Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Commun Biol ; 7(1): 793, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951146

RESUMO

Brown and brown-like adipose tissues have attracted significant attention for their role in metabolism and therapeutic potential in diabetes and obesity. Despite compelling evidence of an interplay between adipocytes and lymphocytes, the involvement of these tissues in immune responses remains largely unexplored. This study explicates a newfound connection between neuroinflammation and brown- and bone marrow adipose tissue. Leveraging the use of [18F]F-AraG, a mitochondrial metabolic tracer capable of tracking activated lymphocytes and adipocytes simultaneously, we demonstrate, in models of glioblastoma and multiple sclerosis, the correlation between intracerebral immune infiltration and changes in brown- and bone marrow adipose tissue. Significantly, we show initial evidence that a neuroinflammation-adipose tissue link may also exist in humans. This study proposes the concept of an intricate immuno-neuro-adipose circuit, and highlights brown- and bone marrow adipose tissue as an intermediary in the communication between the immune and nervous systems. Understanding the interconnectedness within this circuitry may lead to advancements in the treatment and management of various conditions, including cancer, neurodegenerative diseases and metabolic disorders.


Assuntos
Tecido Adiposo Marrom , Doenças Neuroinflamatórias , Animais , Humanos , Tecido Adiposo Marrom/metabolismo , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Medula Óssea/metabolismo , Camundongos , Masculino , Glioblastoma/patologia , Glioblastoma/imunologia , Glioblastoma/metabolismo , Camundongos Endogâmicos C57BL , Feminino , Esclerose Múltipla/patologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/diagnóstico por imagem , Tomografia por Emissão de Pósitrons
2.
Stem Cells ; 41(6): 560-569, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36987811

RESUMO

Diamond Blackfan anemia (DBA) is an inherited bone marrow failure syndrome associated with severe anemia, congenital malformations, and an increased risk of developing cancer. The chromatin-binding special AT-rich sequence-binding protein-1 (SATB1) is downregulated in megakaryocyte/erythroid progenitors (MEPs) in patients and cell models of DBA, leading to a reduction in MEP expansion. Here we demonstrate that SATB1 expression is required for the upregulation of the critical erythroid factors heat shock protein 70 (HSP70) and GATA1 which accompanies MEP differentiation. SATB1 binding to specific sites surrounding the HSP70 genes promotes chromatin loops that are required for the induction of HSP70, which, in turn, promotes GATA1 induction. This demonstrates that SATB1, although gradually downregulated during myelopoiesis, maintains a biological function in early myeloid progenitors.


Assuntos
Anemia de Diamond-Blackfan , Proteínas de Ligação à Região de Interação com a Matriz , Humanos , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Megacariócitos/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Diferenciação Celular/genética , Fatores de Transcrição/metabolismo , Anemia de Diamond-Blackfan/metabolismo , Cromatina/metabolismo , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo
3.
ACS Cent Sci ; 8(2): 214-222, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35233453

RESUMO

Cryogenic electron microscopy (cryo-EM) has emerged as a viable structural tool for molecular therapeutics development against human diseases. However, it remains a challenge to determine structures of proteins that are flexible and smaller than 30 kDa. The 11 kDa KIX domain of CREB-binding protein (CBP), a potential therapeutic target for acute myeloid leukemia and other cancers, is a protein which has defied structure-based inhibitor design. Here, we develop an experimental approach to overcome the size limitation by engineering a protein double-shell to sandwich the KIX domain between apoferritin as the inner shell and maltose-binding protein as the outer shell. To assist homogeneous orientations of the target, disulfide bonds are introduced at the target-apoferritin interface, resulting in a cryo-EM structure at 2.6 Å resolution. We used molecular dynamics simulations to design peptides that block the interaction of the KIX domain of CBP with the intrinsically disordered pKID domain of CREB. The double-shell design allows for fluorescence polarization assays confirming the binding between the KIX domain in the double-shell and these interacting peptides. Further cryo-EM analysis reveals a helix-helix interaction between a single KIX helix and the best peptide, providing a possible strategy for developments of next-generation inhibitors.

4.
Cancers (Basel) ; 13(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34944883

RESUMO

Children with chronic myeloid leukemia (CML) tend to present with higher white blood counts and larger spleens than adults with CML, suggesting that the biology of pediatric and adult CML may differ. To investigate whether pediatric and adult CML have unique molecular characteristics, we studied the transcriptomic signature of pediatric and adult CML CD34+ cells and healthy pediatric and adult CD34+ control cells. Using high-throughput RNA sequencing, we found 567 genes (207 up- and 360 downregulated) differentially expressed in pediatric CML CD34+ cells compared to pediatric healthy CD34+ cells. Directly comparing pediatric and adult CML CD34+ cells, 398 genes (258 up- and 140 downregulated), including many in the Rho pathway, were differentially expressed in pediatric CML CD34+ cells. Using RT-qPCR to verify differentially expressed genes, VAV2 and ARHGAP27 were significantly upregulated in adult CML CD34+ cells compared to pediatric CML CD34+ cells. NCF1, CYBB, and S100A8 were upregulated in adult CML CD34+ cells but not in pediatric CML CD34+ cells, compared to healthy controls. In contrast, DLC1 was significantly upregulated in pediatric CML CD34+ cells but not in adult CML CD34+ cells, compared to healthy controls. These results demonstrate unique molecular characteristics of pediatric CML, such as dysregulation of the Rho pathway, which may contribute to clinical differences between pediatric and adult patients.

5.
Oncotarget ; 11(25): 2387-2403, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32637030

RESUMO

The 90 kDa Ribosomal S6 Kinase (RSK) drives cell proliferation and survival in cancers, although its oncogenic mechanism has not been well characterized. Phosphorylated level of RSK (T573) was increased in acute myeloid leukemia (AML) patients and associated with poor survival. To examine the role of RSK in AML, we analyzed apoptosis and the cell cycle profile following treatment with BI-D1870, a potent inhibitor of RSK. BI-D1870 treatment increased the G2/M population and induced apoptosis in AML cell lines and patient AML cells. Characterization of mitotic phases showed that the metaphase/anaphase transition was significantly inhibited by BI-D1870. BI-D1870 treatment impeded the association of activator CDC20 with APC/C, but increased binding of inhibitor MAD2 to CDC20, preventing mitotic exit. Moreover, the inactivation of spindle assembly checkpoint or MAD2 knockdown released cells from BI-D1870-induced metaphase arrest. Therefore, we investigated whether BI-D1870 potentiates the anti-leukemic activity of vincristine by targeting mitotic exit. Combination treatment of BI-D1870 and vincristine synergistically increased mitotic arrest and apoptosis in acute leukemia cells. These data show that BI-D1870 induces apoptosis of AML cells alone and in combination with vincristine through blocking mitotic exit, providing a novel approach to overcoming vincristine resistance in AML cells.

6.
Cancers (Basel) ; 12(2)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32069925

RESUMO

Acute myeloid leukemia (AML) is a clinically and genetically heterogenous malignancy of myeloid progenitor cells that affects patients of all ages. Despite decades of research and improvement in overall outcomes, standard therapy remains ineffective for certain subtypes of AML. Current treatment is intensive and leads to a number of secondary effects with varying results by patient population. Due to the high cost of discovery and an unmet need for new targeted therapies that are well tolerated, alternative drug development strategies have become increasingly attractive. Repurposing existing drugs is one approach to identify new therapies with fewer financial and regulatory hurdles. In this review, we provide an overview of previously U.S. Food and Drug Administration (FDA) approved non-chemotherapy drugs under investigation for the treatment of AML.

7.
Blood Adv ; 3(18): 2751-2763, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31540902

RESUMO

The del(5q) myelodysplastic syndrome (MDS) is a distinct subtype of MDS, associated with deletion of the ribosomal protein S14 (RPS14) gene that results in macrocytic anemia. This study sought to identify novel targets for the treatment of patients with del(5q) MDS by performing an in vivo drug screen using an rps14-deficient zebrafish model. From this, we identified the secreted gelatinase matrix metalloproteinase 9 (MMP9). MMP9 inhibitors significantly improved the erythroid defect in rps14-deficient zebrafish. Similarly, treatment with MMP9 inhibitors increased the number of colony forming unit-erythroid colonies and the CD71+ erythroid population from RPS14 knockdown human BMCD34+ cells. Importantly, we found that MMP9 expression is upregulated in RPS14-deficient cells by monocyte chemoattractant protein 1. Double knockdown of MMP9 and RPS14 increased the CD71+ population compared with RPS14 single knockdown, suggesting that increased expression of MMP9 contributes to the erythroid defect observed in RPS14-deficient cells. In addition, transforming growth factor ß (TGF-ß) signaling is activated in RPS14 knockdown cells, and treatment with SB431542, a TGF-ß inhibitor, improved the defective erythroid development of RPS14-deficient models. We found that recombinant MMP9 treatment decreases the CD71+ population through increased SMAD2/3 phosphorylation, suggesting that MMP9 directly activates TGF-ß signaling in RPS14-deficient cells. Finally, we confirmed that MMP9 inhibitors reduce SMAD2/3 phosphorylation in RPS14-deficient cells to rescue the erythroid defect. In summary, these study results support a novel role for MMP9 in the pathogenesis of del(5q) MDS and the potential for the clinical use of MMP9 inhibitors in the treatment of patients with del(5q) MDS.


Assuntos
Eritropoese/fisiologia , Metaloproteinase 9 da Matriz/metabolismo , Fator de Crescimento Transformador beta/genética , Humanos
8.
Bioorg Med Chem Lett ; 29(16): 2307-2315, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31253529

RESUMO

Disruption of cyclic adenosine monophosphate response element binding protein (CREB) provides a potential new strategy to address acute leukemia, a disease associated with poor prognosis, and for which conventional treatment options often carry a significant risk of morbidity and mortality. We describe the structure-activity relationships (SAR) for a series of XX-650-23 derived from naphthol AS-E phosphate that disrupts binding and activation of CREB by the CREB-binding protein (CBP). Through the development of this series, we identified several salicylamides that are potent inhibitors of acute leukemia cell viability through inhibition of CREB-CBP interaction. Among them, a biphenyl salicylamide, compound 71, was identified as a potent inhibitor of CREB-CBP interaction with improved physicochemical properties relative to previously described derivatives of naphthol AS-E phosphate.


Assuntos
Antineoplásicos/farmacologia , Proteína de Ligação a CREB/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Salicilamidas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proteína de Ligação a CREB/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Células HL-60 , Humanos , Leucemia Mieloide Aguda/metabolismo , Estrutura Molecular , Salicilamidas/síntese química , Salicilamidas/química , Relação Estrutura-Atividade
9.
Cancer Res ; 78(22): 6497-6508, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30262461

RESUMO

Dasatinib is a multi-tyrosine kinase inhibitor approved for treatment of Ph+ acute lymphoblastic leukemia (ALL), but its efficacy is limited by resistance. Recent preclinical studies suggest that dasatinib may be a candidate therapy in additional ALL subtypes including pre-BCR+ ALL. Here we utilized shRNA library screening and global transcriptomic analysis to identify several novel genes and pathways that may enhance dasatinib efficacy or mitigate potential resistance in human pre-BCR+ ALL. Depletion of the transcriptional coactivator CBP increased dasatinib sensitivity by downregulating transcription of the pre-BCR signaling pathway previously associated with dasatinib sensitivity. Acquired resistance was due, in part, to upregulation of alternative pathways including WNT through a mechanism, suggesting transcriptional plasticity. Small molecules that disrupt CBP interactions with the CREB KID domain or ß-catenin showed promising preclinical efficacy in combination with dasatinib. These findings highlight novel modulators of sensitivity to targeted therapies in human pre-BCR+ ALL, which can be reversed by small-molecule inhibitors. They also identify promising therapeutic approaches to ameliorate dasatinib sensitivity and prevent resistance in ALL.Significance: These findings reveal mechanisms that modulate sensitivity to dasatinib and suggest therapeutic strategies to improve the outcome of patients with acute lymphoblastic leukemia.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/22/6497/F1.large.jpg Cancer Res; 78(22); 6497-508. ©2018 AACR.


Assuntos
Antineoplásicos/farmacologia , Proteína de Ligação a CREB/metabolismo , Dasatinibe/farmacologia , Resistencia a Medicamentos Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Ligação Proteica , Domínios Proteicos , Pirimidinas/farmacologia , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Transcrição Gênica , beta Catenina/genética
10.
Oncotarget ; 9(4): 4301-4317, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29435104

RESUMO

CREB (cAMP Response Element Binding protein) is a transcription factor that is overexpressed in primary acute myeloid leukemia (AML) cells and associated with a decreased event-free survival and increased risk of relapse. We recently reported a small molecule inhibitor of CREB, XX-650-23, which inhibits CREB activity in AML cells. Structure-activity relationship analysis for chemical compounds with structures similar to XX-650-23 led to the identification of the anthelminthic drug niclosamide as a potent anti-leukemic agent that suppresses cell viability of AML cell lines and primary AML cells without a significant decrease in colony forming activity of normal bone marrow cells. Niclosamide significantly inhibited CREB function and CREB-mediated gene expression in cells, leading to apoptosis and G1/S cell cycle arrest with reduced phosphorylated CREB levels. CREB knockdown protected cells from niclosamide treatment-mediated cytotoxic effects. Furthermore, treatment with a combination of niclosamide and CREB inhibitor XX-650-23 showed an additive anti-proliferative effect, consistent with the hypothesis that niclosamide and XX-650-23 regulate the same targets or pathways to inhibit proliferation and survival of AML cells. Niclosamide significantly inhibited the progression of disease in AML patient-derived xenograft (PDX) mice, and prolonged survival of PDX mice. Niclosamide also showed synergistic effects with chemotherapy drugs to inhibit AML cell proliferation. While chemotherapy antagonized the cytotoxic potential of niclosamide, pretreatment with niclosamide sensitized cells to chemotherapeutic drugs, cytarabine, daunorubicin, and vincristine. Therefore, our results demonstrate niclosamide as a potential drug to treat AML by inducing apoptosis and cell cycle arrest through inhibition of CREB-dependent pathways in AML cells.

11.
Oncotarget ; 7(8): 8653-62, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26840025

RESUMO

The transcription factor CREB (cAMP Response Element Binding Protein) is an important determinant in the growth of Acute Myeloid Leukemia (AML) cells. CREB overexpression increases AML cell growth by driving the expression of key regulators of apoptosis and the cell cycle. Conversely, CREB knockdown inhibits proliferation and survival of AML cells but not normal hematopoietic cells. Thus, CREB represents a promising drug target for the treatment of AML, which carries a poor prognosis. In this study, we performed a high-throughput small molecule screen to identify compounds that disrupt CREB function in AML cells. We screened ~114,000 candidate compounds from Stanford University's small molecule library, and identified 5 molecules that inhibit CREB function at micromolar concentrations, but are non-toxic to normal hematopoietic cells. This study suggests that targeting CREB function using small molecules could provide alternative approaches to treat AML.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Ensaios de Triagem em Larga Escala/métodos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Regiões Promotoras Genéticas/genética , Elementos de Resposta/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Luciferases/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
J Biol Chem ; 288(51): 36451-62, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24189071

RESUMO

RhoH is a hematopoietic-specific, GTPase-deficient member of the Rho GTPase family that was first identified as a hypermutable gene in human B lineage lymphomas. RhoH remains in a constitutively active state and thus its effects are regulated by expression levels or post-translational modifications. Similar to other small GTPases, intracellular localization of RhoH is dependent upon the conserved "CAAX" box and surrounding sequences within the carboxyl (C) terminus. However, RhoH also contains a unique C-terminal "insert" domain of yet undetermined function. RhoH serves as adaptor molecule in T cell receptor signaling and RhoH expression correlates with the unfavorable prognostic marker ZAP70 in human chronic lymphocytic leukemia. Disease progression is attenuated in a Rhoh(-/-) mouse model of chronic lymphocytic leukemia and treatment of primary human chronic lymphocytic leukemia cells with Lenalidomide results in reduced RhoH protein levels. Thus, RhoH is a potential therapeutic target in B cell malignancies. In the current studies, we demonstrate that deletion of the insert domain (LFSINE) results in significant cytoplasmic protein accumulation. Using inhibitors of degradation pathways, we show that LFSINE regulates lysosomal RhoH uptake and degradation via chaperone-mediated autophagy. Whereas the C-terminal prenylation site is critical for ZAP70 interaction, subcellular localization and rescue of the Rhoh(-/-) T cell defect in vivo, the insert domain appears dispensable for these functions. Taken together, our findings suggest that the insert domain regulates protein stability and activity without otherwise affecting RhoH function.


Assuntos
Lisossomos/metabolismo , Fatores de Transcrição/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Motivos de Aminoácidos , Animais , Células da Medula Óssea/metabolismo , Membrana Celular/metabolismo , Citoplasma/metabolismo , Humanos , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Prenilação , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteólise , Fatores de Transcrição/química , Fatores de Transcrição/genética , Proteínas rho de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/genética
13.
J Biol Chem ; 288(17): 12014-21, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23479728

RESUMO

Identification of new anti-apoptotic genes is important for understanding the molecular mechanisms underlying apoptosis and tumorigenesis. The present study identified a novel anti-apoptotic gene named AREL1, which encodes a HECT (homologous to E6-AP carboxyl terminus) family E3 ubiquitin ligase. AREL1 interacted with and ubiquitinated IAP antagonists such as SMAC, HtrA2, and ARTS. However, AREL1 was cytosolic and did not localize to nuclei or mitochondria. The interactions between AREL1 and the IAP antagonists were specific for apoptosis-stimulated cells, in which the IAP antagonists were released into the cytosol from mitochondria. Furthermore, the ubiquitination and degradation of SMAC, HtrA2, and ARTS were significantly enhanced in AREL1-expressing cells following apoptotic stimulation, indicating that AREL1 binds to and ubiquitinates cytosolic but not mitochondria-associated forms of IAP antagonists. Furthermore, the anti-apoptotic role of AREL1-mediated degradation of SMAC, HtrA2, and ARTS was shown by simultaneous knockdown of three IAP antagonists, which caused the inhibition of caspase-3 cleavage, XIAP degradation, and induction of apoptosis. Therefore, the present study suggests that AREL1-mediated ubiquitination and degradation of cytosolic forms of three IAP antagonists plays an important role in the regulation of apoptosis.


Assuntos
Apoptose/fisiologia , Proteínas de Transporte/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Mitocondriais/metabolismo , Proteólise , Septinas/metabolismo , Serina Endopeptidases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Humanos , Proteínas Inibidoras de Apoptose/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Septinas/genética , Serina Endopeptidases/genética , Ubiquitina-Proteína Ligases/genética
14.
Exp Mol Med ; 44(3): 236-40, 2012 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-22198295

RESUMO

We previously reported that the p53 tumor suppressor protein plays an essential role in the induction of tetraploid G1 arrest in response to perturbation of the actin cytoskeleton, termed actin damage. In this study, we investigated the role of p53, ataxia telangiectasia mutated protein (ATM), and catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) in tetraploid G1 arrest induced by actin damage. Treatment with actin- damaging agents including pectenotoxin-2 (PTX-2) increases phosphorylation of Ser-15 and Ser-37 residues of p53, but not Ser-20 residue. Knockdown of ATM and DNA-PKcs do not affect p53 phosphorylation induced by actin damage. However, while ATM knockdown does not affect tetraploid G1 arrest, knockdown of DNA-PKcs not only perturbs tetraploid G1 arrest, but also results in formation of polyploidy and induction of apoptosis. These results indicate that DNA-PKcs is essential for the maintenance of actin damage induced- tetraploid G1 arrest in a p53-independent manner. Furthermore, actin damage-induced p53 expression is not observed in cells synchronized at G1/S of the cell cycle, implying that p53 induction is due to actin damage-induced tetraploidy rather than perturbation of actin cytoskeleton. Therefore, these results suggest that p53 and DNA- PKcs independently function for tetraploid G1 arrest and preventing polyploidy formation.


Assuntos
Actinas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fase G1 , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia , Domínio Catalítico , Proteínas de Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Proteína Quinase Ativada por DNA/química , Proteína Quinase Ativada por DNA/genética , Proteínas de Ligação a DNA/genética , Furanos/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Macrolídeos , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Piranos/farmacologia , Proteínas Supressoras de Tumor/genética
15.
Stem Cells ; 30(2): 140-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22076938

RESUMO

Molecular mechanisms of how energy metabolism affects embryonic stem cell (ESC) pluripotency remain unclear. AMP-activated protein kinase (AMPK), a key regulator for controlling energy metabolism, is activated in response to ATP-exhausting stress. We investigated whether cellular energy homeostasis is associated with maintenance of self-renewal and pluripotency in mouse ESCs (mESCs) by using 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR) as an activator of AMPK. We demonstrate that AICAR treatment activates the p53/p21 pathway and markedly inhibits proliferation of R1 mESCs by inducing G(1) /S-phase cell cycle arrest, without influencing apoptosis. Treatment with AICAR also significantly reduces pluripotent stem cell markers, Nanog and stage-specific embryonic antigen-1, in the presence of leukemia inhibitory factor, without affecting expression of Oct4. H9 human ESCs also responded to AICAR with induction of p53 activation and repression of Nanog expression. AICAR reduced Nanog mRNA levels in mESCs transiently, an effect not due to expression of miR-134 which can suppress Nanog expression. AICAR induced Nanog degradation, an effect inhibited by MG132, a proteasome inhibitor. Although AICAR reduced embryoid body formation from mESCs, it increased expression levels of erythroid cell lineage markers (Ter119, GATA1, Klf1, Hbb-b, and Hbb-bh1). Although erythroid differentiation was enhanced by AICAR, endothelial lineage populations were remarkably reduced in AICAR-treated cells. Our results suggest that energy metabolism regulated by AMPK activity may control the balance of self-renewal and differentiation of ESCs.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Diferenciação Celular , Células-Tronco Embrionárias/efeitos dos fármacos , Ativadores de Enzimas/farmacologia , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Ribonucleosídeos/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Adenilato Quinase/genética , Adenilato Quinase/metabolismo , Aminoimidazol Carboxamida/farmacologia , Animais , Antígenos de Diferenciação/metabolismo , Proliferação de Células , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/fisiologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Ativação Enzimática , Células Eritroides/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Homeodomínio/metabolismo , Humanos , Antígenos CD15/genética , Antígenos CD15/metabolismo , Camundongos , Proteína Homeobox Nanog
16.
BMB Rep ; 44(8): 553-7, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21871181

RESUMO

We previously reported that CDK2/Cyclin A can phosphorylate and activate the transcription factor NF-Y. In this study, we investigated a potential regulatory role for NF-Y in the transcription of Cyclin A and other cell cycle regulatory genes. Gel-shift assays demonstrate that NF-Y binds to CCAAT sequences in the Cyclin A promoter, as well as to those in the promoters of cell cycle G2 regulators such as CDC2, Cyclin B and CDC25C. Furthermore, expression of Cyclin A increases NF-Y's affinity for CCAAT sequences in the CDC2 promoter; however, Cyclin A's induction of CDC2 transcription is antagonized by p21, an inhibitor of CDK2/Cyclin A. These results suggest a model wherein NF-Y binds to and activates transcription from the Cyclin A promoter, increasing cellular levels of Cyclin A/CDK2 and potentiating NF-Y's capacity for transcriptional transactivation, and imply a positive feedback loop between NF-Y and Cyclin A/CDK2. Our findings are additionally indicative of a role for Cyclin A in activating Cyclin B/CDK1 through promoting NF-Y dependent transcription of Cyclin B and CDC2; NF-Y mediated crosstalk may therefore help to orchestrate cell-cycle progression.


Assuntos
Fator de Ligação a CCAAT/metabolismo , Proteína Quinase CDC2/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Ciclinas/metabolismo , Fase G1 , Fase G2 , Regiões Promotoras Genéticas/genética , Sequência de Bases , Ciclina A/metabolismo , Ciclina B/metabolismo , DNA/metabolismo , Retroalimentação Fisiológica , Células Hep G2 , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Motivos de Nucleotídeos , Ligação Proteica
17.
Blood ; 117(2): 440-50, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-20966168

RESUMO

SIRT1 is a founding member of a sirtuin family of 7 proteins and histone deacetylases. It is involved in cellular resistance to stress, metabolism, differentiation, aging, and tumor suppression. SIRT1(-/-) mice demonstrate embryonic and postnatal development defects. We examined hematopoietic and endothelial cell differentiation of SIRT1(-/-) mouse embryonic stem cells (ESCs) in vitro, and hematopoietic progenitors in SIRT1(+/+)(+/-), and (-/-) mice. SIRT1(-/-) ESCs formed fewer mature blast cell colonies. Replated SIRT1(-/-) blast colony-forming cells demonstrated defective hematopoietic potential. Endothelial cell production was unaltered, but there were defects in formation of a primitive vascular network from SIRT1(-/-)-derived embryoid bodies. Development of primitive and definitive progenitors derived from SIRT1(-/-) ESCs were also delayed and/or defective. Differentiation delay/defects were associated with delayed capacity to switch off Oct4, Nanog and Fgf5 expression, decreased ß-H1 globin, ß-major globin, and Scl gene expression, and reduced activation of Erk1/2. Ectopic expression of SIRT1 rescued SIRT1(-/-) ESC differentiation deficiencies. SIRT1(-/-) yolk sacs manifested fewer primitive erythroid precursors. SIRT1(-/-) and SIRT1(+/-) adult marrow had decreased numbers and cycling of hematopoietic progenitors, effects more apparent at 5%, than at 20%, oxygen tension, and these progenitors survived less well in vitro under conditions of delayed growth factor addition. This suggests a role for SIRT1 in ESC differentiation and mouse hematopoiesis.


Assuntos
Envelhecimento , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Sirtuína 1/metabolismo , Animais , Western Blotting , Separação Celular , Células-Tronco Embrionárias/citologia , Citometria de Fluxo , Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Sirtuína 1/deficiência , Sirtuína 1/genética
18.
Stem Cells Dev ; 20(7): 1277-85, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21083429

RESUMO

Silent mating type information regulation 2 homolog 1 (SIRT1) plays a critical role in reactive oxygen species-triggered apoptosis in mouse embryonic stem (mES) cells. Here, we investigated a possible role for the PTEN/Akt/JNK pathway in the SIRT1-mediated apoptosis pathway in mES cells. Akt was activated by removal of anti-oxidant 2-mercaptoethanol in SIRT1(-/-) mES cells. Since PTEN is a negative regulator of Akt and its activity can be modulated by acetylation, we investigated if SIRT1 deacetylated PTEN to downregulate Akt to trigger apoptosis in anti-oxidant-free culture conditions. PTEN was hyperacetylated and excluded from the nucleus in SIRT1(-/-) mES cells, consistent with enhanced Akt activity. SIRT1 deficiency enhanced the acetylation/phosphorylation level of FOXO1 and subsequently inhibited the nuclear localization of FOXO1. Cellular acetylation levels were enhanced by DNA-damaging agent, not by removal of anti-oxidant. c-Jun NH2-terminal kinase (JNK) was activated by removal of anti-oxidant in SIRT1-dependent manner. Although p53 acetylation was stronger in SIRT1(-/-) mES cells, DNA-damaging stress activated phosphorylation and enhanced cellular levels of p53 irrespective of SIRT1, whereas removal of anti-oxidant slightly activated p53 only with SIRT1. Expression levels of Bim and Puma were increased in anti-oxidant-free culture conditions in an SIRT1-dependent manner and treatment with JNK inhibitor blocked induction of Bim expression. DNA-damaging agent activated caspase3 regardless of SIRT1. Our data support an important role for SIRT1 in preparing the PTEN/JNK/FOXO1 pathway to respond to cellular reactive oxygen species.


Assuntos
Apoptose , Células-Tronco Embrionárias/citologia , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/deficiência , Acetilação , Animais , Antracenos/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Diferenciação Celular , Linhagem Celular , Núcleo Celular/metabolismo , Regulação para Baixo , Células-Tronco Embrionárias/metabolismo , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas de Membrana/metabolismo , Mercaptoetanol/farmacologia , Camundongos , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação , Isoformas de Proteínas , Proteínas Proto-Oncogênicas/metabolismo , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo
19.
PLoS One ; 5(11): e13970, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21103055

RESUMO

RhoH is an hematopoietic-specific, GTPase-deficient Rho GTPase that plays a role in T development. We investigated the mechanisms of RhoH function in TCR signaling. We found that the association between Lck and CD3ζ was impaired in RhoH-deficient T cells, due to defective translocation of both Lck and ZAP-70 to the immunological synapse. RhoH with Lck and ZAP-70 localizes in the detergent-soluble membrane fraction where the complex is associated with CD3ζ phosphorylation. To determine if impaired translocation of ZAP-70 was a major determinant of defective T cell development, Rhoh(-/-) bone marrow cells were transduced with a chimeric myristoylation-tagged ZAP-70. Myr-ZAP-70 transduced cells partially reversed the in vivo defects of RhoH-associated thymic development and TCR signaling. Together, our results suggest that RhoH regulates TCR signaling via recruitment of ZAP-70 and Lck to CD3ζ in the immunological synapse. Thus, we define a new function for a RhoH GTPase as an adaptor molecule in TCR signaling pathway.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteína-Tirosina Quinase ZAP-70/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Complexo CD3/metabolismo , Feminino , Células HEK293 , Humanos , Immunoblotting , Espaço Intracelular/metabolismo , Células Jurkat , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fosforilação , Ligação Proteica , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/metabolismo , Fatores de Transcrição/genética , Proteína-Tirosina Quinase ZAP-70/genética , Proteínas rho de Ligação ao GTP/genética
20.
Blood ; 111(5): 2597-605, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18089848

RESUMO

RhoH, a hematopoietic-specific and constitutively active member of the Rho guanosine triphosphatase (GTPase) family, has been implicated in the negative regulation of Rac GTPase-mediated signaling in hematopoietic cells. However, the molecular mechanisms underlying the functional interaction between RhoH and Rac in primary cells are poorly understood. Here we show that deletion of Rhoh in hematopoietic progenitor cells (HPCs) leads to increased stromal-derived factor-1alpha (SDF-1alpha)-induced chemotaxis and chemokinesis (random migration). The abnormally enhanced migration of Rhoh(-/-) HPCs is associated with increased Rac1 activity and translocation of Rac1 protein to the cell membrane, where it colocalizes with cortical filamentous-actin (F-actin) and lipid rafts. Expression of the dominant-negative mutant Rac1N17 inhibits the cortical F-actin assembly and chemotaxis of wild-type and Rhoh(-/-) HPCs to the same extent. Conversely, overexpression of RhoH in HPCs blocks the membrane translocation of Rac1-enhanced green fluorescence protein (EGFP) and active Rac1V12-EGFP proteins and impairs cortical F-actin assembly and chemotaxis in response to SDF-1alpha stimulation. Furthermore, we demonstrate that the subcellular localization and inhibitory function of RhoH in HPCs are regulated by C-terminal motifs, including a CKIF prenylation site. Together, we have identified an antagonistic role of RhoH in regulation of cortical F-actin assembly and chemotaxis via suppressing Rac1 membrane targeting and activation in primary HPCs.


Assuntos
Actinas/metabolismo , Quimiotaxia , Citoesqueleto/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/enzimologia , Fatores de Transcrição/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Membrana Celular/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Prenilação de Proteína , Transporte Proteico , Frações Subcelulares/enzimologia , Fatores de Transcrição/química , Proteínas rho de Ligação ao GTP/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA