Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Am J Clin Nutr ; 119(5): 1227-1237, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484975

RESUMO

BACKGROUND: Higher 25-hydroxyvitamin D (25(OH)D) concentrations in serum has a positive association with pulmonary function. Investigating genome-wide interactions with 25(OH)D may reveal new biological insights into pulmonary function. OBJECTIVES: We aimed to identify novel genetic variants associated with pulmonary function by accounting for 25(OH)D interactions. METHODS: We included 211,264 participants from the observational United Kingdom Biobank study with pulmonary function tests (PFTs), genome-wide genotypes, and 25(OH)D concentrations from 4 ancestral backgrounds-European, African, East Asian, and South Asian. Among PFTs, we focused on forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) because both were previously associated with 25(OH)D. We performed genome-wide association study (GWAS) analyses that accounted for variant×25(OH)D interaction using the joint 2 degree-of-freedom (2df) method, stratified by participants' smoking history and ancestry, and meta-analyzed results. We evaluated interaction effects to determine how variant-PFT associations were modified by 25(OH)D concentrations and conducted pathway enrichment analysis to examine the biological relevance of our findings. RESULTS: Our GWAS meta-analyses, accounting for interaction with 25(OH)D, revealed 30 genetic variants significantly associated with FEV1 or FVC (P2df <5.00×10-8) that were not previously reported for PFT-related traits. These novel variant signals were enriched in lung function-relevant pathways, including the p38 MAPK pathway. Among variants with genome-wide-significant 2df results, smoking-stratified meta-analyses identified 5 variants with 25(OH)D interactions that influenced FEV1 in both smoking groups (never smokers P1df interaction<2.65×10-4; ever smokers P1df interaction<1.71×10-5); rs3130553, rs2894186, rs79277477, and rs3130929 associations were only evident in never smokers, and the rs4678408 association was only found in ever smokers. CONCLUSION: Genetic variant associations with lung function can be modified by 25(OH)D, and smoking history can further modify variant×25(OH)D interactions. These results expand the known genetic architecture of pulmonary function and add evidence that gene-environment interactions, including with 25(OH)D and smoking, influence lung function.


Assuntos
Estudo de Associação Genômica Ampla , Pulmão , Testes de Função Respiratória , Vitamina D , Vitamina D/análogos & derivados , Humanos , Vitamina D/sangue , Pulmão/fisiologia , Feminino , Masculino , Loci Gênicos , Pessoa de Meia-Idade , Reino Unido , Polimorfismo de Nucleotídeo Único , Idoso , Volume Expiratório Forçado , Capacidade Vital/genética
2.
Am J Clin Nutr ; 115(4): 1205-1216, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35040869

RESUMO

BACKGROUND: Vitamin E (vitE) is hypothesized to attenuate age-related decline in pulmonary function. OBJECTIVES: We investigated the association between change in plasma vitE (∆vitE) and pulmonary function decline [forced expiratory volume in the first second (FEV1)] and examined genetic and nongenetic factors associated with ∆vitE. METHODS: We studied 1144 men randomly assigned to vitE in SELECT (Selenium and Vitamin E Cancer Prevention Trial). ∆vitE was the difference between baseline and year 3 vitE concentrations measured with GC-MS. FEV1 was measured longitudinally by spirometry. We genotyped 555 men (vitE-only arm) using the Illumina Expanded Multi-Ethnic Genotyping Array (MEGAex). We used mixed-effects linear regression modeling to examine the ∆vitE-FEV1 association. RESULTS: Higher ∆vitE was associated with lower baseline α-tocopherol (α-TOH), higher baseline γ-tocopherol, higher baseline free cholesterol, European ancestry (as opposed to African) (all P < 0.05), and the minor allele of a missense variant in cytochrome P450 family 4 subfamily F member 2 (CYP4F2) (rs2108622-T; 2.4 µmol/L higher ∆vitE, SE: 0.8 µmol/L; P = 0.0032). Higher ∆vitE was associated with attenuated FEV1 decline, with stronger effects in adherent participants (≥80% of supplements consumed): a statistically significant ∆vitE × time interaction (P = 0.014) indicated that a 1-unit increase in ∆vitE was associated with a 2.2-mL/y attenuation in FEV1 decline (SE: 0.9 mL/y). The effect size for 1 SD higher ∆vitE (+4 µmol/mmol free-cholesterol-adjusted α-TOH) was roughly one-quarter of the effect of 1 y of aging, but in the opposite direction. The ∆vitE-FEV1 association was similar in never smokers (2.4-mL/y attenuated FEV1 decline, SE: 1.0 mL/y; P = 0.017, n = 364), and current smokers (2.8-mL/y, SE: 1.6 mL/y; P = 0.079, n = 214), but there was little to no effect in former smokers (-0.64-mL/y, SE: 0.9 mL/y; P = 0.45, n = 564). CONCLUSIONS: Greater response to vitE supplementation was associated with attenuated FEV1 decline. The response to supplementation differed by rs2108622 such that individuals with the C allele, compared with the T allele, may need a higher dietary intake to reach the same plasma vitE concentration.


Assuntos
Pulmão , alfa-Tocoferol , Família 4 do Citocromo P450 , Volume Expiratório Forçado , Humanos , Masculino , Espirometria , Vitamina E
3.
Nat Commun ; 11(1): 5562, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144568

RESUMO

Cigarette smoking is the leading cause of preventable morbidity and mortality. Genetic variation contributes to initiation, regular smoking, nicotine dependence, and cessation. We present a Fagerström Test for Nicotine Dependence (FTND)-based genome-wide association study in 58,000 European or African ancestry smokers. We observe five genome-wide significant loci, including previously unreported loci MAGI2/GNAI1 (rs2714700) and TENM2 (rs1862416), and extend loci reported for other smoking traits to nicotine dependence. Using the heaviness of smoking index from UK Biobank (N = 33,791), rs2714700 is consistently associated; rs1862416 is not associated, likely reflecting nicotine dependence features not captured by the heaviness of smoking index. Both variants influence nearby gene expression (rs2714700/MAGI2-AS3 in hippocampus; rs1862416/TENM2 in lung), and expression of genes spanning nicotine dependence-associated variants is enriched in cerebellum. Nicotine dependence (SNP-based heritability = 8.6%) is genetically correlated with 18 other smoking traits (rg = 0.40-1.09) and co-morbidities. Our results highlight nicotine dependence-specific loci, emphasizing the FTND as a composite phenotype that expands genetic knowledge of smoking.


Assuntos
Predisposição Genética para Doença , Característica Quantitativa Herdável , Tabagismo/genética , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Padrões de Herança/genética , Desequilíbrio de Ligação/genética , Metanálise como Assunto , Anotação de Sequência Molecular , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
4.
Nicotine Tob Res ; 22(6): 900-909, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-31294817

RESUMO

INTRODUCTION: FTND (FagerstrÓ§m test for nicotine dependence) and TTFC (time to smoke first cigarette in the morning) are common measures of nicotine dependence (ND). However, genome-wide meta-analysis for these phenotypes has not been reported. METHODS: Genome-wide meta-analyses for FTND (N = 19,431) and TTFC (N = 18,567) phenotypes were conducted for adult smokers of European ancestry from 14 independent cohorts. RESULTS: We found that SORBS2 on 4q35 (p = 4.05 × 10-8), BG182718 on 11q22 (p = 1.02 × 10-8), and AA333164 on 14q21 (p = 4.11 × 10-9) were associated with TTFC phenotype. We attempted replication of leading candidates with independent samples (FTND, N = 7010 and TTFC, N = 10 061), however, due to limited power of the replication samples, the replication of these new loci did not reach significance. In gene-based analyses, COPB2 was found associated with FTND phenotype, and TFCP2L1, RELN, and INO80C were associated with TTFC phenotype. In pathway and network analyses, we found that the interconnected interactions among the endocytosis, regulation of actin cytoskeleton, axon guidance, MAPK signaling, and chemokine signaling pathways were involved in ND. CONCLUSIONS: Our analyses identified several promising candidates for both FTND and TTFC phenotypes, and further verification of these candidates was necessary. Candidates supported by both FTND and TTFC (CHRNA4, THSD7B, RBFOX1, and ZNF804A) were associated with addiction to alcohol, cocaine, and heroin, and were associated with autism and schizophrenia. We also identified novel pathways involved in cigarette smoking. The pathway interactions highlighted the importance of receptor recycling and internalization in ND. IMPLICATIONS: Understanding the genetic architecture of cigarette smoking and ND is critical to develop effective prevention and treatment. Our study identified novel candidates and biological pathways involved in FTND and TTFC phenotypes, and this will facilitate further investigation of these candidates and pathways.


Assuntos
Fumar Cigarros/genética , Marcadores Genéticos , Genoma Humano , Estudo de Associação Genômica Ampla , Fenótipo , Polimorfismo de Nucleotídeo Único , Tabagismo/genética , Fumar Cigarros/epidemiologia , Estudos de Coortes , Predisposição Genética para Doença , Humanos , Desequilíbrio de Ligação , Metanálise como Assunto , Proteína Reelina , Tabagismo/epidemiologia , Estados Unidos/epidemiologia
5.
Am J Respir Crit Care Med ; 199(5): 631-642, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30199657

RESUMO

RATIONALE: Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have anti-inflammatory properties that could benefit adults with comprised pulmonary health. OBJECTIVE: To investigate n-3 PUFA associations with spirometric measures of pulmonary function tests (PFTs) and determine underlying genetic susceptibility. METHODS: Associations of n-3 PUFA biomarkers (α-linolenic acid, eicosapentaenoic acid, docosapentaenoic acid [DPA], and docosahexaenoic acid [DHA]) were evaluated with PFTs (FEV1, FVC, and FEV1/FVC) in meta-analyses across seven cohorts from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (N = 16,134 of European or African ancestry). PFT-associated n-3 PUFAs were carried forward to genome-wide interaction analyses in the four largest cohorts (N = 11,962) and replicated in one cohort (N = 1,687). Cohort-specific results were combined using joint 2 degree-of-freedom (2df) meta-analyses of SNP associations and their interactions with n-3 PUFAs. RESULTS: DPA and DHA were positively associated with FEV1 and FVC (P < 0.025), with evidence for effect modification by smoking and by sex. Genome-wide analyses identified a novel association of rs11693320-an intronic DPP10 SNP-with FVC when incorporating an interaction with DHA, and the finding was replicated (P2df = 9.4 × 10-9 across discovery and replication cohorts). The rs11693320-A allele (frequency, ∼80%) was associated with lower FVC (PSNP = 2.1 × 10-9; ßSNP = -161.0 ml), and the association was attenuated by higher DHA levels (PSNP×DHA interaction = 2.1 × 10-7; ßSNP×DHA interaction = 36.2 ml). CONCLUSIONS: We corroborated beneficial effects of n-3 PUFAs on pulmonary function. By modeling genome-wide n-3 PUFA interactions, we identified a novel DPP10 SNP association with FVC that was not detectable in much larger studies ignoring this interaction.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/fisiologia , Ácidos Graxos Ômega-3/sangue , Fenômenos Fisiológicos Respiratórios/genética , Idoso , Biomarcadores/sangue , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Ácidos Docosa-Hexaenoicos/sangue , Ácido Eicosapentaenoico/sangue , Ácidos Graxos Insaturados/sangue , Feminino , Volume Expiratório Forçado/genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Fatores Sexuais , Fumar/efeitos adversos , Capacidade Vital/genética , Ácido alfa-Linolênico/sangue
6.
Addict Biol ; 21(6): 1217-1232, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26202629

RESUMO

Drug abuse is a common and heritable set of disorders, but the underlying genetic factors are largely unknown. We conducted genome-wide association studies of drug abuse using 7 million imputed single nucleotide polymorphisms (SNPs) and insertions/deletions in African Americans (AAs; n = 3742) and European Americans (EAs; n = 6845). Cases were drawn from the Urban Health Study of street-recruited people, who injected drugs and reported abusing opioids, cocaine, marijuana, stimulants and/or other drugs 10 or more times in the past 30 days, and were compared with population controls. Independent replication testing was conducted in 755 AAs and 1131 EAs from the Genetic Association Information Network. An intronic SNP (rs9829896) in the K(lysine) acetyltransferase 2B (KAT2B) gene was significantly associated with drug abuse in AAs (P = 4.63 × 10-8 ) and independently replicated in AAs (P = 0.0019). The rs9829896-C allele (frequency = 12%) had odds ratios of 0.68 and 0.53 across the AA cohorts: meta-analysis P = 3.93 × 10-10 . Rs9829896-C was not associated with drug abuse across the EA cohorts: frequency = 36% and meta-analysis P = 0.12. Using dorsolateral prefrontal cortex data from the BrainCloud cohort, we found that rs9829896-C was associated with reduced KAT2B expression in AAs (n = 113, P = 0.050) but not EAs (n = 110, P = 0.39). KAT2B encodes a transcriptional regulator in the cyclic adenosine monophosphate and dopamine signaling pathways, and rs9829896-C was associated with expression of genes in these pathways: reduced CREBBP expression (P = 0.011) and increased OPRM1 expression (P = 0.016), both in AAs only. Our study identified the KAT2B SNP rs9829896 as having novel and biologically plausible associations with drug abuse and gene expression in AAs but not EAs, suggesting ancestry-specific effects.


Assuntos
Negro ou Afro-Americano/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Córtex Pré-Frontal/efeitos dos fármacos , Transtornos Relacionados ao Uso de Substâncias/genética , Fatores de Transcrição de p300-CBP/genética , Feminino , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Humanos , Masculino , População Urbana , População Branca/genética
7.
Hum Mol Genet ; 24(20): 5940-54, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26220977

RESUMO

Nicotine dependence is influenced by chromosome 15q25.1 single nucleotide polymorphisms (SNPs), including the missense SNP rs16969968 that alters function of the α5 nicotinic acetylcholine receptor (CHRNA5) and noncoding SNPs that regulate CHRNA5 mRNA expression. We tested for cis-methylation quantitative trait loci (cis-meQTLs) using SNP genotypes and DNA methylation levels measured across the IREB2-HYKK-PSMA4-CHRNA5-CHRNA3-CHRNB4 genes on chromosome 15q25.1 in the BrainCloud and Brain QTL cohorts [total N = 175 European-Americans and 65 African-Americans (AAs)]. We identified eight SNPs that were significantly associated with CHRNA5 methylation in prefrontal cortex: P ranging from 6.0 × 10(-10) to 5.6 × 10(-5). These SNP-methylation associations were also significant in frontal cortex, temporal cortex and pons: P ranging from 4.8 × 10(-12) to 3.4 × 10(-3). Of the eight cis-meQTL SNPs, only the intronic CHRNB4 SNP rs11636753 was associated with CHRNA5 methylation independently of the known SNP effects in prefrontal cortex, and it was the most significantly associated SNP with nicotine dependence across five independent cohorts (total N = 7858 European ancestry and 3238 AA participants): P = 6.7 × 10(-4), odds ratio (OR) [95% confidence interval (CI)] = 1.11 (1.05-1.18). The rs11636753 major allele (G) was associated with lower CHRNA5 DNA methylation, lower CHRNA5 mRNA expression and increased nicotine dependence risk. Haplotype analyses showed that rs11636753-G and the functional rs16969968-A alleles together increased risk of nicotine dependence more than each variant alone: P = 3.1 × 10(-12), OR (95% CI) = 1.32 (1.22-1.43). Our findings identify a novel regulatory SNP association with nicotine dependence and connect, for the first time, previously observed differences in CHRNA5 mRNA expression and nicotine dependence risk to underlying DNA methylation differences.


Assuntos
Encéfalo/metabolismo , Metilação de DNA , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Receptores Nicotínicos/genética , Tabagismo/genética , Adolescente , Adulto , Negro ou Afro-Americano/genética , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Cromossomos Humanos Par 15 , Regulação para Baixo , Feminino , Estudos de Associação Genética , Haplótipos , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Locos de Características Quantitativas , RNA Mensageiro , Receptores Nicotínicos/metabolismo , Risco , Tabagismo/metabolismo , População Branca/genética , Adulto Jovem
8.
PLoS One ; 10(3): e0118149, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25786224

RESUMO

Fifty percent of variability in HIV-1 susceptibility is attributable to host genetics. Thus identifying genetic associations is essential to understanding pathogenesis of HIV-1 and important for targeting drug development. To date, however, CCR5 remains the only gene conclusively associated with HIV acquisition. To identify novel host genetic determinants of HIV-1 acquisition, we conducted a genome-wide association study among a high-risk sample of 3,136 injection drug users (IDUs) from the Urban Health Study (UHS). In addition to being IDUs, HIV-controls were frequency-matched to cases on environmental exposures to enhance detection of genetic effects. We tested independent replication in the Women's Interagency HIV Study (N=2,533). We also examined publicly available gene expression data to link SNPs associated with HIV acquisition to known mechanisms affecting HIV replication/infectivity. Analysis of the UHS nominated eight genetic regions for replication testing. SNP rs4878712 in FRMPD1 met multiple testing correction for independent replication (P=1.38x10(-4)), although the UHS-WIHS meta-analysis p-value did not reach genome-wide significance (P=4.47x10(-7) vs. P<5.0x10(-8)) Gene expression analyses provided promising biological support for the protective G allele at rs4878712 lowering risk of HIV: (1) the G allele was associated with reduced expression of FBXO10 (r=-0.49, P=6.9x10(-5)); (2) FBXO10 is a component of the Skp1-Cul1-F-box protein E3 ubiquitin ligase complex that targets Bcl-2 protein for degradation; (3) lower FBXO10 expression was associated with higher BCL2 expression (r=-0.49, P=8x10(-5)); (4) higher basal levels of Bcl-2 are known to reduce HIV replication and infectivity in human and animal in vitro studies. These results suggest new potential biological pathways by which host genetics affect susceptibility to HIV upon exposure for follow-up in subsequent studies.


Assuntos
Proteínas de Transporte/genética , Loci Gênicos , Predisposição Genética para Doença , Infecções por HIV/genética , HIV-1/fisiologia , Replicação Viral , Estudos Transversais , Proteínas F-Box/genética , Feminino , Expressão Gênica , Estudo de Associação Genômica Ampla , Infecções por HIV/fisiopatologia , HIV-1/patogenicidade , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ubiquitina-Proteína Ligases/genética
9.
Biol Psychiatry ; 78(7): 474-84, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25744370

RESUMO

BACKGROUND: No opioid receptor, mu 1 (OPRM1) gene polymorphisms, including the functional single nucleotide polymorphism (SNP) rs1799971, have been conclusively associated with heroin/other opioid addiction, despite their biological plausibility. We used evidence of polymorphisms altering OPRM1 expression in normal human brain tissue to nominate and then test associations with heroin addiction. METHODS: We tested 103 OPRM1 SNPs for association with OPRM1 messenger RNA expression in prefrontal cortex from 224 European Americans and African Americans of the BrainCloud cohort. We then tested the 16 putative cis-expression quantitative trait loci (cis-eQTL) SNPs for association with heroin addiction in the Urban Health Study and two replication cohorts, totaling 16,729 European Americans, African Americans, and Australians of European ancestry. RESULTS: Four putative cis-eQTL SNPs were significantly associated with heroin addiction in the Urban Health Study (smallest p = 8.9 × 10(-5)): rs9478495, rs3778150, rs9384169, and rs562859. Rs3778150, located in OPRM1 intron 1, was significantly replicated (p = 6.3 × 10(-5)). Meta-analysis across all case-control cohorts resulted in p = 4.3 × 10(-8): the rs3778150-C allele (frequency = 16%-19%) being associated with increased heroin addiction risk. Importantly, the functional SNP allele rs1799971-A was associated with heroin addiction only in the presence of rs3778150-C (p = 1.48 × 10(-6) for rs1799971-A/rs3778150-C and p = .79 for rs1799971-A/rs3778150-T haplotypes). Lastly, replication was observed for six other intron 1 SNPs that had prior suggestive associations with heroin addiction (smallest p = 2.7 × 10(-8) for rs3823010). CONCLUSIONS: Our findings show that common OPRM1 intron 1 SNPs have replicable associations with heroin addiction. The haplotype structure of rs3778150 and nearby SNPs may underlie the inconsistent associations between rs1799971 and heroin addiction.


Assuntos
Dependência de Heroína/genética , Dependência de Heroína/metabolismo , Polimorfismo de Nucleotídeo Único , Córtex Pré-Frontal/metabolismo , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Adolescente , Adulto , Negro ou Afro-Americano/genética , Idoso , Austrália/epidemiologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Dependência de Heroína/epidemiologia , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Estados Unidos/epidemiologia , População Branca/genética , Adulto Jovem
10.
J Virol ; 78(21): 12041-6, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15479843

RESUMO

Primate lentivirus Vif proteins function by suppressing the antiviral activity of the cell-encoded apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like (APOBEC) proteins APOBEC3G and APOBEC3F. It has been hypothesized that species-specific susceptibilities of APOBEC proteins to Vif proteins may help govern the transmission of primate lentiviruses to new host species. Consistent with this view and with previous results, we report that the Vif proteins of several diverse simian immunodeficiency viruses (SIVs) that are not known to infect humans are not effective inhibitors of human APOBEC3G or APOBEC3F when assessed in transient-transfection experiments. Unexpectedly, this lack of SIV Vif function did not prevent the replication of two vif-deficient SIVs (SIVtan and SIVmnd1; isolated from tantalus monkeys and mandrills, respectively) in a human T-cell line, HUT78, that expresses both APOBEC 3G and APOBEC3F, a finding which demonstrates that some SIVs are partially resistant to the antiretroviral effects of these enzymes irrespective of Vif function. Additional virus replication studies also revealed that the Vif protein of SIVtan is, in fact, active in human T cells, as it substantially enhanced the replication of its cognate virus and human immunodeficiency virus type 1. In sum, we now consider it improbable that species-specific restrictions to SIV Vif function can explain the lack of human infection with certain SIVs. Instead, our data reveal that the species-specific modulation of Vif function is more complex than previously envisioned and that additional (as-yet-unidentified) viral or host factors may be involved in regulating this dynamic interaction between host and pathogen.


Assuntos
Produtos do Gene vif/fisiologia , Vírus da Imunodeficiência Símia/fisiologia , Desaminase APOBEC-3G , Sequência de Bases , Linhagem Celular , Citidina Desaminase , Citosina Desaminase/genética , Citosina Desaminase/fisiologia , HIV/fisiologia , Humanos , Dados de Sequência Molecular , Nucleosídeo Desaminases , Proteínas/genética , Proteínas/fisiologia , Proteínas Repressoras , Especificidade da Espécie , Linfócitos T/virologia , Transfecção , Replicação Viral , Produtos do Gene vif do Vírus da Imunodeficiência Humana
11.
Nat Med ; 9(11): 1404-7, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14528300

RESUMO

The human protein apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like-3G (APOBEC3G), also known as CEM-15, mediates a newly described form of innate resistance to retroviral infection by catalyzing the deamination of deoxycytidine to deoxyuridine in viral cDNA replication intermediates. Because DNA deamination takes place after virus entry into target cells, APOBEC3G function is dependent on its association with the viral nucleoprotein complexes that synthesize cDNA and must therefore be incorporated into virions as they assemble in infected cells. Here we show that the HIV-1 virion infectivity factor (Vif) protein protects the virus from APOBEC3G-mediated inactivation by preventing its incorporation into progeny virions, thus allowing the ensuing infection to proceed without DNA deamination. In addition to helping exclude APOBEC3G from nascent virions, Vif also removes APOBEC3G from virus-producing cells by inducing its ubiquitination and subsequent degradation by the proteasome. Our findings indicate that pharmacologic strategies aimed at stabilizing APOBEC3G in HIV-1 infected cells should be explored as potential HIV/AIDS therapeutics.


Assuntos
Cisteína Endopeptidases/metabolismo , Produtos do Gene vif/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Complexos Multienzimáticos/metabolismo , Proteínas/metabolismo , Desaminase APOBEC-3G , Citidina Desaminase , Infecções por HIV/virologia , Humanos , Nucleosídeo Desaminases , Complexo de Endopeptidases do Proteassoma , Proteínas Repressoras , Montagem de Vírus/fisiologia , Produtos do Gene vif do Vírus da Imunodeficiência Humana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA