Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 15: 1344891, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846490

RESUMO

Introduction: Clear cell renal cell carcinoma (ccRCC) is characterized by a predominant metabolic reprogramming triggering energy production by anaerobic glycolysis at the expense of oxydative phosphorylation. Ketogenic diet (KD), which consists of high fat and low carbohydrate intake, could bring required energy substrates to healthy cells while depriving tumor cells of glucose. Our objective was to evaluate the effect of KD on renal cancer cell tumor metabolism and growth proliferation. Methods: Growth cell proliferation and mitochondrial metabolism of ACHN and Renca renal carcinoma cells were evaluated under ketone bodies (KB) exposure. In vivo studies were performed with mice (nude or Balb/c) receiving a xenograft of ACHN cells or Renca cells, respectively, and were then split into 2 feeding groups, fed either with standard diet or a 2:1 KD ad libitum. To test the effect of KD associated to immunotherapy, Balb/c mice were treated with anti-PDL1 mAb. Tumor growth was monitored. Results: In vitro, KB exposure was associated with a significant reduction of ACHN and Renca cell proliferation and viability, while increasing mitochondrial metabolism. In mice, KD was associated with tumor growth reduction and PDL-1 gene expression up-regulation. In Balb/c mice adjuvant KD was associated to a better response to anti-PDL-1 mAb treatment. Conclusion: KB reduced the renal tumor cell growth proliferation and improved mitochondrial respiration and biogenesis. KD also slowed down tumor growth of ACHN and Renca in vivo. We observed that PDL-1 was significantly overexpressed in tumor in mice under KD. Response to anti-PDL-1 mAb was improved in mice under KD. Further studies are needed to confirm the therapeutic benefit of adjuvant KD combined with immunotherapy in patients with kidney cancer.


Assuntos
Antígeno B7-H1 , Carcinoma de Células Renais , Proliferação de Células , Dieta Cetogênica , Neoplasias Renais , Camundongos Endogâmicos BALB C , Animais , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Neoplasias Renais/dietoterapia , Camundongos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Humanos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Feminino
2.
Mov Disord ; 39(4): 723-728, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38357858

RESUMO

BACKGROUND: The architecture and composition of glial (GCI) and neuronal (NCI) α-synuclein inclusions observed in multiple system atrophy (MSA) remain to be precisely defined to better understand the disease. METHODS: Here, we used stochastic optical reconstruction microscopy (STORM) to characterize the nanoscale organization of glial (GCI) and neuronal (NCI) α-synuclein inclusions in cryopreserved brain sections from MSA patients. RESULTS: STORM revealed a dense cross-linked internal structure of α-synuclein in all GCI and NCI. The internal architecture of hyperphosphorylated α-synuclein (p-αSyn) inclusions was similar in glial and neuronal cells, suggesting a common aggregation mechanism. A similar sequence of p-αSyn stepwise intracellular aggregation was defined in oligodendrocytes and neurons, starting from the perinuclear area and growing inside the cells. Consistent with this hypothesis, we found a higher mitochondrial density in GCI and NCI compared to oligodendrocytes and neurons from unaffected donors (P < 0.01), suggesting an active recruitment of the organelles during the aggregation process. CONCLUSIONS: These first STORM images of GCI and NCI suggest stepwise α-synuclein aggregation in MSA. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Corpos de Inclusão , Atrofia de Múltiplos Sistemas , Neurônios , alfa-Sinucleína , Humanos , Atrofia de Múltiplos Sistemas/patologia , Atrofia de Múltiplos Sistemas/metabolismo , alfa-Sinucleína/metabolismo , Corpos de Inclusão/patologia , Corpos de Inclusão/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Feminino , Idoso , Masculino , Pessoa de Meia-Idade , Encéfalo/patologia , Encéfalo/metabolismo , Neuroglia/metabolismo , Neuroglia/patologia , Oligodendroglia/patologia , Oligodendroglia/metabolismo , Microscopia/métodos
3.
Mitochondrion ; 64: 19-26, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35189384

RESUMO

Cancer/Testis Antigens (CTAs) represent a group of proteins whose expression under physiological conditions is restricted to testis but activated in many human cancers. Also, it was observed that co-expression of multiple CTAs worsens the patient prognosis. Five CTAs were reported acting in mitochondria and we recently reported 147 transcripts encoded by 67 CTAs encoding for proteins potentially targeted to mitochondria. Among them, we identified the two isoforms encoded by CT55 for whom the function is poorly understood. First, we found that patients with tumors expressing wild-type CT55 are associated with poor survival. Moreover, CT55 silencing decreases dramatically cell proliferation. Second, to investigate the role of CT55 on mitochondria, we first show that CT55 is localized to both mitochondria and endoplasmic reticulum (ER) due to the presence of an ambiguous N-terminal targeting signal. Then, we show that CT55 silencing decreases mtDNA copy number and delays mtDNA recovery after an acute depletion. Moreover, demethylation of CT55 promotor increases its expression, which in turn increases mtDNA copy number. Finally, we measured the mtDNA copy number in NCI-60 cell lines and screened for genes whose expression is strongly correlated to mtDNA amount. We identified CT55 as the second highest correlated hit. Also, we show that compared to siRNA scrambled control (siCtrl) treatment, CT55 specific siRNA (siCT55) treatment down-regulates aerobic respiration, indicating that CT55 sustains mitochondrial respiration. Altogether, these data show for first time that CT55 acts on mtDNA copy number, modulates mitochondrial activity to sustain cancer cell proliferation.


Assuntos
DNA Mitocondrial , Neoplasias , Proliferação de Células , Variações do Número de Cópias de DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , RNA Interferente Pequeno , Testículo/metabolismo
4.
Biology (Basel) ; 10(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34827149

RESUMO

Despite improvements in therapeutic strategies for treating breast cancers, tumor relapse and chemoresistance remain major issues in patient outcomes. Indeed, cancer cells display a metabolic plasticity allowing a quick adaptation to the tumoral microenvironment and to cellular stresses induced by chemotherapy. Recently, long non-coding RNA molecules (lncRNAs) have emerged as important regulators of cellular metabolic orientation. In the present study, we addressed the role of the long non-coding RNA molecule (lncRNA) SAMMSON on the metabolic reprogramming and chemoresistance of MCF-7 breast cancer cells resistant to doxorubicin (MCF-7dox). Our results showed an overexpression of SAMMSON in MCF-7dox compared to doxorubicin-sensitive cells (MCF-7). Silencing of SAMMSON expression by siRNA in MCF-7dox cells resulted in a metabolic rewiring with improvement of oxidative metabolism, decreased mitochondrial ROS production, increased mitochondrial replication, transcription and translation and an attenuation of chemoresistance. These results highlight the role of SAMMSON in the metabolic adaptations leading to the development of chemoresistance in breast cancer cells. Thus, targeting SAMMSON expression levels represents a promising therapeutic route to circumvent doxorubicin resistance in breast cancers.

5.
Brain Commun ; 3(2): fcab063, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34056600

RESUMO

Biallelic mutations in ACO2, encoding the mitochondrial aconitase 2, have been identified in individuals with neurodegenerative syndromes, including infantile cerebellar retinal degeneration and recessive optic neuropathies (locus OPA9). By screening European cohorts of individuals with genetically unsolved inherited optic neuropathies, we identified 61 cases harbouring variants in ACO2, among whom 50 carried dominant mutations, emphasizing for the first time the important contribution of ACO2 monoallelic pathogenic variants to dominant optic atrophy. Analysis of the ophthalmological and clinical data revealed that recessive cases are affected more severely than dominant cases, while not significantly earlier. In addition, 27% of the recessive cases and 11% of the dominant cases manifested with extraocular features in addition to optic atrophy. In silico analyses of ACO2 variants predicted their deleterious impacts on ACO2 biophysical properties. Skin derived fibroblasts from patients harbouring dominant and recessive ACO2 mutations revealed a reduction of ACO2 abundance and enzymatic activity, and the impairment of the mitochondrial respiration using citrate and pyruvate as substrates, while the addition of other Krebs cycle intermediates restored a normal respiration, suggesting a possible short-cut adaptation of the tricarboxylic citric acid cycle. Analysis of the mitochondrial genome abundance disclosed a significant reduction of the mitochondrial DNA amount in all ACO2 fibroblasts. Overall, our data position ACO2 as the third most frequently mutated gene in autosomal inherited optic neuropathies, after OPA1 and WFS1, and emphasize the crucial involvement of the first steps of the Krebs cycle in the maintenance and survival of retinal ganglion cells.

6.
Sci Rep ; 8(1): 11528, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068998

RESUMO

OPA1 (Optic Atrophy 1) is a multi-isoform dynamin GTPase involved in the regulation of mitochondrial fusion and organization of the cristae structure of the mitochondrial inner membrane. Pathogenic OPA1 variants lead to a large spectrum of disorders associated with visual impairment due to optic nerve neuropathy. The aim of this study was to investigate the metabolomic consequences of complete OPA1 disruption in Opa1-/- mouse embryonic fibroblasts (MEFs) compared to their Opa1+/+ counterparts. Our non-targeted metabolomics approach revealed significant modifications of the concentration of several mitochondrial substrates, i.e. a decrease of aspartate, glutamate and α-ketoglutaric acid, and an increase of asparagine, glutamine and adenosine-5'-monophosphate, all related to aspartate metabolism. The signature further highlighted the altered metabolism of nucleotides and NAD together with deficient mitochondrial bioenergetics, reflected by the decrease of creatine/creatine phosphate and pantothenic acid, and the increase in pyruvate and glutathione. Interestingly, we recently reported significant variations of five of these molecules, including aspartate and glutamate, in the plasma of individuals carrying pathogenic OPA1 variants. Our findings show that the disruption of OPA1 leads to a remodelling of bioenergetic pathways with the central role being played by aspartate and related metabolites.


Assuntos
Metabolismo Energético , Fibroblastos/química , Fibroblastos/metabolismo , GTP Fosfo-Hidrolases/deficiência , Metaboloma , Animais , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo
7.
Biochim Biophys Acta Mol Basis Dis ; 1864(5 Pt A): 1596-1608, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29454073

RESUMO

Ketogenic diet (KD) which combined carbohydrate restriction and the addition of ketone bodies has emerged as an alternative metabolic intervention used as an anticonvulsant therapy or to treat different types of neurological or mitochondrial disorders including MELAS syndrome. MELAS syndrome is a severe mitochondrial disease mainly due to the m.3243A > G mitochondrial DNA mutation. The broad success of KD is due to multiple beneficial mechanisms with distinct effects of very low carbohydrates and ketones. To evaluate the metabolic part of carbohydrate restriction, transmitochondrial neuronal-like cybrid cells carrying the m.3243A > G mutation, shown to be associated with a severe complex I deficiency was exposed during 3 weeks to glucose restriction. Mitochondrial enzyme defects were combined with an accumulation of complex I (CI) matrix intermediates in the untreated mutant cells, leading to a drastic reduction in CI driven respiration. The severe reduction of CI was also paralleled in post-mortem brain tissue of a MELAS patient carrying high mutant load. Importantly, lowering significantly glucose concentration in cell culture improved CI assembly with a significant reduction of matrix assembly intermediates and respiration capacities were restored in a sequential manner. In addition, OXPHOS protein expression and mitochondrial DNA copy number were significantly increased in mutant cells exposed to glucose restriction. The accumulation of CI matrix intermediates appeared as a hallmark of MELAS pathophysiology highlighting a critical pathophysiological mechanism involving CI disassembly, which can be alleviated by lowering glucose fuelling and the induction of mitochondrial biogenesis, emphasizing the usefulness of metabolic interventions in MELAS syndrome.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Glucose/metabolismo , Síndrome MELAS/enzimologia , Mitocôndrias/enzimologia , Neurônios/enzimologia , Mutação Puntual , Linhagem Celular Tumoral , Complexo I de Transporte de Elétrons/genética , Feminino , Humanos , Síndrome MELAS/genética , Síndrome MELAS/patologia , Masculino , Mitocôndrias/genética , Mitocôndrias/patologia , Neurônios/patologia , Fosforilação Oxidativa
8.
Artigo em Inglês | MEDLINE | ID: mdl-29382228

RESUMO

OBJECTIVE: Sporadic amyotrophic lateral sclerosis (sALS) is a fatal neurodegenerative disorder affecting upper and lower motor neurons. In view of the heterogeneous presentation of the disease, one of the current challenges is to identify diagnostic and prognostic markers in order to diagnose sALS at early stage and to stratify patients in trials. In this study, we sought to identify cytological hallmarks of sALS in patient-derived fibroblasts with the aim of finding new clinical-related markers of the disease. METHODS: Primary fibroblasts were prospectively collected from patients affected with classical, rapid, and slow forms of sALS. TDP-43 localization, cytoskeleton distribution, mitochondrial network architecture, and stress granules formation were analyzed using 3D fluorescence microscopy and new super-resolution imaging. Intracellular reactive oxygen species (ROS) production was assessed using live imaging techniques. RESULTS: Six sALS patients (two classical, two rapid, and two slow) and four age-matched controls were included. No difference in fibroblasts cell growth, morphology, and distribution was noticed. The analysis of TDP-43 did not reveal any mislocalization nor aggregation of the protein. The cytoskeleton was harmoniously distributed among the cells, without any inclusion noticed, and no difference was observed regarding the mitochondrial network architecture. Basal ROS production and response to induced stress were similar among patient and control fibroblasts. CONCLUSIONS: ALS cytological lesions are absent in patient-derived fibroblasts and thus cannot contribute as diagnostic nor prognostic markers of the disease.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Fibroblastos/patologia , Idoso , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Proliferação de Células/genética , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Humanos , Imageamento Tridimensional , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Proteína FUS de Ligação a RNA/genética , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1/genética
9.
Invest Ophthalmol Vis Sci ; 59(1): 185-195, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29340645

RESUMO

Purpose: Dominant optic atrophy (DOA; MIM [Mendelian Inheritance in Man] 165500), resulting in retinal ganglion cell degeneration, is mainly caused by mutations in the optic atrophy 1 (OPA1) gene, which encodes a dynamin guanosine triphosphate (GTP)ase involved in mitochondrial membrane processing. This work aimed at determining whether plasma from OPA1 pathogenic variant carriers displays a specific metabolic signature. Methods: We applied a nontargeted clinical metabolomics pipeline based on ultra-high-pressure liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) allowing the exploration of 500 polar metabolites in plasma. We compared the plasma metabolic profiles of 25 patients with various OPA1 pathogenic variants and phenotypes to those of 20 healthy controls. Statistical analyses were performed using univariate and multivariate (principal component analysis [PCA], orthogonal partial least-squares discriminant analysis [OPLS-DA]) methods and a machine learning approach, the Biosigner algorithm. Results: A robust and relevant predictive model characterizing OPA1 individuals was obtained, based on a complex panel of metabolites with altered concentrations. An impairment of the purine metabolism, including significant differences in xanthine, hypoxanthine, and inosine concentrations, was at the foreground of this signature. In addition, the signature was characterized by differences in urocanate, choline, phosphocholine, glycerate, 1-oleoyl-rac-glycerol, rac-glycerol-1-myristate, aspartate, glutamate, and cystine concentrations. Conclusions: This first metabolic signature reported in the plasma of patient carrying OPA1 pathogenic variants highlights the unexpected involvement of purine metabolism in the pathophysiology of DOA.


Assuntos
GTP Fosfo-Hidrolases/genética , Atrofia Óptica Autossômica Dominante/sangue , Purinas/metabolismo , Adolescente , Adulto , Criança , Cromatografia Líquida de Alta Pressão , Feminino , Genótipo , Humanos , Masculino , Metaboloma , Metabolômica/métodos , Pessoa de Meia-Idade , Atrofia Óptica Autossômica Dominante/genética , Fenótipo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Adulto Jovem
10.
Biochem Pharmacol ; 148: 100-110, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29277693

RESUMO

The ring-substituted derivatives of carbonyl cyanide phenylhydrazone, CCCP and FCCP, are routinely used for the analysis of the mitochondrial function in living cells, tissues, and isolated mitochondrial preparations. CCCP and FCCP are now being increasingly used for investigating the mechanisms of autophagy by inducing mitochondrial degradation through the disruption of the mitochondrial membrane potential (ΔΨm). Sustained perturbation of ΔΨm, which is normally tightly controlled to ensure cell proliferation and survival, triggers various stress pathways as part of the cellular adaptive response, the main components of which are mitophagy and autophagy. We here review current mechanistic insights into the induction of mitophagy and autophagy by CCCP and FCCP. In particular, we analyze the cellular modifications produced by the activation of two major pathways involving the signaling of the nuclear factor erythroid 2-related factor 2 (Nrf2) and the transcription factor EB (TFEB), and discuss the contribution of these pathways to the integrated cellular stress response.


Assuntos
Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Animais , Carbonil Cianeto m-Clorofenil Hidrazona/química , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/química
11.
J Cell Sci ; 130(11): 1940-1951, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28424233

RESUMO

Mitochondrial dynamics and distribution are critical for supplying ATP in response to energy demand. CLUH is a protein involved in mitochondrial distribution whose dysfunction leads to mitochondrial clustering, the metabolic consequences of which remain unknown. To gain insight into the role of CLUH on mitochondrial energy production and cellular metabolism, we have generated CLUH-knockout cells using CRISPR/Cas9. Mitochondrial clustering was associated with a smaller cell size and with decreased abundance of respiratory complexes, resulting in oxidative phosphorylation (OXPHOS) defects. This energetic impairment was found to be due to the alteration of mitochondrial translation and to a metabolic shift towards glucose dependency. Metabolomic profiling by mass spectroscopy revealed an increase in the concentration of some amino acids, indicating a dysfunctional Krebs cycle, and increased palmitoylcarnitine concentration, indicating an alteration of fatty acid oxidation, and a dramatic decrease in the concentrations of phosphatidylcholine and sphingomyeline, consistent with the decreased cell size. Taken together, our study establishes a clear function for CLUH in coupling mitochondrial distribution to the control of cell energetic and metabolic status.


Assuntos
Ciclo do Ácido Cítrico/genética , DNA Mitocondrial/genética , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Proteínas de Ligação a RNA/metabolismo , Trifosfato de Adenosina/biossíntese , Sistemas CRISPR-Cas , Ciclo do Ácido Cítrico/efeitos dos fármacos , Dano ao DNA , DNA Mitocondrial/metabolismo , Etídio/toxicidade , Deleção de Genes , Células HeLa , Humanos , Metabolômica , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial/efeitos dos fármacos , Imagem Óptica , Oxirredução , Fosforilação Oxidativa/efeitos dos fármacos , Palmitoilcarnitina/metabolismo , Fosfatidilcolinas/metabolismo , Proteínas de Ligação a RNA/genética
12.
Biochim Biophys Acta Mol Basis Dis ; 1863(1): 284-291, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27815040

RESUMO

Ketogenic Diet used to treat refractory epilepsy for almost a century may represent a treatment option for mitochondrial disorders for which effective treatments are still lacking. Mitochondrial complex I deficiencies are involved in a broad spectrum of inherited diseases including Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-like episodes syndrome leading to recurrent cerebral insults resembling strokes and associated with a severe complex I deficiency caused by mitochondrial DNA (mtDNA) mutations. The analysis of MELAS neuronal cybrid cells carrying the almost homoplasmic m.3243A>G mutation revealed a metabolic switch towards glycolysis with the production of lactic acid, severe defects in respiratory chain activity and complex I disassembly with an accumulation of assembly intermediates. Metabolites, NADH/NAD+ ratio, mitochondrial enzyme activities, oxygen consumption and BN-PAGE analysis were evaluated in mutant compared to control cells. A severe complex I enzymatic deficiency was identified associated with a major complex I disassembly with an accumulation of assembly intermediates of 400kDa. We showed that Ketone Bodies (KB) exposure for 4weeks associated with glucose deprivation significantly restored complex I stability and activity, increased ATP synthesis and reduced the NADH/NAD+ ratio, a key component of mitochondrial metabolism. In addition, without changing the mutant load, mtDNA copy number was significantly increased with KB, indicating that the absolute amount of wild type mtDNA copy number was higher in treated mutant cells. Therefore KB may constitute an alternative and promising therapy for MELAS syndrome, and could be beneficial for other mitochondrial diseases caused by complex I deficiency.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Corpos Cetônicos/farmacologia , Síndrome MELAS/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Variações do Número de Cópias de DNA/efeitos dos fármacos , DNA Mitocondrial/genética , Dieta Cetogênica , Complexo I de Transporte de Elétrons/deficiência , Humanos , Síndrome MELAS/genética , Síndrome MELAS/metabolismo , Síndrome MELAS/patologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/complicações , Neurônios/metabolismo , Neurônios/patologia
13.
Int J Biochem Cell Biol ; 65: 91-103, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26024641

RESUMO

Complex I (CI) deficiency is the most common respiratory chain defect representing more than 30% of mitochondrial diseases. CI is an L-shaped multi-subunit complex with a peripheral arm protruding into the mitochondrial matrix and a membrane arm. CI sequentially assembled into main assembly intermediates: the P (pumping), Q (Quinone) and N (NADH dehydrogenase) modules. In this study, we analyzed 11 fibroblast cell lines derived from patients with inherited CI deficiency resulting from mutations in the nuclear or mitochondrial DNA and impacting these different modules. In patient cells carrying a mutation located in the matrix arm of CI, blue native-polyacrylamide gel electrophoresis (BN-PAGE) revealed a significant reduction of fully assembled CI enzyme and an accumulation of intermediates of the N module. In these cell lines with an assembly defect, NADH dehydrogenase activity was partly functional, even though CI was not fully assembled. We further demonstrated that this functional N module was responsible for ROS production through the reduced flavin mononucleotide. Due to the assembly defect, the FMN site was not re-oxidized leading to a significant oxidative stress in cell lines with an assembly defect. These findings not only highlight the relationship between CI assembly and oxidative stress, but also show the suitability of BN-PAGE analysis in evaluating the consequences of CI dysfunction. Moreover, these data suggest that the use of antioxidants may be particularly relevant for patients displaying a CI assembly defect.


Assuntos
Complexo I de Transporte de Elétrons/deficiência , Doenças Mitocondriais/metabolismo , Estresse Oxidativo/fisiologia , Trifosfato de Adenosina/metabolismo , Estudos de Casos e Controles , Células Cultivadas , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Fibroblastos/metabolismo , Humanos , Doenças Mitocondriais/genética , Modelos Moleculares , Mutação , Espécies Reativas de Oxigênio/metabolismo
14.
J Biol Chem ; 288(51): 36662-75, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24178296

RESUMO

Resveratrol (RSV) has been shown to be involved in the regulation of energetic metabolism, generating increasing interest in therapeutic use. SIRT1 has been described as the main target of RSV. However, recent reports have challenged the hypothesis of its direct activation by RSV, and the signaling pathways remain elusive. Here, the effects of RSV on mitochondrial metabolism are detailed both in vivo and in vitro using murine and cellular models and isolated enzymes. We demonstrate that low RSV doses (1-5 µM) directly stimulate NADH dehydrogenases and, more specifically, mitochondrial complex I activity (EC50 ∼1 µM). In HepG2 cells, this complex I activation increases the mitochondrial NAD(+)/NADH ratio. This higher NAD(+) level initiates a SIRT3-dependent increase in the mitochondrial substrate supply pathways (i.e. the tricarboxylic acid cycle and fatty acid oxidation). This effect is also seen in liver mitochondria of RSV-fed animals (50 mg/kg/day). We conclude that the increase in NADH oxidation by complex I is a crucial event for SIRT3 activation by RSV. Our results open up new perspectives in the understanding of the RSV signaling pathway and highlight the critical importance of RSV doses used for future clinical trials.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Hepatócitos/efeitos dos fármacos , NAD/metabolismo , Sirtuína 3/metabolismo , Estilbenos/farmacologia , Animais , Ativação Enzimática , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Oxirredução , Resveratrol
15.
BMC Res Notes ; 6: 427, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24152371

RESUMO

BACKGROUND: A recent article in Circulation Research suggests that the protein ABCC6, which when defective is responsible for pseudoxanthoma elasticum, an inherited condition with skin, eye and cardiovascular manifestations, is associated with dysfunction in mitochondria--Martin et al.: ABCC6 Localizes to the Mitochondria-Associated Membrane.Circ Res 2012, 111:516-520. We present complementary information based on a bioinformatics analysis, which was not performed in the article cited, to examine the suggestion that ABCC6 is localized to mitochondria. RESULTS: All the computational strategies and integrative approaches that constitute references in the field indicate that ABCC6 is localized outside of mitochondria. CONCLUSION: Our computational and integrative results, including both experimental and predictive data, show that there is no support in favor of the localization of ABCC6 in mitochondria.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Calcinose/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Pseudoxantoma Elástico/metabolismo , Animais
16.
Anal Biochem ; 434(1): 44-51, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23146587

RESUMO

The majority of nuclear-encoded organellar proteins contain a cleavable presequence, which is necessary for protein targeting and import into the correct cellular compartment. Knowledge about targeting-peptide cleavage sites is essential for the structural and functional characterization of the mature organellar proteins as well as for a deeper understanding of the import process. Because of the low consensus and high variability of presequences, bioinformatics of targeting-peptide cleavage fails to predict the length of the targeting peptide with high confidence. Therefore, we have developed a rapid and robust method to experimentally determine the cleavage site of the transit peptide for proteins imported into mitochondria or plastids. The protein precursor with green fluorescent protein (GFP) fused to its C-terminus is transiently expressed in cells (for animal proteins) or protoplasts (for plant proteins), allowing translocation into organelles and removal of the transit peptide. After lysis, the matured protein is immunopurified using an anti-GFP antibody coupled to magnetic beads. The N-terminal amino sequence is then determined by Edman microsequencing or mass spectrometry. The method has been validated using proteins with known targeting-peptide sequences and is suitable for animal and plant organelle-targeted proteins.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Peptídeos/metabolismo , Análise de Sequência de Proteína , Sequência de Aminoácidos , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/isolamento & purificação , Células Hep G2 , Humanos , Separação Imunomagnética , Espectrometria de Massas , Mitocôndrias/metabolismo , Peptídeos/genética , Peptídeos/isolamento & purificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Protoplastos/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Transfecção
17.
Biochim Biophys Acta ; 1822(6): 1019-29, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22306605

RESUMO

The m.3243A>G variant in the mitochondrial tRNA(Leu(UUR)) gene is a common mitochondrial DNA (mtDNA) mutation. Phenotypic manifestations depend mainly on the heteroplasmy, i.e. the ratio of mutant to normal mtDNA copies. A high percentage of mutant mtDNA is associated with a severe, life-threatening neurological syndrome known as MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes). MELAS is described as a neurovascular disorder primarily affecting the brain and blood vessels, but the pathophysiology of the disease is poorly understood. We developed a series of cybrid cell lines at two different mutant loads: 70% and 100% in the nuclear background of a neuroblastoma cell line (SH-SY5Y). We investigated the impact of the mutation on the metabolism and mitochondrial respiratory chain activity of the cybrids. The m.3243A>G mitochondrial mutation induced a metabolic switch towards glycolysis in the neuronal cells and produced severe defects in respiratory chain assembly and activity. We used two strategies to compensate for the biochemical defects in the mutant cells: one consisted of lowering the glucose content in the culture medium, and the other involved the addition of l-arginine. The reduction of glucose significantly shifted the 100% mutant cells towards the wild-type, reaching a 90% mutant level and restoring respiratory chain complex assembly. The addition of l-arginine, a nitric oxide (NO) donor, improved complex I activity in the mutant cells in which the defective NO metabolism had led to a relative shortage of NO. Thus, metabolically induced heteroplasmy shifting and l-arginine therapy may constitute promising therapeutic strategies against MELAS.


Assuntos
Arginina/farmacologia , DNA Mitocondrial/genética , Síndrome MELAS/metabolismo , Mitocôndrias/metabolismo , RNA de Transferência de Leucina/genética , Linhagem Celular Tumoral , Glucose/metabolismo , Glicólise , Humanos , Células Híbridas , Síndrome MELAS/genética , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Mutação , Neuroblastoma , Neurônios/metabolismo , RNA de Transferência de Leucina/metabolismo
18.
Biochim Biophys Acta ; 1807(6): 562-7, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20950584

RESUMO

Adenine nucleotide translocase (ANT), a mitochondrial protein that facilitates the exchange of ADP and ATP across the mitochondrial inner membrane, plays an essential role in cellular energy metabolism. Human ANT presents four isoforms (ANT1-4), each with a specific expression depending on the nature of the tissue, cell type, developmental stage and status of cell proliferation. Thus, ANT1 is specific to muscle and brain tissues; ANT2 occurs mainly in proliferative, undifferentiated cells; ANT3 is ubiquitous; and ANT4 is found in germ cells. ANT1 and ANT3 export the ATP produced by oxidative phosphorylation (OxPhos) from the mitochondria into the cytosol while importing ADP. In contrast, the expression of ANT2, which is linked to the rate of glycolytic metabolism, is an important indicator of carcinogenesis. In fact, cancers are characterized by major metabolic changes that switch cells from the normally dual oxidative and glycolytic metabolisms to an almost exclusively glycolytic metabolism. When OxPhos activity is impaired, ANT2 imports glycolytically produced ATP into the mitochondria. In the mitochondrial matrix, the F1F0-ATPase complex hydrolyzes the ATP, pumping out a proton into the intermembrane space. The reverse operations of ANT2 and F1F0-ATPase under glycolytic conditions contribute to maintaining the mitochondrial membrane potential, ensuring cell survival and proliferation. Unlike the ANT1 and ANT3 isoforms, ANT2 is not pro-apoptotic and may therefore contribute to carcinogenesis. Since the expression of ANT2 is closely linked to the mitochondrial bioenergetics of tumors, it should be taken into account for individualizing cancer treatments and for the development of anticancer strategies.


Assuntos
Translocador 2 do Nucleotídeo Adenina/fisiologia , Mitocôndrias/enzimologia , Neoplasias/metabolismo , Translocador 2 do Nucleotídeo Adenina/genética , Translocador 2 do Nucleotídeo Adenina/metabolismo , Animais , Metabolismo Energético/fisiologia , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Isoenzimas/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/fisiologia , Modelos Biológicos , Neoplasias/enzimologia , Neoplasias/genética , Fosforilação Oxidativa
19.
Mol Carcinog ; 48(8): 733-41, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19347860

RESUMO

Cancer cells mainly rely on glycolysis for energetic needs, and mitochondrial ATP production is almost inactive. However, cancer cells require the integrity of mitochondrial functions for their survival, such as the maintenance of the internal membrane potential gradient (DeltaPsim). It thus may be predicted that DeltaPsim regeneration should depend on cellular capability to produce sufficient ATP by upregulating glycolysis or recruiting oxidative phosphorylation (OXPHOS). To investigate this hypothesis, we compared the response to an anticancer agent chloroethylnitrosourea (CENU) of two transformed cell lines: HepG2 (hepatocarcinoma) with a partially differentiated phenotype and 143B (osteosarcoma) with an undifferentiated one. These cells types differ by their mitochondrial OXPHOS background; the most severely impaired being that of 143B cells. Treatment effects were tested on cell proliferation, O(2) consumption/ATP production coupling, DeltaPsim maintenance, and global metabolite profiling by NMR spectroscopy. Our results showed an OXPHOS uncoupling and a lowered DeltaPsim, leading to an increased energy request to regenerate DeltaPsim in both models. However, energy request could not be met by undifferentiated cells 143B, which ATP content decreased after 48 h leading to cell death, while partially differentiated cells (HepG2) could activate their oxidative metabolism and escape chemotherapy. We propose that mitochondrial OXPHOS background confers a survival advantage to more differentiated cells in response to chemotherapy. This suggests that the mitochondrial bioenergetic background of tumors should be considered for anticancer treatment personalization.


Assuntos
Carcinoma Hepatocelular/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Osteossarcoma/metabolismo , Trifosfato de Adenosina/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Diferenciação Celular , Proliferação de Células , Respiração Celular , Sobrevivência Celular/efeitos dos fármacos , Etilnitrosoureia/análogos & derivados , Etilnitrosoureia/farmacologia , Glucose/metabolismo , Humanos , Ácido Láctico/metabolismo , Espectroscopia de Ressonância Magnética , Potencial da Membrana Mitocondrial , Mitocôndrias/efeitos dos fármacos , Osteossarcoma/tratamento farmacológico , Fosforilação Oxidativa , Ácido Pirúvico/metabolismo , Células Tumorais Cultivadas
20.
Ann Neurol ; 61(4): 315-23, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17444508

RESUMO

OBJECTIVE: Mutations of the mitofusin 2 gene (MFN2) may account for at least a third of the cases of Charcot-Marie-Tooth disease type 2 (CMT2). This study investigates mitochondrial cellular bioenergetics in MFN2-related CMT2A. METHODS: Mitochondrial network morphology and metabolism were studied in cultures of skin fibroblasts obtained from four CMT2A patients harboring novel missense mutations of the MFN2 gene. RESULTS: Although the mitochondrial network appeared morphologically unaltered, there was a significant defect of mitochondrial coupling associated with a reduction of the mitochondrial membrane potential. INTERPRETATION: Our results suggest that the sharply reduced efficacy of oxidative phosphorylation in MFN2-related CMT2A may contribute to the pathophysiology of the axonal neuropathy.


Assuntos
Doença de Charcot-Marie-Tooth/complicações , Doença de Charcot-Marie-Tooth/patologia , Doenças Mitocondriais/etiologia , Doenças Mitocondriais/patologia , Trifosfato de Adenosina/metabolismo , Adulto , Apoptose , Células Cultivadas , Doença de Charcot-Marie-Tooth/genética , Análise Mutacional de DNA , Feminino , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , GTP Fosfo-Hidrolases , Predisposição Genética para Doença , Humanos , Masculino , Potencial da Membrana Mitocondrial/genética , Potencial da Membrana Mitocondrial/fisiologia , Proteínas de Membrana/genética , Redes e Vias Metabólicas/fisiologia , Pessoa de Meia-Idade , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Mutação de Sentido Incorreto , Espécies Reativas de Oxigênio , Pele/patologia , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA