Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Biol Trace Elem Res ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349487

RESUMO

Thallium (Tl) is a highly toxic heavy metal whose mechanism of toxicity is still not completely understood. The aim of this study was to test Tl cytotoxicity on several cell lines of different tissue origin in order to clarify specific Tl toxicity to a particular organ. In addition, possible interference of Tl with cell potassium (K) transport was examined. Human keratinocytes (HaCaT), human hepatocellular carcinoma (HepG2), porcine kidney epithelial cells (PK15), human neuroblastoma (SH-SY5Y) and Chinese hamster lung fibroblast cells (V79) were treated with thallium (I) acetate in a wide concentration range (3.9-500 µg/mL) for 24 h, 48 and 72 h. To assess competitive interaction between Tl and K, the cells were treated with four Tl concentrations close to IC50 (15.63, 31.25, 62.50, 125 µg/mL) in combination with/or without potassium (I) acetate (500 µg/mL). The cells' morphology was monitored, and cytotoxic effect was assessed by 3-(4, 5-dimethylthiazole-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) test. The most sensitive to Tl exposure were SH-SY5Y cells, while HepG2 were the most resistant. The combined exposure to thallium (I) acetate and potassium (I) acetate for every cell line, except V79 cells, resulted in higher cell viability compared to thallium (I) acetate alone. The results of our study indicate that cell sensitivity to Tl treatment is largely affected by tissue culture origin, its function, and Na+/K+-ATPase activity.

2.
Clin Transl Oncol ; 26(6): 1508-1518, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38310203

RESUMO

PURPOSE: We investigated the impact of anthracycline-based chemotherapy on methylation status of RB1 gene in peripheral blood leukocytes together with parameters of oxidative stress and inflammation in sarcoma patients. PATIENTS/METHODS: Blood samples were collected from 51 consecutive newly diagnosed sarcoma patients admitted to University Hospital Center Zagreb (Zagreb, Croatia) for first-line chemotherapy before the first cycle and post-chemotherapy. Methylation and copy number variation (CNV) of leukocyte RB1 gene were assessed using MS-MLPA probes. In addition, in blood samples, parameters of oxidative stress (ROS, MDA, SOD, and GSH) and inflammation (CRP, WBC, and NBC) were followed. RESULTS: In pre-chemotherapy samples, no CNVs and aberrant methylation of CpG106 promoter region of RB1 gene were detected; however, one patient had hypermethylation (by approximately 10%) of imprinted locus CpG85 in intron 2 of RB1 gene. In addition, a very good correlation of the tumor burden and CRP and tumor burden and GSH was found. The anthracycline-based chemotherapy reverts methylation of RB1 gene-imprinted locus CpG85 to normal level. Moreover, inflammation and oxidative stress parameters such as CRP, WBC, ROS, and MDA were significantly decreased in post-chemotherapy samples. CONCLUSION: This single-centered study on a cohort of consecutive sarcoma patients indicates that sarcoma patients can have aberrant germline DNA methylation and confirms the relationship of tumor burden with inflammation and oxidative stress. The applied chemotherapy protocols reverted RB1 gene methylation to normal level and decreased the level of inflammation and oxidative damage, thus indicating chemotherapy benefit to the patient's health status.


Assuntos
Antraciclinas , Metilação de DNA , Inflamação , Leucócitos , Estresse Oxidativo , Sarcoma , Humanos , Feminino , Masculino , Sarcoma/tratamento farmacológico , Sarcoma/genética , Sarcoma/patologia , Leucócitos/metabolismo , Adulto , Inflamação/genética , Pessoa de Meia-Idade , Antraciclinas/uso terapêutico , Proteínas de Ligação a Retinoblastoma/genética , Adulto Jovem , Ubiquitina-Proteína Ligases/genética , Idoso , Adolescente , Variações do Número de Cópias de DNA
3.
Acta Pharm ; 73(4): 691-708, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147472

RESUMO

The aim of this study was to compare the effects of dexmedetomidine and dexamethasone as adjuvants to preoperative epidural administration of local anesthetic (ropivacaine) in thoracic surgery on the postoperative level of pain, use of analgesics, inflammation, and oxidative stress. The study enrolled 42 patients who underwent elective thoracic surgery in a one-year period at the University Hospital Dubrava (Zagreb, Croatia). Based on a computer-generated randomization list the patients were assigned to the dexmedetomidine (n = 18) or dexamethasone (n = 24) group. Postoperatively, patients of dexmedetomidine group reported lower pain (VAS value 1 h post surgery, 3.4 ± 2.7 vs. 5.4 ± 1.8, dexmedetomidine vs. dexamethasone, p < 0.01) and had lower anal-gesic requirements in comparison with dexamethasone group. Thus, dexmedetomidine in comparison with dexamethasone was more efficient in lowering pain and analgesia requirements 24 h after the surgery. On the contrary, dexamethasone had better anti-inflammatory properties (CRP level 24 h post surgery, 131.9 ± 90.7 vs. 26.0 ± 55.2 mg L-1, dexmedetomidine vs. dexamethasone, p < 0.01). Both dexmedetomidine and dexamethasone exhibited antioxidant effects, however, their antioxidant properties should be further explored. The results of this study improve current knowledge of pain control in thoracic surgery.


Assuntos
Dexmedetomidina , Cirurgia Torácica , Humanos , Analgésicos , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/etiologia , Dor Pós-Operatória/prevenção & controle , Dexametasona , Estresse Oxidativo , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle
4.
Molecules ; 28(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049848

RESUMO

Bisphenol A (BPA) is one of the most commonly used substances in the manufacture of various everyday products. Growing concerns about its hazardous properties, including endocrine disruption and genotoxicity, have led to its gradual replacement by presumably safer analogues in manufacturing plastics. The widespread use of BPA and, more recently, its analogues has increased their residues in the environment. However, our knowledge of their toxicological profiles is limited and their combined effects are unknown. In the present study, we investigated the toxic effects caused by single bisphenols and by the combined exposure of BPA and its two analogues, BPAP and BPC, after short (24-h) and prolonged (96-h) exposure in HepG2 spheroids. The results showed that BPA did not reduce cell viability in HepG2 spheroids after 24-h exposure. In contrast, BPAP and BPC affected cell viability in HepG2 spheroids. Both binary mixtures (BPA/BPAP and BPA/BPC) decreased cell viability in a dose-dependent manner, but the significant difference was only observed for the combination of BPA/BPC (both at 40 µM). After 96-h exposure, none of the BPs studied affected cell viability in HepG2 spheroids. Only the combination of BPA/BPAP decreased cell viability in a dose-dependent manner that was significant for the combination of 4 µM BPA and 4 µM BPAP. None of the BPs and their binary mixtures studied affected the surface area and growth of spheroids as measured by planimetry. In addition, all BPs and their binary mixtures studied triggered oxidative stress, as measured by the production of reactive oxygen species and malondialdehyde, at both exposure times. Overall, the results suggest that it is important to study the effects of BPs as single compounds. It is even more important to study the effects of combined exposures, as the combined effects may differ from those induced by single compounds.


Assuntos
Compostos Benzidrílicos , Fenóis , Humanos , Células Hep G2 , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/química , Fenóis/toxicidade , Fenóis/química , Estresse Oxidativo
5.
Molecules ; 28(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36903292

RESUMO

The aim of this study was to test the phytotoxicity and mode of action of bisphenol A (BPA) on Allium cepa using a multibiomarker approach. A. cepa roots were exposed to BPA in concentration range 0-50 mg L-1 for 3 days. BPA even in the lowest applied concentration (1 mg L-1) reduced root length, root fresh weight, and mitotic index. Additionally, the lowest BPA concentration (1 mg L-1) decreased the level of gibberellic acid (GA3) in root cells. BPA at concentration 5 mg L-1 increased production of reactive oxygen species (ROS) that was followed by increase in oxidative damage to cells' lipids and proteins and activity of enzyme superoxide dismutase. BPA in higher concentrations (25 and 50 mg L-1) induced genome damage detected as an increase in micronucleus (MNs) and nuclear buds (NBUDs). BPA at >25 mg L-1 induced synthesis of phytochemicals. Results of this study using multibiomarker approach indicate that BPA is phytotoxic to A. cepa roots and has shown genotoxic potential to plants, thus its presence in the environment should be monitored.


Assuntos
Allium , Hormônio do Crescimento Humano , Cebolas , Espécies Reativas de Oxigênio/metabolismo , Hormônio do Crescimento , Raízes de Plantas/metabolismo , Dano ao DNA
6.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835492

RESUMO

The study aimed to investigate toxicity and the mechanism of toxicity of two Fusarium mycotoxins, deoxynivalenol (DON) and zearalenone (ZEA). DON and ZEA were applied to HepG2 cells as single compounds and in combination at low environmentally relevant concentrations. HepG2 cells were exposed to DON (0.5, 1, and 2 µM), ZEA (5, 10, and 20 µM) or their combinations (1 µM DON + 5 µM ZEA, 1 µM DON + 10 µM ZEA and 1 µM DON + 20 µM ZEA) for 24 h and cell viability, DNA damage, cell cycle and proliferation were assessed. Both mycotoxins reduced cell viability, however, combined treatment with DON and ZEA resulted in higher reduction of cell viability. DON (1 µM) induced primary DNA damage, while DON (1 µM) in combination with higher ZEA concentrations showed antagonistic effects compared to DON alone at 1 µM. DON arrested HepG2 cells in G2 phase and significantly inhibited cell proliferation, while ZEA had no significant effect on cell cycle. The combined treatment with DON and ZEA arrested cells in G2 phase to a higher extend compared to treatment with single mycotoxins. Potentiating effect observed after DON and ZEA co-exposure at environmentally relevant concentrations indicates that in risk assessment and setting governments' regulations, mixtures of mycotoxins should be considered.


Assuntos
Micotoxinas , Zearalenona , Humanos , Zearalenona/toxicidade , Células Hep G2 , Micotoxinas/farmacologia , Ciclo Celular , Proliferação de Células , DNA/farmacologia
7.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555562

RESUMO

The harmful effects of silver nanoparticles (AgNPs) have been confirmed in many organisms, but the mechanism of their toxicity is not yet fully understood. In biological systems, AgNPs tend to aggregate and dissolve, so they are often stabilized by coatings that influence their physico-chemical properties. In this study, the effects of AgNPs with different coatings [polyvinylpyrrolidone (PVP) and cetyltrimethylammonium bromide (CTAB)] on oxidative stress appearance and proteome changes in tobacco (Nicotiana tabacum) seedlings have been examined. To discriminate between the nanoparticulate Ag form from the ionic one, the treatments with AgNO3, a source of Ag+ ions, were also included. Ag uptake and accumulation were found to be similarly effective upon exposure to all treatment types, although positively charged AgNP-CTAB showed less stability and a generally stronger impact on the investigated parameters in comparison with more stable and negatively charged AgNP-PVP and ionic silver (AgNO3). Both AgNP treatments induced reactive oxygen species (ROS) formation and increased the expression of proteins involved in antioxidant defense, confirming oxidative stress as an important mechanism of AgNP phytotoxicity. However, the mechanism of seedling responses differed depending on the type of AgNP used. The highest AgNP-CTAB concentration and CTAB coating resulted in increased H2O2 content and significant damage to lipids, proteins and DNA molecules, as well as a strong activation of antioxidant enzymes, especially CAT and APX. On the other hand, AgNP-PVP and AgNO3 treatments induced the nonenzymatic antioxidants by significantly increasing the proline and GSH content. Exposure to AgNP-CTAB also resulted in more noticeable changes in the expression of proteins belonging to the defense and stress response, carbohydrate and energy metabolism and storage protein categories in comparison to AgNP-PVP and AgNO3. Cysteine addition significantly reduced the effects of AgNP-PVP and AgNO3 for the majority of investigated parameters, indicating that AgNP-PVP toxicity mostly derives from released Ag+ ions. AgNP-CTAB effects, however, were not alleviated by cysteine addition, suggesting that their toxicity derives from the intrinsic properties of the nanoparticles and the coating itself.


Assuntos
Antioxidantes , Nanopartículas Metálicas , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Nicotiana/metabolismo , Plântula/metabolismo , Prata/química , Proteômica , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Cetrimônio/farmacologia , Cisteína/metabolismo , Peróxido de Hidrogênio/metabolismo , Nitrato de Prata/toxicidade
8.
Clin Nutr ESPEN ; 49: 319-327, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35623833

RESUMO

BACKGROUND & AIMS: Severe obesity and its comorbidities relate to increased genomic instability/cancer risk. Obesity in Croatia is rapidly increasing, and long diets are sometimes the reason for obese to quit health improvement programs. A shorter diet with more strict calorie reduction could also lead to weight reduction and health improvements, but data are scarce. We tested for the first time if a very low-calorie diet (VLCD) can improve anthropometric, biochemical and genomic stability parameters in severely obese with BMI ≥ 35 kg m-2. METHODS: 22 participants were chosen among those regularly attending the hospital for obesity control, with no other previous treatment for bodyweight reduction. Under 24 h medical surveillance, patients received 3-weeks-567-kcal-hospital-controlled-VLCD composed of 50-60% complex carbohydrates, 20-25% proteins, and 25-30% fat, with the attention to food carbo-glycemic index, in 3 meals freshly prepared in hospital. We analyzed changes in body weight, BMI, basal metabolism rate, waist-hip ratio, visceral fat level, body fat mass, percent body fat, skeletal muscle mass, basal metabolism, energy intake, lipid profile, thyroid hormones, TSH, and genomic instability (alkaline and oxidative FPG comet assay) before and on the last VLCD day. RESULTS: Diet caused BMI reduction (in average 3-4 BMI units' loss), excessive weight loss (between 10 and 35%), significant weight loss (average 9 kg, range 4.8-14.4 kg) and a significant decrease in glucose, insulin, urea, cholesterol, HDL-c, LDL-c, oxidative (FPG) and DNA damage (alkaline comet assay) levels. CONCLUSIONS: The diet can lead to ≥10% excessive weight loss, significant health, and genomic stability improvement, and keep severely obese interest in maintaining healthy habits. The study was registered at ClinicalTrials.gov as NCT05007171 (10.08.2021).


Assuntos
Obesidade Mórbida , Obesidade , Índice de Massa Corporal , Dano ao DNA , Instabilidade Genômica , Hospitais , Humanos , Obesidade/complicações , Obesidade Mórbida/complicações , Estresse Oxidativo , Redução de Peso
9.
Toxicology ; 470: 153157, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35307467

RESUMO

Domoic acid (DA) is a marine neurotoxin produced as a defence compound by diatom Pseudo-nitzschia. Although its toxicity is well known in marine mammals and fish, data on DA cyto/genotoxicity in human non-target cells is still limited. Hence, we aimed to study the effect of DA (0.001-10 µg/mL) on cell viability and proliferation kinetics of human hepatocellular carcinoma (HepG2) cells as well as DNA damage induction after 4, 24 and 72 h of exposure. The results revealed that DA up to 10 µg/mL did not elicit significant changes in HepG2 cell viability, proliferation and cell cycle at applied conditions. DA did not generate DNA double-strand breaks, while it exhibited significant dose- and time-dependent increase of DNA damage in the form of either DNA single-strand breaks or alkali labile sites. Additionally, increased malondialdehyde level after DA treatment indicated oxidative damage to lipids. Altogether, the results showed that neurotoxin DA induced only minor adverse genotoxic effects in non-target HepG2 cells that most probably occurred resulting from the oxidative stress. However, additional research is needed to further elucidate the mechanisms of DA toxicity, particularly in terms of chronic exposure, as well as to understand its potential influence on human non-target cells.


Assuntos
Diatomáceas , Neurotoxinas , Animais , DNA/metabolismo , Diatomáceas/metabolismo , Células Hep G2 , Humanos , Ácido Caínico/análogos & derivados , Ácido Caínico/toxicidade , Mamíferos , Toxinas Marinhas/metabolismo , Toxinas Marinhas/toxicidade , Neurotoxinas/toxicidade
10.
J Pharmacol Toxicol Methods ; 110: 107087, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34153452

RESUMO

The aim of the study was to develop fast and accurate method for assessment of intracellular level of cadmium (Cd) and thallium (Tl), and to establish accumulation of the metals in the cells. HepG2 cells were treated with Cd or Tl (1.0 or 10.0 mg/L; 24 h) and level of Cd or Tl was assessed. ICP-MS was applied and the method was optimized and validated. Correlation coefficient (R2) for Cd was 0.9999 with intercept 0.0732 while for Tl was 1.00009 with intercept -0.1497, and limit of detection (LOD) for Cd was 0.020 µg/L and for Tl 0.097 µg/L. Both metals, Cd and Tl, accumulate in the cells in concentration-dependent manner. However, higher uptake of Cd in comparison to Tl was observed. Cells treated with the same concentration of the metal (1.0 mg/L) accumulated 10.0% of Cd and 1.0% of Tl. Higher uptake of Cd than Tl can explain higher toxicity of Cd toward HepG2 cells. Obtained results imply to the importance of monitoring the level of metals in the cells in order to connect changes at the molecular level with exposure to specific metal.


Assuntos
Cádmio , Tálio , Cádmio/toxicidade , Tálio/toxicidade
11.
Artigo em Inglês | MEDLINE | ID: mdl-31690176

RESUMO

An adequate level of low molecular weight thiols (LMW-SH, especially glutathione (GSH)) protects cellular macromolecules against toxic agents, and is used as a sensitive biomarker of exposure to toxic compounds. During sample collection, storage and preparation, non-enzymatic and enzymatic oxidation of LMW-SH can occur leading to analytical inaccuracy. The aim of this study was to optimize a fast and reliable screening method for the determination of LMW-SH, mainly GSH, in blood and plasma samples as well as to investigate the impact of storage conditions on the LMW-SH stability. Based on our results, the described spectrophotometric method allows fast and reliable determination of LMW-SH in blood and plasma samples. Results on incubation of samples at 37 °C imply that synthesis of LMW-SH (probably GSH) as well as dynamic interexchange among various thiols forms can be induced in blood cells in in vitro conditions. Importantly, the level of LMW-SH in blood and plasma stored at -20 °C was constant, indicating that they can be stored at -20 °C for at least 30 days. Therefore, the method is suitable for assessment of LMW-SH in long-term human biomonitoring as well as environmental field studies, especially those involving a large number of samples such as epidemiological studies.


Assuntos
Monitoramento Biológico/métodos , Compostos de Sulfidrila/sangue , Biomarcadores/sangue , Biomarcadores/química , Glutationa/sangue , Glutationa/química , Humanos , Peso Molecular , Oxirredução , Manejo de Espécimes , Compostos de Sulfidrila/química , Temperatura
12.
Saudi Pharm J ; 27(8): 1216-1221, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31885482

RESUMO

Imatinib mesylate (IM) is the first developed protein kinase inhibitor and recently it has topped consumption rates among targeted and total anticancer drugs. Although there are indications that IM possesses cyto/genotoxic activities against normal non-target cells as well, there is a lack of information regarding the underlying mechanism involved in those actions. Therefore, we aimed to evaluate the response of human circulating blood cells towards oxidative stress after IM treatment (0.0001-10 µg/mL) in vitro. Based on the results, IM had an influence on all of the oxidative stress parameters tested. Lower concentrations of IM induced an increase of glutathione level, following its decrease at higher IM concentrations indicating impairment in oxidative stress defences. Concomitant to a glutathione decrease, an increase of malondialdehyde and protein carbonyls level was observed indicating oxidative damage of lipids and proteins. The observed effects overlapped with the observed formation of oxidative base damage detected by formamidopyrimidine-DNA glycosylase modified-comet assay indicating that IM managed to induce oxidative DNA damage. Our results provide novelty in their mechanistic approach to IM-induced toxicity in non-target cells and suggest that IM can affect blood cells and induce oxidative stress.

13.
Artigo em Inglês | MEDLINE | ID: mdl-31561900

RESUMO

Sodium copper chlorophyllin (CHL) is a food colorant that exhibits many beneficial properties, including potential for use in radiotherapy. Nevertheless, genotoxicity studies investigating radioprotective properties against γ-radiation on human cells are rather scarce. The aim of this study was to assess the cytotoxicity, genotoxicity and induction of malondialdehyde formation on CHL pre-treated whole blood cells after an absorbed dose of 5 Gy γ-radiation. Irradiated whole blood cells pre-treated with 100, 500, and 1000 µg/mL CHL showed less DNA-strand breaks (10.92 ± 0.74%, 10.69 ± 0.68%, and 8.81 ± 0.69%, respectively) than untreated irradiated cells (12.58 ± 0.88%). At the same time, the level of malondialdehyde was lower in CHL pre-treated samples with 100, 500, and 1000 µg/mL CHL (14.11 ± 0.43, 16.35 ± 2.82, and 13.08 ± 1.03 µmol/L, respectively) compared to untreated irradiated samples (24.11 ± 0.25 µmol/L). Regarding cytotoxicity, no changes were observed in the samples tested. Another important finding is that CHL had no cyto/genotoxic properties toward human blood cells. Taken together, since CHL had no cyto/genotoxic effects and showed good radioprotective properties in human blood cells, further studies should be conducted in order to find its possible application in radiotherapy.


Assuntos
Clorofilídeos/farmacologia , Dano ao DNA/efeitos dos fármacos , Corantes de Alimentos/farmacologia , Linfócitos/efeitos dos fármacos , Protetores contra Radiação/farmacologia , Adulto , Células Cultivadas , Quebras de DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Raios gama , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Linfócitos/química , Linfócitos/efeitos da radiação , Masculino , Malondialdeído/análise , Estrutura Molecular , Proteção Radiológica
14.
J Environ Sci Health B ; 54(3): 155-162, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30614388

RESUMO

Toxicity of gamma irradiated mycotoxins aflatoxin B1 (AFB1) and ochratoxin A (OTA) was investigated in vitro. AFB1 and OTA stock solutions (50 mM, in methanol) were gamma irradiated (5 and 10 kGy) and non-irradiated and irradiated mycotoxins solutions were tested for cytotoxicity on Pk15, HepG2 and SH-SY5Y cell lines (MTT assay, 1-500 µM concentration range; 24 h exposure). Degradation of mycotoxin molecules was examined by liquid chromatography tandem mass spectrometry (HPLC-MS/MS). AFB1 and OTA radiolytic products were less toxic than the parent mycotoxins to all of the tested cell lines. Gamma irradiation even at 5 kGy had effect on AFB1 and OTA molecules however, this effect was dependent on chemical structure of mycotoxin. Since gamma irradiation at low dose reduced initial level of both mycotoxins, and gamma irradiated mycotoxins had lower toxicity in comparison to non-irradiated mycotoxins, it can be concluded that gamma irradiation could be used as decontamination method.


Assuntos
Aflatoxina B1/efeitos da radiação , Aflatoxina B1/toxicidade , Ocratoxinas/efeitos da radiação , Ocratoxinas/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos , Relação Dose-Resposta à Radiação , Raios gama , Células Hep G2 , Humanos , Espectrometria de Massas em Tandem , Testes de Toxicidade/métodos
15.
Chemosphere ; 214: 623-632, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30290362

RESUMO

The non-proteinogenic amino acid ß-N-methylamino-l-alanine (BMAA) is associated with the development of neurodegenerative diseases such as Alzheimer's disease, amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS-PDC) and amyotrophic lateral sclerosis. BMAA is known to induce neurotoxic effects leading to neurodegeneration via multiple mechanisms including misfolded protein accumulation, glutamate induced excitotoxicity, calcium dyshomeostasis, endoplasmic reticulum stress and oxidative stress. In the present study, for the first time, genotoxic activity of BMAA (2.5, 5, 10 and 20 µg/mL) was studied in human peripheral blood cells (HPBCs) using the comet and cytokinesis-block micronucleus cytome assays. In addition, the influence of BMAA on the oxidative stress was assessed. At non-cytotoxic concentrations BMAA did not induce formation of DNA strand breaks in HPBCs after 4 and 24 h exposure; however, it significantly increased the number of micronuclei after 24 and 48 h at 20 µg/mL and nucleoplasmic bridges after 48 h at 20 µg/mL. The frequency of nuclear buds was slightly though non-significantly increased after 48 h. Altogether, this indicates that in HPBCs BMAA is clastogenic and induces complex genomic alterations including structural chromosomal rearrangements and gene amplification. No influence on oxidative stress markers was noticed. These findings provide new evidence that environmental neurotoxin BMAA, in addition to targeting common pathways involved in neurodegeneration, can also induce genomic instability in non-target HPBCs suggesting that it might be involved in cancer development. Therefore, these data are important in advancing our current knowledge and opening new questions in the understanding of the mechanisms of BMAA toxicity, particularly in the context of genotoxicity.


Assuntos
Diamino Aminoácidos/efeitos adversos , Biomarcadores/metabolismo , Células Sanguíneas/patologia , Neurotoxinas/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Adulto , Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/metabolismo , Toxinas de Cianobactérias , Dano ao DNA , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/efeitos adversos , Feminino , Humanos
16.
Chemosphere ; 209: 640-653, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29958162

RESUMO

Since silver nanoparticles (AgNPs) are a dominant nanomaterial in consumer products, there is growing concern about their impact on the environment. Although numerous studies on the effects of AgNPs on living organisms have been conducted, the interaction of AgNPs with plants has not been fully clarified. To reveal the plant mechanisms activated after exposure to AgNPs and to differentiate between effects specific to nanoparticles and ionic silver, we investigated the physiological, ultrastructural and proteomic changes in seedlings of tobacco (Nicotiana tabacum) exposed to commercial AgNPs and ionic silver (AgNO3) from the seed stage. A higher Ag content was measured in seedlings exposed to AgNPs than in those exposed to the same concentration of AgNO3. However, the results on oxidative stress parameters obtained revealed that, in general, higher toxicity was recorded in AgNO3-treated seedlings than in those exposed to nanosilver. Ultrastructural analysis of root cells confirmed the presence of silver in the form of nanoparticles, which may explain the lower toxicity of AgNPs. However, the ultrastructural changes of chloroplasts as well as proteomic study showed that both AgNPs and AgNO3 can affect photosynthesis. Moreover, the majority of the proteins involved in the primary metabolism were up-regulated after both types of treatments, indicating that enhanced energy production, which can be used to reinforce defensive mechanisms, enables plants to cope with silver-induced toxicity.


Assuntos
Nanopartículas Metálicas/química , Nicotiana/química , Proteômica/métodos , Plântula/efeitos dos fármacos , Nitrato de Prata/química , Prata/química
17.
Environ Sci Pollut Res Int ; 25(6): 5590-5602, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29222658

RESUMO

The small size of nanoparticles (NPs), with dimensions between 1 and 100 nm, results in unique chemical and physical characteristics, which is why they are implemented in various consumer products. Therefore, an important concern is the potential detrimental impact of NPs on the environment. As plants are a vital part of ecosystem, investigation of the phytotoxic effects of NPs is particularly interesting. This study investigated the potential phytotoxicity of silver nanoparticles (AgNPs) on tobacco (Nicotiana tabacum) plants and compared it with the effects of the same AgNO3 concentrations. Accumulation of silver in roots and leaves was equally efficient after both AgNP and AgNO3 treatment, with predominant Ag levels found in the roots. Exposure to AgNPs did not result in elevated values of oxidative stress parameters either in roots or in leaves, while AgNO3 induced oxidative stress in both plant tissues. In the presence of both AgNPs and AgNO3, root meristem cells became highly vacuolated, which indicates that vacuoles might be the primary storage target for accumulated Ag. Direct AgNP uptake by root cells was confirmed. Leaf ultrastructural studies revealed changes mainly in the size of chloroplasts of AgNP-treated and AgNO3-treated plants. All of these findings indicate that nano form of silver is less toxic to tobacco plants than silver ions.


Assuntos
Poluentes Ambientais/toxicidade , Nanopartículas Metálicas/toxicidade , Nicotiana/efeitos dos fármacos , Prata/toxicidade , Relação Dose-Resposta a Droga , Poluentes Ambientais/química , Íons , Meristema/efeitos dos fármacos , Meristema/metabolismo , Nanopartículas Metálicas/química , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Prata/química , Nitrato de Prata/química , Nitrato de Prata/toxicidade , Propriedades de Superfície , Nicotiana/metabolismo
18.
Ecotoxicol Environ Saf ; 137: 18-28, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27894021

RESUMO

Silver nanoparticles (AgNPs) are the dominating nanomaterial in consumer products due to their well-known antibacterial and antifungal properties. To enhance their properties, different surface coatings may be used, which affect physico-chemical properties of AgNPs. Due to their wide application, there has been concern about possible environmental and health consequences. Since plants play a significant role in accumulation and biodistribution of many environmentally released substances, they are also very likely to be influenced by AgNPs. In this study we investigated the toxicity of AgNO3 and three types of laboratory-synthesized AgNPs with different surface coatings [citrate, polyvinylpyrrolidone (PVP) and cetyltrimethylammonium bromide (CTAB)] on Allium cepa roots. Ionic form of Ag was confirmed to be more toxic than any of the AgNPs applied. All tested AgNPs caused oxidative stress and exhibited toxicity only when applied in higher concentrations. The highest toxicity was recorded for AgNPs-CTAB, which resulted with increased Ag uptake in the roots, consequently leading to strong reduction of the root growth and oxidative damage. The weakest impact was found for AgNPs-citrate, much bigger, negatively charged NPs, which also aggregated to larger particles. Therefore, we can conclude that the toxicity of AgNPs is directly correlated with their size, overall surface charge and/or surface coating.


Assuntos
Antibacterianos/toxicidade , Dano ao DNA , Nanopartículas Metálicas/toxicidade , Cebolas/efeitos dos fármacos , Prata/toxicidade , Antibacterianos/metabolismo , Antioxidantes/metabolismo , Ácido Cítrico/química , Relação Dose-Resposta a Droga , Íons/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Cebolas/genética , Cebolas/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Povidona/química , Prata/metabolismo , Nitrato de Prata/toxicidade
19.
Artigo em Inglês | MEDLINE | ID: mdl-27776688

RESUMO

Since the incidence of cancer has increased over the years, adequate prevention programmes are needed. Thyroid cancer is one of the fastest growing cancer types in the world. In this study we performed a case-control study of 100 untreated patients with thyroid diseases (papillary thyroid cancer, follicular thyroid adenoma, and other thyroid diseases) and 100 control volunteers. Oxidative status differed among the two investigated groups. The patients' group had 1.60-fold higher concentrations of malondialdehyde and 1.26-fold higher concentrations of protein carbonyls. At the same time, the concentrations of glutathione and catalase activity were by 32% and 35% lower, respectively. A similar effect was observed for the cytogenetic status where higher comet assay tail intensity (1.84-fold) and the total numbers of chromosome aberrations (1.47-fold), micronuclei (2.32-fold), nucleoplasmic bridges (3.98-fold), and nuclear buds (2.34-fold) were detected. As for protein expression in thyroid tissue, 97.89% were positive for either B-Raf or Ret. Interestingly, the papillary thyroid cancer patients more frequently expressed B-Raf proteins compared to the follicular thyroid adenoma patients and patients with other thyroid diseases. Human biomonitoring studies enable a risk assessment of general population, such data could be used to identify risk subgroups.


Assuntos
Estresse Oxidativo , Doenças da Glândula Tireoide/metabolismo , Adulto , Idoso , Estudos de Casos e Controles , Aberrações Cromossômicas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças da Glândula Tireoide/genética
20.
Chemosphere ; 165: 529-538, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27681109

RESUMO

Antineoplastic drugs are highly cytotoxic chemotherapeutic agents that can often interfere directly or indirectly with the cell's genome. In an environmental or medical setting simultaneous exposure may occur. Such multiple exposures may pose a higher risk than it could be assumed from the studies evaluating the effect of a single substance. Therefore, in the present study we tested the combined cyto/genotoxicity of a mixture of selected antineoplastic drugs with different mechanisms of action (5-fluorouracil, etoposide, and imatinib mesylate) towards human lymphocytes in vitro. The results suggest that the selected antineoplastic drug mixture is potentially cyto/genotoxic and that it can induce cell and genome damage even at low concentrations. Moreover, the changes in the measured oxidative stress parameters suggest the participation of reactive oxygen species in the cyto/genotoxicity of the selected mixture. The obtained results indicate not only that such mixtures may pose a risk to cell and genome integrity, but also that single compound toxicity data are not sufficient for the predicting toxicity in a complex environment. Altogether, the results emphasise the need for further toxicological screening of antineoplastic drug mixtures, especially at low environmentally relevant concentrations, as to avoid any possible adverse effects on the environment and human health.


Assuntos
Antineoplásicos/toxicidade , Linfócitos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dano ao DNA , Interações Medicamentosas , Etoposídeo/toxicidade , Fluoruracila/toxicidade , Humanos , Mesilato de Imatinib/toxicidade , Linfócitos/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA