Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Science ; 381(6663): eadh0301, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37708268

RESUMO

Murine intraepithelial γδ T cells include distinct tissue-protective cells selected by epithelial butyrophilin-like (BTNL) heteromers. To determine whether this biology is conserved in humans, we characterized the colonic γδ T cell compartment, identifying a diverse repertoire that includes a phenotypically distinct subset coexpressing T cell receptor Vγ4 and the epithelium-binding integrin CD103. This subset was disproportionately diminished and dysregulated in inflammatory bowel disease, whereas on-treatment CD103+γδ T cell restoration was associated with sustained inflammatory bowel disease remission. Moreover, CD103+Vγ4+cell dysregulation and loss were also displayed by humans with germline BTNL3/BTNL8 hypomorphism, which we identified as a risk factor for penetrating Crohn's disease (CD). Thus, BTNL-dependent selection and/or maintenance of distinct tissue-intrinsic γδ T cells appears to be an evolutionarily conserved axis limiting the progression of a complex, multifactorial, tissue-damaging disease of increasing global incidence.


Assuntos
Butirofilinas , Doenças Inflamatórias Intestinais , Receptores de Antígenos de Linfócitos T gama-delta , Subpopulações de Linfócitos T , Animais , Humanos , Camundongos , Butirofilinas/genética , Colo/imunologia , Doença de Crohn/genética , Doença de Crohn/imunologia , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Subpopulações de Linfócitos T/imunologia , Mucosa Intestinal/imunologia
2.
Nature ; 616(7957): 543-552, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046093

RESUMO

Intratumour heterogeneity (ITH) fuels lung cancer evolution, which leads to immune evasion and resistance to therapy1. Here, using paired whole-exome and RNA sequencing data, we investigate intratumour transcriptomic diversity in 354 non-small cell lung cancer tumours from 347 out of the first 421 patients prospectively recruited into the TRACERx study2,3. Analyses of 947 tumour regions, representing both primary and metastatic disease, alongside 96 tumour-adjacent normal tissue samples implicate the transcriptome as a major source of phenotypic variation. Gene expression levels and ITH relate to patterns of positive and negative selection during tumour evolution. We observe frequent copy number-independent allele-specific expression that is linked to epigenomic dysfunction. Allele-specific expression can also result in genomic-transcriptomic parallel evolution, which converges on cancer gene disruption. We extract signatures of RNA single-base substitutions and link their aetiology to the activity of the RNA-editing enzymes ADAR and APOBEC3A, thereby revealing otherwise undetected ongoing APOBEC activity in tumours. Characterizing the transcriptomes of primary-metastatic tumour pairs, we combine multiple machine-learning approaches that leverage genomic and transcriptomic variables to link metastasis-seeding potential to the evolutionary context of mutations and increased proliferation within primary tumour regions. These results highlight the interplay between the genome and transcriptome in influencing ITH, lung cancer evolution and metastasis.


Assuntos
Evolução Molecular , Genoma Humano , Neoplasias Pulmonares , Metástase Neoplásica , Transcriptoma , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Genômica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Metástase Neoplásica/genética , Transcriptoma/genética , Alelos , Aprendizado de Máquina , Genoma Humano/genética
3.
Cancer Cell ; 41(1): 70-87.e14, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36332625

RESUMO

The evolution of established cancers is driven by selection of cells with enhanced fitness. Subclonal mutations in numerous epigenetic regulator genes are common across cancer types, yet their functional impact has been unclear. Here, we show that disruption of the epigenetic regulatory network increases the tolerance of cancer cells to unfavorable environments experienced within growing tumors by promoting the emergence of stress-resistant subpopulations. Disruption of epigenetic control does not promote selection of genetically defined subclones or favor a phenotypic switch in response to environmental changes. Instead, it prevents cells from mounting an efficient stress response via modulation of global transcriptional activity. This "transcriptional numbness" lowers the probability of cell death at early stages, increasing the chance of long-term adaptation at the population level. Our findings provide a mechanistic explanation for the widespread selection of subclonal epigenetic-related mutations in cancer and uncover phenotypic inertia as a cellular trait that drives subclone expansion.


Assuntos
Neoplasias , Humanos , Mutação , Neoplasias/genética , Neoplasias/patologia , Fenótipo
4.
Nat Commun ; 13(1): 5632, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163168

RESUMO

Activating mutations in KRAS occur in 32% of lung adenocarcinomas (LUAD). Despite leading to aggressive disease and resistance to therapy in preclinical studies, the KRAS mutation does not predict patient outcome or response to treatment, presumably due to additional events modulating RAS pathways. To obtain a broader measure of RAS pathway activation, we developed RAS84, a transcriptional signature optimised to capture RAS oncogenic activity in LUAD. We report evidence of RAS pathway oncogenic activation in 84% of LUAD, including 65% KRAS wild-type tumours, falling into four groups characterised by coincident alteration of STK11/LKB1, TP53 or CDKN2A, suggesting that the classifications developed when considering only KRAS mutant tumours have significance in a broader cohort of patients. Critically, high RAS activity patient groups show adverse clinical outcome and reduced response to chemotherapy. Patient stratification using oncogenic RAS transcriptional activity instead of genetic alterations could ultimately assist in clinical decision-making.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Genes ras/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas ras
5.
Cancer Res ; 82(19): 3435-3448, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35930804

RESUMO

Mutations in oncogenes such as KRAS and EGFR cause a high proportion of lung cancers. Drugs targeting these proteins cause tumor regression but ultimately fail to elicit cures. As a result, there is an intense interest in how to best combine targeted therapies with other treatments, such as immunotherapies. However, preclinical systems for studying the interaction of lung tumors with the host immune system are inadequate, in part due to the low tumor mutational burden in genetically engineered mouse models. Here we set out to develop mouse models of mutant KRAS-driven lung cancer with an elevated tumor mutational burden by expressing the human DNA cytosine deaminase, APOBEC3B, to mimic the mutational signature seen in human lung cancer. This failed to substantially increase clonal tumor mutational burden and autochthonous tumors remained refractory to immunotherapy. However, establishing clonal cell lines from these tumors enabled the generation of an immunogenic syngeneic transplantation model of KRAS-mutant lung adenocarcinoma that was sensitive to immunotherapy. Unexpectedly, antitumor immune responses were not directed against neoantigens but instead targeted derepressed endogenous retroviral antigens. The ability of KRASG12C inhibitors to cause regression of KRASG12C -expressing tumors was markedly potentiated by the adaptive immune system, highlighting the importance of using immunocompetent models for evaluating targeted therapies. Overall, this model provides a unique opportunity for the study of combinations of targeted and immunotherapies in immune-hot lung cancer. SIGNIFICANCE: This study develops a mouse model of immunogenic KRAS-mutant lung cancer to facilitate the investigation of optimal combinations of targeted therapies with immunotherapies.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Animais , Citidina Desaminase/genética , Citosina Desaminase/genética , Citosina Desaminase/uso terapêutico , Modelos Animais de Doenças , Receptores ErbB/genética , Humanos , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/terapia , Camundongos , Antígenos de Histocompatibilidade Menor , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética
6.
Sci Adv ; 8(29): eabm8780, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35857848

RESUMO

Recently developed KRASG12C inhibitory drugs are beneficial to lung cancer patients harboring KRASG12C mutations, but drug resistance frequently develops. Because of the immunosuppressive nature of the signaling network controlled by oncogenic KRAS, these drugs can indirectly affect antitumor immunity, providing a rationale for their combination with immune checkpoint blockade. In this study, we have characterized how KRASG12C inhibition reverses immunosuppression driven by oncogenic KRAS in a number of preclinical lung cancer models with varying levels of immunogenicity. Mechanistically, KRASG12C inhibition up-regulates interferon signaling via Myc inhibition, leading to reduced tumor infiltration by immunosuppressive cells, enhanced infiltration and activation of cytotoxic T cells, and increased antigen presentation. However, the combination of KRASG12C inhibitors with immune checkpoint blockade only provides synergistic benefit in the most immunogenic tumor model. KRASG12C inhibition fails to sensitize cold tumors to immunotherapy, with implications for the design of clinical trials combining KRASG12C inhibitors with anti-PD1 drugs.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Inibidores de Checkpoint Imunológico , Interferons , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética
7.
Cancer Cell ; 36(1): 68-83.e9, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31257073

RESUMO

RAC1 P29 is the third most commonly mutated codon in human cutaneous melanoma, after BRAF V600 and NRAS Q61. Here, we study the role of RAC1P29S in melanoma development and reveal that RAC1P29S activates PAK, AKT, and a gene expression program initiated by the SRF/MRTF transcriptional pathway, which results in a melanocytic to mesenchymal phenotypic switch. Mice with ubiquitous expression of RAC1P29S from the endogenous locus develop lymphoma. When expressed only in melanocytes, RAC1P29S cooperates with oncogenic BRAF or with NF1-loss to promote tumorigenesis. RAC1P29S also drives resistance to BRAF inhibitors, which is reversed by SRF/MRTF inhibitors. These findings establish RAC1P29S as a promoter of melanoma initiation and mediator of therapy resistance, while identifying SRF/MRTF as a potential therapeutic target.


Assuntos
Transformação Celular Neoplásica/genética , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/genética , Melanoma/etiologia , Melanoma/patologia , Mutação , Proteínas rac1 de Ligação ao GTP/genética , Alelos , Substituição de Aminoácidos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Masculino , Melanócitos/metabolismo , Melanoma/mortalidade , Melanoma/terapia , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Fator de Resposta Sérica , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Immunity ; 47(6): 1083-1099.e6, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29246442

RESUMO

The immunosuppressive protein PD-L1 is upregulated in many cancers and contributes to evasion of the host immune system. The relative importance of the tumor microenvironment and cancer cell-intrinsic signaling in the regulation of PD-L1 expression remains unclear. We report that oncogenic RAS signaling can upregulate tumor cell PD-L1 expression through a mechanism involving increases in PD-L1 mRNA stability via modulation of the AU-rich element-binding protein tristetraprolin (TTP). TTP negatively regulates PD-L1 expression through AU-rich elements in the 3' UTR of PD-L1 mRNA. MEK signaling downstream of RAS leads to phosphorylation and inhibition of TTP by the kinase MK2. In human lung and colorectal tumors, RAS pathway activation is associated with elevated PD-L1 expression. In vivo, restoration of TTP expression enhances anti-tumor immunity dependent on degradation of PD-L1 mRNA. We demonstrate that RAS can drive cell-intrinsic PD-L1 expression, thus presenting therapeutic opportunities to reverse the innately immunoresistant phenotype of RAS mutant cancers.


Assuntos
Antígeno B7-H1/imunologia , Neoplasias Colorretais/imunologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/imunologia , Proteínas Proto-Oncogênicas p21(ras)/imunologia , Tristetraprolina/imunologia , Evasão Tumoral , Animais , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Células Epiteliais/imunologia , Células Epiteliais/patologia , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Clivagem do RNA , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Transdução de Sinais , Tristetraprolina/genética
9.
Cell ; 167(1): 203-218.e17, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27641500

RESUMO

Many body surfaces harbor organ-specific γδ T cell compartments that contribute to tissue integrity. Thus, murine dendritic epidermal T cells (DETCs) uniquely expressing T cell receptor (TCR)-Vγ5 chains protect from cutaneous carcinogens. The DETC repertoire is shaped by Skint1, a butyrophilin-like (Btnl) gene expressed specifically by thymic epithelial cells and suprabasal keratinocytes. However, the generality of this mechanism has remained opaque, since neither Skint1 nor DETCs are evolutionarily conserved. Here, Btnl1 expressed by murine enterocytes is shown to shape the local TCR-Vγ7(+) γδ compartment. Uninfluenced by microbial or food antigens, this activity evokes the developmental selection of TCRαß(+) repertoires. Indeed, Btnl1 and Btnl6 jointly induce TCR-dependent responses specifically in intestinal Vγ7(+) cells. Likewise, human gut epithelial cells express BTNL3 and BTNL8 that jointly induce selective TCR-dependent responses of human colonic Vγ4(+) cells. Hence, a conserved mechanism emerges whereby epithelia use organ-specific BTNL/Btnl genes to shape local T cell compartments.


Assuntos
Butirofilinas/imunologia , Mucosa Intestinal/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/imunologia , Animais , Butirofilinas/genética , Técnicas de Inativação de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Timo/imunologia
10.
Nat Commun ; 7: 11245, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27071537

RESUMO

RAS signalling through phosphoinositide 3-kinase (PI3-Kinase) has been shown to have an essential role in tumour initiation and maintenance. RAS also regulates cell motility and tumour invasiveness, but the role of direct RAS binding to PI3-Kinase in this remains uncertain. Here, we provide evidence that disruption of RAS interaction with PI3-Kinase p110α decreases cell motility and prevents activation of Rac GTPase. Analysis of gene expression in cells lacking RAS interaction with p110α reveals increased levels of the extracellular matrix glycoprotein Reelin and activation of its downstream pathway resulting in upregulation of E-cadherin expression. Induction of the Reelin/E-cadherin axis is also observed in Kras mutant lung tumours that are regressing due to blockade of RAS interaction with PI3-Kinase. Furthermore, loss of Reelin correlates with decreased survival of lung and breast cancer patients. Reelin thus plays a role in restraining RAS and PI3-kinase promotion of cell motility and potentially tumour metastasis.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Movimento Celular , Proteínas da Matriz Extracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Serina Endopeptidases/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Animais , Caderinas/metabolismo , Polaridade Celular , Ativação Enzimática , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Ligação Proteica , Proteína Reelina , Regulação para Cima , Proteínas rac1 de Ligação ao GTP/metabolismo
11.
Proc Natl Acad Sci U S A ; 111(51): 18267-72, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25489104

RESUMO

Ectopic expression of dual-specificity phosphatase 5 (DUSP5), an inducible mitogen-activated protein (MAP) kinase phosphatase, specifically inactivates and anchors extracellular signal-regulated kinase (ERK)1/2 in the nucleus. However, the role of endogenous DUSP5 in regulating the outcome of Ras/ERK kinase signaling under normal and pathological conditions is unknown. Here we report that mice lacking DUSP5 show a greatly increased sensitivity to mutant Harvey-Ras (HRas(Q61L))-driven papilloma formation in the 7,12-Dimethylbenz[a]anthracene/12-O-tetradecanoylphorbol-13-acetate (DMBA/TPA) model of skin carcinogenesis. Furthermore, mouse embryo fibroblasts (MEFs) from DUSP5(-/-) mice show increased levels of nuclear phospho-ERK immediately after TPA stimulation and fail to accumulate total ERK in the nucleus compared with DUSP5(+/+) cells. Surprisingly, a microarray analysis reveals that only a small number of Ras/ERK-dependent TPA-responsive transcripts are up-regulated on deletion of DUSP5 in MEFs and mouse skin. The most up-regulated gene on DUSP5 loss encodes SerpinB2, an inhibitor of extracellular urokinase plasminogen activator and deletion of DUSP5 acts synergistically with mutant HRas(Q61L) and TPA to activate ERK-dependent SerpinB2 expression at the transcriptional level. SerpinB2 has previously been implicated as a mediator of DMBA/TPA-induced skin carcinogenesis. By analyzing DUSP5(-/-), SerpinB2(-/-) double knockout mice, we demonstrate that deletion of SerpinB2 abrogates the increased sensitivity to papilloma formation seen on DUSP5 deletion. We conclude that DUSP5 performs a key nonredundant role in regulating nuclear ERK activation, localization, and gene expression. Furthermore, our results suggest an in vivo role for DUSP5 as a tumor suppressor by modulating the oncogenic potential of activated Ras in the epidermis.


Assuntos
Núcleo Celular/enzimologia , Fosfatases de Especificidade Dupla/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Genes ras , Inibidor 2 de Ativador de Plasminogênio/metabolismo , Neoplasias Cutâneas/prevenção & controle , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Animais , Fosfatases de Especificidade Dupla/genética , Camundongos , Camundongos Knockout , Transdução de Sinais , Acetato de Tetradecanoilforbol/toxicidade
12.
Nature ; 505(7482): 212-7, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24305048

RESUMO

Non-small-cell lung cancer (NSCLC) is the most prevalent histological cancer subtype worldwide. As the majority of patients present with invasive, metastatic disease, it is vital to understand the basis for lung cancer progression. Hmga2 is highly expressed in metastatic lung adenocarcinoma, in which it contributes to cancer progression and metastasis. Here we show that Hmga2 promotes lung cancer progression in mouse and human cells by operating as a competing endogenous RNA (ceRNA) for the let-7 microRNA (miRNA) family. Hmga2 can promote the transformation of lung cancer cells independent of protein-coding function but dependent upon the presence of let-7 sites; this occurs without changes in the levels of let-7 isoforms, suggesting that Hmga2 affects let-7 activity by altering miRNA targeting. These effects are also observed in vivo, where Hmga2 ceRNA activity drives lung cancer growth, invasion and dissemination. Integrated analysis of miRNA target prediction algorithms and metastatic lung cancer gene expression data reveals the TGF-ß co-receptor Tgfbr3 (ref. 12) as a putative target of Hmga2 ceRNA function. Tgfbr3 expression is regulated by the Hmga2 ceRNA through differential recruitment to Argonaute 2 (Ago2), and TGF-ß signalling driven by Tgfbr3 is important for Hmga2 to promote lung cancer progression. Finally, analysis of NSCLC-patient gene-expression data reveals that HMGA2 and TGFBR3 are coordinately regulated in NSCLC-patient material, a vital corollary to ceRNA function. Taken together, these results suggest that Hmga2 promotes lung carcinogenesis both as a protein-coding gene and as a non-coding RNA; such dual-function regulation of gene-expression networks reflects a novel means by which oncogenes promote disease progression.


Assuntos
Progressão da Doença , Proteína HMGA2/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Animais , Proteínas Argonautas/metabolismo , Ligação Competitiva/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , Proteoglicanas/biossíntese , Proteoglicanas/deficiência , Proteoglicanas/genética , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/biossíntese , Receptores de Fatores de Crescimento Transformadores beta/deficiência , Receptores de Fatores de Crescimento Transformadores beta/genética , Transcrição Gênica/genética , Fator de Crescimento Transformador beta/metabolismo
13.
BMC Med Genomics ; 7: 513, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25551447

RESUMO

BACKGROUND: Tumorigenesis is characterised by changes in transcriptional control. Extensive transcript expression data have been acquired over the last decade and used to classify prostate cancers. Prostate cancer is, however, a heterogeneous multifocal cancer and this poses challenges in identifying robust transcript biomarkers. METHODS: In this study, we have undertaken a meta-analysis of publicly available transcriptomic data spanning datasets and technologies from the last decade and encompassing laser capture microdissected and macrodissected sample sets. RESULTS: We identified a 33 gene signature that can discriminate between benign tissue controls and localised prostate cancers irrespective of detection platform or dissection status. These genes were significantly overexpressed in localised prostate cancer versus benign tissue in at least three datasets within the Oncomine Compendium of Expression Array Data. In addition, they were also overexpressed in a recent exon-array dataset as well a prostate cancer RNA-seq dataset generated as part of the The Cancer Genomics Atlas (TCGA) initiative. Biologically, glycosylation was the single enriched process associated with this 33 gene signature, encompassing four glycosylating enzymes. We went on to evaluate the performance of this signature against three individual markers of prostate cancer, v-ets avian erythroblastosis virus E26 oncogene homolog (ERG) expression, prostate specific antigen (PSA) expression and androgen receptor (AR) expression in an additional independent dataset. Our signature had greater discriminatory power than these markers both for localised cancer and metastatic disease relative to benign tissue, or in the case of metastasis, also localised prostate cancer. CONCLUSION: In conclusion, robust transcript biomarkers are present within datasets assembled over many years and cohorts and our study provides both examples and a strategy for refining and comparing datasets to obtain additional markers as more data are generated.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias , Neoplasias da Próstata , Transcriptoma , Glicosilação , Humanos , Masculino , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética
14.
Cancer Metab ; 1(1): 3, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24280005

RESUMO

BACKGROUND: Regulation of lipid metabolism via activation of sterol regulatory element binding proteins (SREBPs) has emerged as an important function of the Akt/mTORC1 signaling axis. Although the contribution of dysregulated Akt/mTORC1 signaling to cancer has been investigated extensively and altered lipid metabolism is observed in many tumors, the exact role of SREBPs in the control of biosynthetic processes required for Akt-dependent cell growth and their contribution to tumorigenesis remains unclear. RESULTS: We first investigated the effects of loss of SREBP function in non-transformed cells. Combined ablation of SREBP1 and SREBP2 by siRNA-mediated gene silencing or chemical inhibition of SREBP activation induced endoplasmic reticulum (ER)-stress and engaged the unfolded protein response (UPR) pathway, specifically under lipoprotein-deplete conditions in human retinal pigment epithelial cells. Induction of ER-stress led to inhibition of protein synthesis through increased phosphorylation of eIF2α. This demonstrates for the first time the importance of SREBP in the coordination of lipid and protein biosynthesis, two processes that are essential for cell growth and proliferation. SREBP ablation caused major changes in lipid composition characterized by a loss of mono- and poly-unsaturated lipids and induced accumulation of reactive oxygen species (ROS) and apoptosis. Alterations in lipid composition and increased ROS levels, rather than overall changes to lipid synthesis rate, were required for ER-stress induction.Next, we analyzed the effect of SREBP ablation in a panel of cancer cell lines. Importantly, induction of apoptosis following SREBP depletion was restricted to lipoprotein-deplete conditions. U87 glioblastoma cells were highly susceptible to silencing of either SREBP isoform, and apoptosis induced by SREBP1 depletion in these cells was rescued by antioxidants or by restoring the levels of mono-unsaturated fatty acids. Moreover, silencing of SREBP1 induced ER-stress in U87 cells in lipoprotein-deplete conditions and prevented tumor growth in a xenograft model. CONCLUSIONS: Taken together, these results demonstrate that regulation of lipid composition by SREBP is essential to maintain the balance between protein and lipid biosynthesis downstream of Akt and to prevent resultant ER-stress and cell death. Regulation of lipid metabolism by the Akt/mTORC1 signaling axis is required for the growth and survival of cancer cells.

15.
Nature ; 484(7394): 386-9, 2012 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-22446626

RESUMO

Alternative messenger RNA splicing is the main reason that vast mammalian proteomic complexity can be achieved with a limited number of genes. Splicing is physically and functionally coupled to transcription, and is greatly affected by the rate of transcript elongation. As the nascent pre-mRNA emerges from transcribing RNA polymerase II (RNAPII), it is assembled into a messenger ribonucleoprotein (mRNP) particle; this is the functional form of the nascent pre-mRNA and determines the fate of the mature transcript. However, factors that connect the transcribing polymerase with the mRNP particle and help to integrate transcript elongation with mRNA splicing remain unclear. Here we characterize the human interactome of chromatin-associated mRNP particles. This led us to identify deleted in breast cancer 1 (DBC1) and ZNF326 (which we call ZNF-protein interacting with nuclear mRNPs and DBC1 (ZIRD)) as subunits of a novel protein complex--named DBIRD--that binds directly to RNAPII. DBIRD regulates alternative splicing of a large set of exons embedded in (A + T)-rich DNA, and is present at the affected exons. RNA-interference-mediated DBIRD depletion results in region-specific decreases in transcript elongation, particularly across areas encompassing affected exons. Together, these data indicate that the DBIRD complex acts at the interface between mRNP particles and RNAPII, integrating transcript elongation with the regulation of alternative splicing.


Assuntos
Processamento Alternativo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , RNA Polimerase II/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transcrição Gênica , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cromatina/genética , Cromatina/metabolismo , Éxons/genética , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas/deficiência , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Camundongos , Complexos Multiproteicos/genética , Interferência de RNA , RNA Mensageiro/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
16.
J Pathol ; 226(3): 482-94, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21953249

RESUMO

Chromosomal instability (CIN) has been implicated in multidrug resistance and the silencing of the ceramide transporter, CERT, promotes sensitization to diverse cytotoxics. An improved understanding of mechanisms governing multidrug sensitization might provide insight into pathways contributing to the death of CIN cancer cells. Using an integrative functional genomics approach, we find that CERT-specific multidrug sensitization is associated with enhanced autophagosome-lysosome flux, resulting from the expression of LAMP2 following CERT silencing in colorectal and HER2(+) breast cancer cell lines. Live cell microscopy analysis revealed that CERT depletion induces LAMP2-dependent death of polyploid cells following exit from mitosis in the presence of paclitaxel. We find that CERT is relatively over-expressed in HER2(+) breast cancer and CERT protein expression acts as an independent prognostic variable and predictor of outcome in adjuvant chemotherapy-treated patients with primary breast cancer. These data suggest that the induction of LAMP2-dependent autophagic flux through CERT targeting may provide a rational approach to enhance multidrug sensitization and potentiate the death of polyploid cells following paclitaxel exposure to limit the acquisition of CIN and intra-tumour heterogeneity.


Assuntos
Autofagia/fisiologia , Neoplasias da Mama/tratamento farmacológico , Instabilidade Cromossômica/fisiologia , Proteínas Serina-Treonina Quinases/deficiência , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Neoplasias da Mama/genética , Ceramidas/metabolismo , Ceramidas/farmacologia , Cisplatino/farmacologia , Resistência a Múltiplos Medicamentos/genética , Resistência a Múltiplos Medicamentos/fisiologia , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Expressão Gênica , Inativação Gênica/fisiologia , Humanos , Proteína 2 de Membrana Associada ao Lisossomo , Proteínas de Membrana Lisossomal/metabolismo , Proteínas de Membrana Lisossomal/fisiologia , Pessoa de Meia-Idade , Moduladores de Mitose/farmacologia , Poliploidia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , RNA Interferente Pequeno/farmacologia , Receptor ErbB-2 , Células Tumorais Cultivadas
17.
J Pathol ; 226(1): 73-83, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22009253

RESUMO

Adenomatous polyposis coli (APC ) mutations are found in most colorectal tumours. These mutations are almost always protein-truncating, deleting both central domains that regulate Wnt signalling and C-terminal domains that interact with the cytoskeleton. The importance of Wnt dysregulation for colorectal tumourigenesis is well characterized. It is, however, unclear whether loss of C-terminal functions contributes to tumourigenesis, although this protein region has been implicated in cellular processes--including polarity, migration, mitosis, and chromosomal instability (CIN)­that have been postulated as critical for the development and progression of intestinal tumours. Since almost all APC mutations in human patients disrupt both central and C-terminal regions, we created a mouse model to test the role of the C-terminus of APC in intestinal tumourigenesis. This mouse (Apc(ΔSAMP)) carries an internal deletion within Apc that dysregulates Wnt by removing the beta-catenin-binding and SAMP repeats, but leaves the C-terminus intact. We compared Apc(ΔSAMP) mice with Apc(1322T) animals. The latter allele represented the most commonly found human APC mutation and was identical to Apc(ΔSAMP) except for absence of the entire C-terminus. Apc(ΔSAMP) mice developed numerous intestinal adenomas indistinguishable in number, location, and dysplasia from those seen in Apc(1322T) mice. No carcinomas were found in Apc(ΔSAMP) or Apc(1322T) animals. While similar disruption of the Wnt signalling pathway was observed in tumours from both mice, no evidence of differential C-terminus functions (such as cell migration, CIN, or localization of APC and EB1) was seen. We conclude that the C-terminus of APC does not influence intestinal adenoma development or progression.


Assuntos
Adenoma/genética , Proteína da Polipose Adenomatosa do Colo/genética , Neoplasias Intestinais/genética , Adenoma/patologia , Proteína da Polipose Adenomatosa do Colo/química , Animais , Western Blotting , Movimento Celular/genética , Progressão da Doença , Imunofluorescência , Imuno-Histoquímica , Hibridização In Situ , Neoplasias Intestinais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Análise de Sequência com Séries de Oligonucleotídeos , Estrutura Terciária de Proteína/genética , Transdução de Sinais/genética , Via de Sinalização Wnt
18.
Pigment Cell Melanoma Res ; 22(6): 785-98, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19682280

RESUMO

Oncogenic mutations in BRAF are common in melanoma and drive constitutive activation of the MEK/ERK pathway. To elucidate the transcriptional events downstream of (V600E)BRAF/MEK signalling we performed gene expression profiling of A375 melanoma cells treated with potent and selective inhibitors of (V600E)BRAF and MEK (PLX4720 and PD184352 respectively). Using a stringent Bayesian approach, we identified 69 transcripts that appear to be direct transcriptional targets of this pathway and whose expression changed after 6 h of pathway inhibition. We also identified several additional genes whose expression changed after 24 h of pathway inhibition and which are likely to be indirect transcriptional targets of the pathway. Several of these were confirmed by demonstrating their expression to be similarly regulated when BRAF was depleted using RNA interference, and by using qRT-PCR in other BRAF mutated melanoma lines. Many of these genes are transcription factors and feedback inhibitors of the ERK pathway and are also regulated by MEK signalling in NRAS mutant cells. This study provides a basis for understanding the molecular processes that are regulated by (V600E)BRAF/MEK signalling in melanoma cells.


Assuntos
Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Melanoma/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais/fisiologia , Transcrição Gênica , Animais , Linhagem Celular Tumoral , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Perfilação da Expressão Gênica , Humanos , Melanoma/patologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas B-raf/genética , Interferência de RNA
19.
Proc Natl Acad Sci U S A ; 106(21): 8671-6, 2009 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-19458043

RESUMO

Microtubule-stabilizing (MTS) agents, such as taxanes, are important chemotherapeutics with a poorly understood mechanism of action. We identified a set of genes repressed in multiple cell lines in response to MTS agents and observed that these genes are overexpressed in tumors exhibiting chromosomal instability (CIN). Silencing 22/50 of these genes, many of which are involved in DNA repair, caused cancer cell death, suggesting that these genes are involved in the survival of aneuploid cells. Overexpression of these "CIN-survival" genes is associated with poor outcome in estrogen receptor-positive breast cancer and occurs frequently in basal-like and Her2-positive cases. In diploid cells, but not in chromosomally unstable cells, paclitaxel causes repression of CIN-survival genes, followed by cell death. In the OV01 ovarian cancer clinical trial, a high level of CIN was associated with taxane resistance but carboplatin sensitivity, indicating that CIN may determine MTS response in vivo. Thus, pretherapeutic assessment of CIN may optimize treatment stratification and clinical trial design using these agents.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/farmacologia , Instabilidade Cromossômica/efeitos dos fármacos , Instabilidade Cromossômica/genética , Taxoides/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Microtúbulos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Paclitaxel/toxicidade , Reação em Cadeia da Polimerase , Prognóstico
20.
Gastroenterology ; 136(7): 2204-2213.e1-13, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19248780

RESUMO

BACKGROUND & AIMS: We previously demonstrated that the 2 APC mutations in human colorectal tumors are coselected, because tumorigenesis requires an optimal level of Wnt signaling. We and others subsequently showed that the truncated APC proteins in colorectal tumors usually retain a total of 1-2 beta-catenin binding/degradation repeats (20AARs); very few intestinal tumors have proteins with no 20AARs. The coselection of the "2 hits" at APC makes it difficult to undertake further mechanistic studies in this area in humans. In mice, however, second hits appear to vary with the strain or genetic background used. This suggested the possibility of creating suboptimal Apc genotypes in the mouse. METHODS: We have constructed a mouse, Apc(1322T), with a mutant protein retaining one 20AAR. After repeated backcrossing to the C57BL/6J background, we compared the 1322T animals with the widely used Min mouse in which the mutant Apc protein has zero 20AARs. RESULTS: In both mice, intestinal adenomas showed copy-neutral loss of heterozygosity, making them homozygous for the mutant Apc allele. 1322T animals had markedly more severe polyposis, with earlier-onset, larger, more numerous, and more severely dysplastic adenomas. 1322T tumors also had more marked Paneth cell differentiation and higher frequencies of crypt fission. Somewhat surprisingly, nuclear beta-catenin expression was lower in 1322T than Min tumors. CONCLUSIONS: We propose that the Apc(1322T) mutation produces submaximal beta-catenin levels that promote early tumor growth more effectively than the Apc(Min) mutation.


Assuntos
Polipose Adenomatosa do Colo/genética , Transformação Celular Neoplásica/genética , Mutação/genética , Transdução de Sinais/genética , beta Catenina/metabolismo , Polipose Adenomatosa do Colo/patologia , Alelos , Animais , Western Blotting , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Genes APC , Predisposição Genética para Doença , Perda de Heterozigosidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Modelos Genéticos , Celulas de Paneth/citologia , Celulas de Paneth/fisiologia , Transdução de Sinais/fisiologia , Especificidade da Espécie , beta Catenina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA