacologia
3.
bioRxiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38746158

RESUMO

Acquired genetic alterations commonly drive resistance to endocrine and targeted therapies in metastatic breast cancer 1-7 , however the underlying processes engendering these diverse alterations are largely uncharacterized. To identify the mutational processes operant in breast cancer and their impact on clinical outcomes, we utilized a well-annotated cohort of 3,880 patient samples with paired tumor-normal sequencing data. The mutational signatures associated with apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) enzymes were highly prevalent and enriched in post-treatment compared to treatment-naïve hormone receptor-positive (HR+) cancers. APOBEC3 mutational signatures were independently associated with shorter progression-free survival on antiestrogen plus CDK4/6 inhibitor combination therapy in patients with HR+ metastatic breast cancer. Whole genome sequencing (WGS) of breast cancer models and selected paired primary-metastatic samples demonstrated that active APOBEC3 mutagenesis promoted resistance to both endocrine and targeted therapies through characteristic alterations such as RB1 loss-of-function mutations. Evidence of APOBEC3 activity in pre-treatment samples illustrated a pervasive role for this mutational process in breast cancer evolution. The study reveals APOBEC3 mutagenesis to be a frequent mediator of therapy resistance in breast cancer and highlights its potential as a biomarker and target for overcoming resistance.

4.
Res Sq ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38496447

RESUMO

Two APOBEC (apolipoprotein-B mRNA editing enzyme catalytic polypeptide-like) DNA cytosine deaminase enzymes (APOBEC3A and APOBEC3B) generate somatic mutations in cancer, driving tumour development and drug resistance. Here we used single cell RNA sequencing to study APOBEC3A and APOBEC3B expression in healthy and malignant mucosal epithelia, validating key observations with immunohistochemistry, spatial transcriptomics and functional experiments. Whereas APOBEC3B is expressed in keratinocytes entering mitosis, we show that APOBEC3A expression is confined largely to terminally differentiating cells and requires Grainyhead-like transcription factor 3 (GRHL3). Thus, in normal tissue, neither deaminase appears to be expressed at high levels during DNA replication, the cell cycle stage associated with APOBEC-mediated mutagenesis. In contrast, we show that in squamous cell carcinoma tissues, there is expansion of GRHL3 expression and activity to a subset of cells undergoing DNA replication and concomitant extension of APOBEC3A expression to proliferating cells. These findings indicate a mechanism for acquisition of APOBEC3A mutagenic activity in tumours.

5.
Urolithiasis ; 52(1): 36, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376662

RESUMO

Kidney stones have a prevalence rate of > 10% in some countries. There has been a significant increase in surgery to treat kidney stones over the last 10 years, and it is crucial that such techniques are as effective as possible, while limiting complications. A selection of kidney stones with different chemical and structural properties were subjected to compression. Under compression, they emit acoustic signals called crackling noise. The variability of the crackling noise was surprisingly great comparing weddellite, cystine and uric acid stones. Two types of signals were found in all stones. At high energies of the emitted sound waves, we found avalanche behaviour, while all stones also showed signals of local, uncorrelated collapse. These two types of events are called 'wild' for avalanches and 'mild' for uncorrelated events. The key observation is that the crossover from mild to wild collapse events differs greatly between different stones. Weddellite showed brittle collapse, extremely low crossover energies (< 5 aJ) and wild avalanches over 6 orders of magnitude. In cystine and uric acid stones, the collapse was more complicated with a dominance of local "mild" breakings, although they all contained some stress-induced collective avalanches. Cystine stones had high crossover energies, typically [Formula: see text] 750 aJ, and a narrow window over which they showed wild avalanches. Uric acid stones gave moderate values of crossover energies, [Formula: see text] 200 aJ, and wild avalanche behaviour for [Formula: see text] 3 orders of magnitude. Further research extended to all stone types, and measurement of stone responses to different lithotripsy strategies, will assist in optimisation of settings of the laser and other lithotripsy devices to insight fragmentation by targeting the 'wild' avalanche regime.


Assuntos
Oxalato de Cálcio , Cistina , Cálculos Renais , Humanos , Ácido Úrico , Acústica
6.
PLoS Genet ; 19(11): e1011043, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38033156

RESUMO

A prominent source of mutation in cancer is single-stranded DNA cytosine deamination by cellular APOBEC3 enzymes, which results in signature C-to-T and C-to-G mutations in TCA and TCT motifs. Although multiple enzymes have been implicated, reports conflict and it is unclear which protein(s) are responsible. Here we report the development of a selectable system to quantify genome mutation and demonstrate its utility by comparing the mutagenic activities of three leading candidates-APOBEC3A, APOBEC3B, and APOBEC3H. The human cell line, HAP1, is engineered to express the thymidine kinase (TK) gene of HSV-1, which confers sensitivity to ganciclovir. Expression of APOBEC3A and APOBEC3B, but not catalytic mutant controls or APOBEC3H, triggers increased frequencies of TK mutation and similar TC-biased cytosine mutation profiles in the selectable TK reporter gene. Whole genome sequences from independent clones enabled an analysis of thousands of single base substitution mutations and extraction of local sequence preferences with APOBEC3A preferring YTCW motifs 70% of the time and APOBEC3B 50% of the time (Y = C/T; W = A/T). Signature comparisons with breast tumor whole genome sequences indicate that most malignancies manifest intermediate percentages of APOBEC3 signature mutations in YTCW motifs, mostly between 50 and 70%, suggesting that both enzymes contribute in a combinatorial manner to the overall mutation landscape. Although the vast majority of APOBEC3A- and APOBEC3B-induced single base substitution mutations occur outside of predicted chromosomal DNA hairpin structures, whole genome sequence analyses and supporting biochemical studies also indicate that both enzymes are capable of deaminating the single-stranded loop regions of DNA hairpins at elevated rates. These studies combine to help resolve a long-standing etiologic debate on the source of APOBEC3 signature mutations in cancer and indicate that future diagnostic and therapeutic efforts should focus on both APOBEC3A and APOBEC3B.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Mutação , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Linhagem Celular , DNA/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Citosina/metabolismo
7.
Nat Genet ; 55(10): 1721-1734, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37735199

RESUMO

The single-stranded DNA cytosine-to-uracil deaminase APOBEC3B is an antiviral protein implicated in cancer. However, its substrates in cells are not fully delineated. Here APOBEC3B proteomics reveal interactions with a surprising number of R-loop factors. Biochemical experiments show APOBEC3B binding to R-loops in cells and in vitro. Genetic experiments demonstrate R-loop increases in cells lacking APOBEC3B and decreases in cells overexpressing APOBEC3B. Genome-wide analyses show major changes in the overall landscape of physiological and stimulus-induced R-loops with thousands of differentially altered regions, as well as binding of APOBEC3B to many of these sites. APOBEC3 mutagenesis impacts genes overexpressed in tumors and splice factor mutant tumors preferentially, and APOBEC3-attributed kataegis are enriched in RTCW motifs consistent with APOBEC3B deamination. Taken together with the fact that APOBEC3B binds single-stranded DNA and RNA and preferentially deaminates DNA, these results support a mechanism in which APOBEC3B regulates R-loops and contributes to R-loop mutagenesis in cancer.


Assuntos
Neoplasias , Estruturas R-Loop , Humanos , DNA de Cadeia Simples/genética , Estudo de Associação Genômica Ampla , Mutagênese , Neoplasias/genética , Neoplasias/patologia , Citidina Desaminase/genética , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo
8.
mBio ; 14(4): e0078223, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37555667

RESUMO

HIV-1 must overcome multiple innate antiviral mechanisms to replicate in CD4+ T lymphocytes and macrophages. Previous studies have demonstrated that the apolipoprotein B mRNA editing enzyme polypeptide-like 3 (APOBEC3, A3) family of proteins (at least A3D, A3F, A3G, and stable A3H haplotypes) contribute to HIV-1 restriction in CD4+ T lymphocytes. Virus-encoded virion infectivity factor (Vif) counteracts this antiviral activity by degrading A3 enzymes allowing HIV-1 replication in infected cells. In addition to A3 proteins, Vif also targets other cellular proteins in CD4+ T lymphocytes, including PPP2R5 proteins. However, whether Vif primarily degrades only A3 proteins during viral replication is currently unknown. Herein, we describe the development and characterization of A3F-, A3F/A3G-, and A3A-to-A3G-null THP-1 cells. In comparison to Vif-proficient HIV-1, Vif-deficient viruses have substantially reduced infectivity in parental and A3F-null THP-1 cells, and a more modest decrease in infectivity in A3F/A3G-null cells. Remarkably, disruption of A3A-A3G protein expression completely restores the infectivity of Vif-deficient viruses in THP-1 cells. These results indicate that the primary function of Vif during infectious HIV-1 production from THP-1 cells is the targeting and degradation of A3 enzymes. IMPORTANCE HIV-1 Vif neutralizes the HIV-1 restriction activity of A3 proteins. However, it is currently unclear whether Vif has additional essential cellular targets. To address this question, we disrupted A3A to A3G genes in the THP-1 myeloid cell line using CRISPR and compared the infectivity of wild-type HIV-1 and Vif mutants with the selective A3 neutralization activities. Our results demonstrate that the infectivity of Vif-deficient HIV-1 and the other Vif mutants is fully restored by ablating the expression of cellular A3A to A3G proteins. These results indicate that A3 proteins are the only essential target of Vif that is required for fully infectious HIV-1 production from THP-1 cells.


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/fisiologia , Citidina Desaminase/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Ligação Proteica , Desaminase APOBEC-3G/metabolismo , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Linhagem Celular , Células Mieloides/metabolismo , Vírion/metabolismo , Desaminases APOBEC/metabolismo
9.
Int J Mol Sci ; 24(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298259

RESUMO

Although the APOBEC3 family of single-stranded DNA cytosine deaminases is well-known for its antiviral factors, these enzymes are rapidly gaining attention as prominent sources of mutation in cancer. APOBEC3's signature single-base substitutions, C-to-T and C-to-G in TCA and TCT motifs, are evident in over 70% of human malignancies and dominate the mutational landscape of numerous individual tumors. Recent murine studies have established cause-and-effect relationships, with both human APOBEC3A and APOBEC3B proving capable of promoting tumor formation in vivo. Here, we investigate the molecular mechanism of APOBEC3A-driven tumor development using the murine Fah liver complementation and regeneration system. First, we show that APOBEC3A alone is capable of driving tumor development (without Tp53 knockdown as utilized in prior studies). Second, we show that the catalytic glutamic acid residue of APOBEC3A (E72) is required for tumor formation. Third, we show that an APOBEC3A separation-of-function mutant with compromised DNA deamination activity and wildtype RNA-editing activity is defective in promoting tumor formation. Collectively, these results demonstrate that APOBEC3A is a "master driver" that fuels tumor formation through a DNA deamination-dependent mechanism.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/genética , Desaminação , Neoplasias Hepáticas/genética , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , DNA/metabolismo , Antígenos de Histocompatibilidade Menor/genética
10.
ACS Med Chem Lett ; 14(3): 338-343, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36923917

RESUMO

APOBEC3A (A3A)-catalyzed DNA cytosine deamination is implicated in virus and cancer mutagenesis, and A3A is a target for small molecule drug discovery. The catalytic glutamic acid (E72) is frequently mutated in biochemical studies to characterize deamination-dependent versus deamination-independent A3A functions. Additionally, catalytically active A3A is toxic in bacterial expression systems, which adversely affects yield during recombinant A3A expression. Here, we demonstrate that mutating the catalytic glutamic acid to an isosteric glutamine (E72Q) significantly decreases the thermal stability of the protein, compared to the alanine-inactivating mutation (E72A). Differential scanning fluorimetry and mass spectrometry reveal that A3A E72Q is less thermally stable than A3A E72A or wild-type A3A. Strikingly, A3A E72Q is partially denatured at 37 °C and binds single-stranded DNA with significantly poorer affinity compared to A3A E72A. This study constitutes an important cautionary note on A3A protein design and informs that A3A E72A is the preferred catalytic inactivation mutation for most applications.

11.
Sci Adv ; 8(17): eabm2827, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35476445

RESUMO

Viruses use a plethora of mechanisms to evade immune responses. A recent example is neutralization of the nuclear DNA cytosine deaminase APOBEC3B by the Epstein-Barr virus (EBV) ribonucleotide reductase subunit BORF2. Cryo-EM studies of APOBEC3B-BORF2 complexes reveal a large >1000-Å2 binding surface composed of multiple structural elements from each protein, which effectively blocks the APOBEC3B active site from accessing single-stranded DNA substrates. Evolutionary optimization is suggested by unique insertions in BORF2 absent from other ribonucleotide reductases and preferential binding to APOBEC3B relative to the highly related APOBEC3A and APOBEC3G enzymes. A molecular understanding of this pathogen-host interaction has potential to inform the development of drugs that block the interaction and liberate the natural antiviral activity of APOBEC3B. In addition, given a role for APOBEC3B in cancer mutagenesis, it may also be possible for information from the interaction to be used to develop DNA deaminase inhibitors.

12.
Trends Pharmacol Sci ; 43(5): 362-377, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35272863

RESUMO

Mutational processes driving genome evolution and heterogeneity contribute to immune evasion and therapy resistance in viral infections and cancer. APOBEC3 (A3) enzymes promote such mutations by catalyzing the deamination of cytosines to uracils in single-stranded DNA. Chemical inhibition of A3 enzymes may yield an antimutation therapeutic strategy to improve the durability of current drug therapies that are prone to resistance mutations. A3 small-molecule drug discovery efforts to date have been restricted to a single high-throughput biochemical activity assay; however, the arsenal of discovery assays has significantly expanded in recent years. The assays used to study A3 enzymes are reviewed here with an eye towards their potential for small-molecule discovery efforts.


Assuntos
Citidina Desaminase , Descoberta de Drogas , Citidina Desaminase/genética , Humanos , Mutação
13.
Viruses ; 13(4)2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921405

RESUMO

APOBEC3B (A3B) is one of seven human APOBEC3 DNA cytosine deaminases that restrict viral infections as part of the overall innate immune response, but it also plays a major role in tumor evolution by mutating genomic DNA. Given the importance of A3B as a restriction factor of viral infections and as a driver of multiple human cancers, selective antibodies against A3B are highly desirable for its specific detection in various research and possibly diagnostic applications. Here, we describe a high-affinity minimal antibody, designated 5G7, obtained via a phage display screening against the C-terminal catalytic domain (ctd) of A3B. 5G7 also binds APOBEC3A that is highly homologous to A3Bctd but does not bind the catalytic domain of APOBEC3G, another Z1-type deaminase domain. The crystal structure of 5G7 shows a canonical arrangement of the heavy and light chain variable domains, with their complementarity-determining region (CDR) loops lining an antigen-binding cleft that accommodates a pair of α-helices. To understand the mechanism of A3Bctd recognition by 5G7, we used the crystal structures of A3Bctd and 5G7 as templates and computationally predicted the A3B-5G7 complex structure. Stable binding poses obtained by the simulation were further tested by site-directed mutagenesis and in vitro binding analyses. These studies mapped the epitope for 5G7 to a portion of C-terminal α6 helix of A3Bctd, with Arg374 playing an essential role. The same region of A3Bctd was used previously as a peptide antigen for generating a rabbit monoclonal antibody (mAb 5210-87-13), suggesting that this region is particularly immunogenic and that these antibodies from very different origins may share similar binding modes. Our studies provide a platform for the development of selective antibodies against A3B and other APOBEC3 family enzymes.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Citidina Desaminase/imunologia , Citidina Desaminase/metabolismo , Antígenos de Histocompatibilidade Menor/imunologia , Antígenos de Histocompatibilidade Menor/metabolismo , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/isolamento & purificação , Anticorpos Monoclonais/imunologia , Sítios de Ligação de Anticorpos , Cristalização , Células HEK293 , Humanos , Imunidade Inata , Simulação de Dinâmica Molecular , Ligação Proteica , Anticorpos de Cadeia Única/metabolismo
14.
J Exp Med ; 217(12)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32870257

RESUMO

The APOBEC3 family of antiviral DNA cytosine deaminases is implicated as the second largest source of mutation in cancer. This mutational process may be a causal driver or inconsequential passenger to the overall tumor phenotype. We show that human APOBEC3A expression in murine colon and liver tissues increases tumorigenesis. All other APOBEC3 family members, including APOBEC3B, fail to promote liver tumor formation. Tumor DNA sequences from APOBEC3A-expressing animals display hallmark APOBEC signature mutations in TCA/T motifs. Bioinformatic comparisons of the observed APOBEC3A mutation signature in murine tumors, previously reported APOBEC3A and APOBEC3B mutation signatures in yeast, and reanalyzed APOBEC mutation signatures in human tumor datasets support cause-and-effect relationships for APOBEC3A-catalyzed deamination and mutagenesis in driving multiple human cancers.


Assuntos
Biocatálise , Carcinogênese/genética , Citidina Desaminase/genética , Mutação/genética , Proteínas/genética , Polipose Adenomatosa do Colo/patologia , Animais , Sequência de Bases , Carcinogênese/patologia , Elementos de DNA Transponíveis/genética , Humanos , Hidrolases/genética , Neoplasias Intestinais/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Regeneração Hepática , Perda de Heterozigosidade/genética , Camundongos Transgênicos , Pólipos/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
Elife ; 92020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985974

RESUMO

APOBEC3B (A3B)-catalyzed DNA cytosine deamination contributes to the overall mutational landscape in breast cancer. Molecular mechanisms responsible for A3B upregulation in cancer are poorly understood. Here we show that a single E2F cis-element mediates repression in normal cells and that expression is activated by its mutational disruption in a reporter construct or the endogenous A3B gene. The same E2F site is required for A3B induction by polyomavirus T antigen indicating a shared molecular mechanism. Proteomic and biochemical experiments demonstrate the binding of wildtype but not mutant E2F promoters by repressive PRC1.6/E2F6 and DREAM/E2F4 complexes. Knockdown and overexpression studies confirm the involvement of these repressive complexes in regulating A3B expression. Altogether, these studies demonstrate that A3B expression is suppressed in normal cells by repressive E2F complexes and that viral or mutational disruption of this regulatory network triggers overexpression in breast cancer and provides fuel for tumor evolution.


Assuntos
Citidina Desaminase/genética , Fatores de Transcrição E2F/genética , Antígenos de Histocompatibilidade Menor/genética , Transdução de Sinais , Citidina Desaminase/metabolismo , Fatores de Transcrição E2F/metabolismo , Células HEK293 , Humanos , Células MCF-7 , Antígenos de Histocompatibilidade Menor/metabolismo , Ligação Proteica
16.
FASEB Bioadv ; 2(1): 49-58, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32123856

RESUMO

The single-stranded DNA cytosine deaminase APOBEC3B (A3B) functions in innate immunity against viruses, but it is also strongly implicated in eliciting mutations in cancer genomes. Because of the critical role of A3B in promoting virus and tumor evolution, small molecule inhibitors are desirable. However, there is no reported structure for any of the APOBEC3-family enzymes in complex with a small molecule bound in the active site, which hampers the development of small molecules targeting A3B. Here we report high-resolution structures of an active A3B catalytic domain chimera with loop 7 residues exchanged with those from the corresponding region of APOBEC3G (A3G). The structures reveal novel open conformations lacking the catalytically essential zinc ion, with the highly conserved active site residues extensively rearranged. These inactive conformations are stabilized by 2-pyrimidone or an iodide ion bound in the active site. Molecular dynamics simulations corroborate the remarkable plasticity of the engineered active site and identify key interactions that stabilize the native A3B active site. These data provide insights into A3B active site dynamics and suggest possible modes of its inhibition by small molecules, which would aid in rational design of selective A3B inhibitors for constraining virus and tumor evolution.

17.
Antibodies (Basel) ; 8(3)2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31544853

RESUMO

The DNA cytosine deaminase APOBEC3B (A3B) is normally an antiviral factor in the innate immune response. However, A3B has been implicated in cancer mutagenesis, particularly in solid tumors of the bladder, breast, cervix, head/neck, and lung. Here, we report data on the generation and characterization of a rabbit monoclonal antibody (mAb) for human A3B. One mAb, 5210-87-13, demonstrates utility in multiple applications, including ELISA, immunoblot, immunofluorescence microscopy, and immunohistochemistry. In head-to-head tests with commercial reagents, 5210-87-13 was the only rabbit monoclonal suitable for detecting native A3B and for immunohistochemical quantification of A3B in tumor tissues. This novel mAb has the potential to enable a wide range of fundamental and clinical studies on A3B in human biology and disease.

18.
J Chem Inf Model ; 59(5): 2264-2273, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30130104

RESUMO

APOBEC3B (A3B) is a prominent source of mutation in many cancers. To date, it has been difficult to capture the native protein-DNA interactions that confer A3B's substrate specificity by crystallography due to the highly dynamic nature of wild-type A3B active site. We use computational tools to restore a recent crystal structure of a DNA-bound A3B C-terminal domain mutant construct to its wild type sequence, and run molecular dynamics simulations to study its substrate recognition mechanisms. Analysis of these simulations reveal dynamics of the native A3Bctd-oligonucleotide interactions, including the experimentally inaccessible loop 1-oligonucleotide interactions. A second series of simulations in which the target cytosine nucleotide was computationally mutated from a deoxyribose to a ribose show a change in sugar ring pucker, leading to a rearrangement of the binding site and revealing a potential intermediate in the binding pathway. Finally, apo simulations of A3B, starting from the DNA-bound open state, experience a rapid and consistent closure of the binding site, reaching conformations incompatible with substrate binding. This study reveals a more realistic and dynamic view of the wild type A3B binding site and provides novel insights for structure-guided design efforts for A3B.


Assuntos
Citidina Desaminase/metabolismo , Oligonucleotídeos/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Citidina Desaminase/química , DNA/química , DNA/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Ligação Proteica , RNA/química , RNA/metabolismo , Especificidade por Substrato
19.
Nat Microbiol ; 4(1): 78-88, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30420783

RESUMO

The apolipoprotein B messenger RNA editing enzyme, catalytic polypeptide-like (APOBEC) family of single-stranded DNA (ssDNA) cytosine deaminases provides innate immunity against virus and transposon replication1-4. A well-studied mechanism is APOBEC3G restriction of human immunodeficiency virus type 1, which is counteracted by a virus-encoded degradation mechanism1-4. Accordingly, most work has focused on retroviruses with obligate ssDNA replication intermediates and it is unclear whether large double-stranded DNA (dsDNA) viruses may be similarly susceptible to restriction. Here, we show that the large dsDNA herpesvirus Epstein-Barr virus (EBV), which is the causative agent of infectious mononucleosis and multiple cancers5, utilizes a two-pronged approach to counteract restriction by APOBEC3B. Proteomics studies and immunoprecipitation experiments showed that the ribonucleotide reductase large subunit of EBV, BORF26,7, binds APOBEC3B. Mutagenesis mapped the interaction to the APOBEC3B catalytic domain, and biochemical studies demonstrated that BORF2 stoichiometrically inhibits APOBEC3B DNA cytosine deaminase activity. BORF2 also caused a dramatic relocalization of nuclear APOBEC3B to perinuclear bodies. On lytic reactivation, BORF2-null viruses were susceptible to APOBEC3B-mediated deamination as evidenced by lower viral titres, lower infectivity and hypermutation. The Kaposi's sarcoma-associated herpesvirus homologue, ORF61, also bound APOBEC3B and mediated relocalization. These data support a model where the genomic integrity of human γ-herpesviruses is maintained by active neutralization of the antiviral enzyme APOBEC3B.


Assuntos
Citidina Desaminase/antagonistas & inibidores , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 8/metabolismo , Ribonucleotídeo Redutases/metabolismo , Proteínas Virais/metabolismo , Sistemas CRISPR-Cas , Domínio Catalítico/genética , Linhagem Celular , Genoma Viral/genética , Células HEK293 , Herpesvirus Humano 4/crescimento & desenvolvimento , Humanos , Antígenos de Histocompatibilidade Menor , Interferência de RNA , RNA Interferente Pequeno/genética , Ribonucleotídeo Redutases/genética , Proteínas Virais/genética
20.
Methods ; 156: 79-84, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30578845

RESUMO

A major concern of CRISPR and related genome engineering technologies is off-target mutagenesis from prolonged exposure to Cas9 and related editing enzymes. To help mitigate this concern we added a loxP site to the 3'-LTR of an HIV-based lentiviral vector capable of expressing Cas9/gRNA complexes in a wide variety of mammalian cell types. Transduction of susceptible target cells yields an integrated provirus that expresses the desired Cas9/gRNA complex. The reverse transcription process also results in duplication of the 3'-LTR such that the integrated provirus becomes flanked by loxP sites (floxed). Subsequent expression of Cre recombinase results in loxP-to-loxP site-specific recombination that deletes the Cas9/gRNA payload and effectively prevents additional Cas9-mediated mutations. This construct also expresses a gRNA with a single transcription termination sequence, which results in higher expression levels and more efficient genome engineering as evidenced by disruption of the SAMHD1 gene. This hit-and-run CRISPR approach was validated by recreating a natural APOBEC3B deletion and by disrupting the mismatch repair gene MSH2. This hit-and-run strategy may have broad utility in many areas and especially those where cell types are difficult to engineer by transient delivery of ribonucleoprotein complexes.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Edição de Genes/métodos , Integrases/genética , Lentivirus/genética , RNA Guia de Cinetoplastídeos/genética , Recombinação Genética , Pareamento de Bases , Sequência de Bases , Proteína 9 Associada à CRISPR/metabolismo , Citidina Desaminase/deficiência , Citidina Desaminase/genética , Éxons , Deleção de Genes , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Integrases/metabolismo , Íntrons , Lentivirus/metabolismo , Células MCF-7 , Antígenos de Histocompatibilidade Menor/genética , Proteína 2 Homóloga a MutS/deficiência , Proteína 2 Homóloga a MutS/genética , RNA Guia de Cinetoplastídeos/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/deficiência , Proteína 1 com Domínio SAM e Domínio HD/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA