Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Zool Res ; 45(3): 551-566, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38757223

RESUMO

Hepatocellular carcinoma (HCC), a prevalent solid carcinoma of significant concern, is an aggressive and often fatal disease with increasing global incidence rates and poor therapeutic outcomes. The etiology and pathological progression of non-alcoholic steatohepatitis (NASH)-related HCC is multifactorial and multistage. However, no single animal model can accurately mimic the full NASH-related HCC pathological progression, posing considerable challenges to transition and mechanistic studies. Herein, a novel conditional inducible wild-type human HRAS overexpressed mouse model (HRAS-HCC) was established, demonstrating 100% morbidity and mortality within approximately one month under normal dietary and lifestyle conditions. Advanced symptoms of HCC such as ascites, thrombus, internal hemorrhage, jaundice, and lung metastasis were successfully replicated in mice. In-depth pathological features of NASH- related HCC were demonstrated by pathological staining, biochemical analyses, and typical marker gene detections. Combined murine anti-PD-1 and sorafenib treatment effectively prolonged mouse survival, further confirming the accuracy and reliability of the model. Based on protein-protein interaction (PPI) network and RNA sequencing analyses, we speculated that overexpression of HRAS may initiate the THBS1-COL4A3 axis to induce NASH with severe fibrosis, with subsequent progression to HCC. Collectively, our study successfully duplicated natural sequential progression in a single murine model over a very short period, providing an accurate and reliable preclinical tool for therapeutic evaluations targeting the NASH to HCC continuum.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Proteínas Proto-Oncogênicas p21(ras) , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Carcinoma Hepatocelular/patologia , Camundongos , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Humanos
2.
Sci China Life Sci ; 67(7): 1502-1513, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38478297

RESUMO

Various SARS-CoV-2-related coronaviruses have been increasingly identified in pangolins, showing a potential threat to humans. Here we report the infectivity and pathogenicity of the SARS-CoV-2-related virus, PCoV-GX/P2V, which was isolated from a Malayan pangolin (Manis javanica). PCoV-GX/P2V could grow in human hepatoma, colorectal adenocarcinoma cells, and human primary nasal epithelial cells. It replicated more efficiently in cells expressing human angiotensin-converting enzyme 2 (hACE2) as SARS-CoV-2 did. After intranasal inoculation to the hACE2-transgenic mice, PCoV-GX/P2V not only replicated in nasal turbinate and lungs, but also caused interstitial pneumonia, characterized by infiltration of mixed inflammatory cells and multifocal alveolar hemorrhage. Existing population immunity established by SARS-CoV-2 infection and vaccination may not protect people from PCoV-GX/P2V infection. These findings further verify the hACE2 utility of PCoV-GX/P2V by in vivo experiments using authentic viruses and highlight the importance for intensive surveillance to prevent possible cross-species transmission.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Camundongos Transgênicos , Pangolins , SARS-CoV-2 , Animais , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2/patogenicidade , SARS-CoV-2/genética , COVID-19/virologia , Pangolins/virologia , Camundongos , Replicação Viral , Pulmão/virologia , Pulmão/patologia , Chlorocebus aethiops , Células Vero
3.
Signal Transduct Target Ther ; 6(1): 134, 2021 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-33774649

RESUMO

To discover new drugs to combat COVID-19, an understanding of the molecular basis of SARS-CoV-2 infection is urgently needed. Here, for the first time, we report the crucial role of cathepsin L (CTSL) in patients with COVID-19. The circulating level of CTSL was elevated after SARS-CoV-2 infection and was positively correlated with disease course and severity. Correspondingly, SARS-CoV-2 pseudovirus infection increased CTSL expression in human cells in vitro and human ACE2 transgenic mice in vivo, while CTSL overexpression, in turn, enhanced pseudovirus infection in human cells. CTSL functionally cleaved the SARS-CoV-2 spike protein and enhanced virus entry, as evidenced by CTSL overexpression and knockdown in vitro and application of CTSL inhibitor drugs in vivo. Furthermore, amantadine, a licensed anti-influenza drug, significantly inhibited CTSL activity after SARS-CoV-2 pseudovirus infection and prevented infection both in vitro and in vivo. Therefore, CTSL is a promising target for new anti-COVID-19 drug development.


Assuntos
Antivirais/farmacologia , COVID-19/metabolismo , Catepsina L , Inibidores de Cisteína Proteinase/farmacologia , Desenvolvimento de Medicamentos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus/efeitos dos fármacos , Adolescente , Adulto , Idoso , Animais , COVID-19/genética , Catepsina L/antagonistas & inibidores , Catepsina L/genética , Catepsina L/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Tratamento Farmacológico da COVID-19
4.
Vaccine ; 24(7): 941-7, 2006 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-16159685

RESUMO

Respiratory syncytial virus (RSV), an important pathogen of the lower respiratory tract, is responsible for severe illness both in new born and young children and in elderly people. However, development of a RSV vaccine has been hampered by the outcome of the infant trials in the 1960s with a formalin-inactivated RSV (FI-RSV) preparation. Previous studies in mice indicated that G protein immunization resulted in antibody and Th2-type response and failed to induce MHC I-restricted CD8(+) T-cell response. Vaccines designed to induce CD8(+) T-cell along with antibody response might be ideal. In the present report, a fusion protein G1F/M2 containing a RSV-G protein fragment (G: 125-225 amino acid) and a CD8(+) T-cell epitope from RSV-M2 protein was investigated. G1F/M2 was cloned, expressed in E. coli, purified and renaturated. In BALB/c mice, G1F/M2 induced not only humoral immunity but also cellular immunity. In addition, interestedly, G1F/M2 elicited balanced IgG1/IgG2a response. These results suggest that the fusion protein G1F/M2 is potential as a RSV subunit vaccine.


Assuntos
Epitopos de Linfócito T , Proteínas Recombinantes de Fusão/imunologia , Vacinas contra Vírus Sincicial Respiratório/imunologia , Linfócitos T Citotóxicos/imunologia , Vacinas Sintéticas/imunologia , Proteínas Virais de Fusão/imunologia , Animais , Anticorpos Antivirais/sangue , Feminino , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Vírus Sinciciais Respiratórios/imunologia , Vacinação
5.
Yi Chuan Xue Bao ; 29(10): 907-14, 2002 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-12561477

RESUMO

A fragment SAAU-02(700) was amplified specifically from total DNA of seven sorghun varieties with male-fertile cytoplasm (N-cytoplasm). PCR assays indicated that it was amplified from chloroplast (cp) DNA. Sequence analysis revealed this newly cloned fragment contained a portion of chloroplast gene psa C (88 bp) and part of ndh D gene (192 bp). Total DNA, mitochondrial (mt) DNA, and cpDNA were digested with EcoR I + Hind III and probed with fragment SAAU-02(700). The Southern hybridization patterns displayed a 0.74 kb band both in total DNA and cpDNA, but an additional faint band 0.45 kb in size was found only in the latter. No polymorphic hybridization signal between the N-cytoplasm and male-sterile cytoplasm (S-cytoplasm) was observed. Southern hybridization of total DNA of CMS line A1 Tx623 and fertile line Tx623 digested with Hae III gave a band 4.9 kb in size in the former and a 4.45 kb band in the latter. This revealed that the sequence of ndh D from CMS line was likely altered. Further studies designed to determine whether or not the variation has some effect on the metabolism of mitochondria and chloroplast, even on the occurrence of male sterility in sorghum are underway.


Assuntos
DNA de Cloroplastos/genética , Grão Comestível/genética , NADH Desidrogenase/genética , Sequência de Aminoácidos , Sequência de Bases , Enzimas de Restrição do DNA/metabolismo , DNA de Cloroplastos/química , DNA de Cloroplastos/metabolismo , Fertilidade/genética , Variação Genética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Técnica de Amplificação ao Acaso de DNA Polimórfico , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA