Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1124, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321058

RESUMO

The recovery of mitochondrial quality control (MQC) may bring innovative solutions for neuroprotection, while imposing a significant challenge given the need of holistic approaches to restore mitochondrial dynamics (fusion/fission) and turnover (mitophagy and biogenesis). In diabetic retinopathy, this is compounded by our lack of understanding of human retinal neurodegeneration, but also how MQC processes interact during disease progression. Here, we show that mitochondria hyperfusion is characteristic of retinal neurodegeneration in human and murine diabetes, blunting the homeostatic turnover of mitochondria and causing metabolic and neuro-inflammatory stress. By mimicking this mitochondrial remodelling in vitro, we ascertain that N6-furfuryladenosine enhances mitochondrial turnover and bioenergetics by relaxing hyperfusion in a controlled fashion. Oral administration of N6-furfuryladenosine enhances mitochondrial turnover in the diabetic mouse retina (Ins2Akita males), improving clinical correlates and conferring neuroprotection regardless of glycaemic status. Our findings provide translational insights for neuroprotection in the diabetic retina through the holistic recovery of MQC.


Assuntos
Adenosina , Diabetes Mellitus Experimental , Cinetina , Dinâmica Mitocondrial , Masculino , Camundongos , Humanos , Animais , Neuroproteção , Diabetes Mellitus Experimental/metabolismo , Retina/metabolismo , Mitocôndrias/metabolismo
2.
Free Radic Biol Med ; 208: 478-493, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714439

RESUMO

Transcription factor nuclear factor erythroid 2 p45-related factor 2 (Nrf2) is the principal determinant of the cellular redox homeostasis, contributing to mitochondrial function, integrity and bioenergetics. The main negative regulator of Nrf2 is Kelch-like ECH associated protein 1 (Keap1), a substrate adaptor for Cul3/Rbx1 ubiquitin ligase, which continuously targets Nrf2 for ubiquitination and proteasomal degradation. Loss-of-function mutations in Keap1 occur frequently in lung cancer, leading to constitutive Nrf2 activation. We used the human lung cancer cell line A549 and its CRISPR/Cas9-generated homozygous Nrf2-knockout (Nrf2-KO) counterpart to assess the role of Nrf2 on mitochondrial health. To confirm that the observed effects of Nrf2 deficiency are not due to clonal selection or long-term adaptation to the absence of Nrf2, we also depleted Nrf2 by siRNA (siNFE2L2), thus creating populations of Nrf2-knockdown (Nrf2-KD) A549 cells. Nrf2 deficiency decreased mitochondrial respiration, but increased the mitochondrial membrane potential, mass, DNA content, and the number of mitolysosomes. The proportion of ATG7 and ATG3 within their respective LC3B conjugates was increased in Nrf2-deficient cells with mutant Keap1, whereas the formation of new autophagosomes was not affected. Thus, in lung cancer cells with loss-of-function Keap1, Nrf2 facilitates mitolysosome degradation thereby ensuring timely clearance of damaged mitochondria.


Assuntos
Neoplasias Pulmonares , Fator 2 Relacionado a NF-E2 , Humanos , Proteínas Culina/genética , Proteínas Culina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Pulmonares/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Mitocôndrias/metabolismo , Células A549
3.
J Med Chem ; 66(11): 7645-7656, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37248632

RESUMO

Ubiquitin phosphorylation by the mitochondrial protein kinase PTEN-induced kinase 1 (PINK1), upon mitochondrial depolarization, is an important intermediate step in the recycling of damaged mitochondria via mitophagy. As mutations in PINK1 can cause early-onset Parkinson's disease (PD), there has been a growing interest in small-molecule activators of PINK1-mediated mitophagy as potential PD treatments. Herein, we show that N6-substituted adenosines, such as N6-(2-furanylmethyl)adenosine (known as kinetin riboside) and N6-benzyladenosine, activate PINK1 in HeLa cells and induce PINK1-dependent mitophagy in primary mouse fibroblasts. Interestingly, pre-treatment of HeLa cells and astrocytes with these compounds inhibited elevated ubiquitin phosphorylation that is induced by established mitochondrial depolarizing agents, carbonyl cyanide m-chlorophenyl-hydrazine and niclosamide. Together, this highlights N6-substituted adenosines as progenitor PINK1 activators that could potentially be developed, in the future, as treatments for aged and sporadic PD patients who have elevated phosphorylated ubiquitin levels in the brain.


Assuntos
Mitofagia , Ubiquitina , Humanos , Animais , Camundongos , Fosforilação , Ubiquitina/metabolismo , Células HeLa , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
4.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675156

RESUMO

Arterial calcification is an important characteristic of cardiovascular disease. It has key parallels with skeletal mineralization; however, the underlying cellular mechanisms responsible are not fully understood. Mitochondrial dynamics regulate both bone and vascular function. In this study, we therefore examined mitochondrial function in vascular smooth muscle cell (VSMC) calcification. Phosphate (Pi)-induced VSMC calcification was associated with elongated mitochondria (1.6-fold increase, p < 0.001), increased mitochondrial reactive oxygen species (ROS) production (1.83-fold increase, p < 0.001) and reduced mitophagy (9.6-fold decrease, p < 0.01). An increase in protein expression of optic atrophy protein 1 (OPA1; 2.1-fold increase, p < 0.05) and a converse decrease in expression of dynamin-related protein 1 (DRP1; 1.5-fold decrease, p < 0.05), two crucial proteins required for the mitochondrial fusion and fission process, respectively, were noted. Furthermore, the phosphorylation of DRP1 Ser637 was increased in the cytoplasm of calcified VSMCs (5.50-fold increase), suppressing mitochondrial translocation of DRP1. Additionally, calcified VSMCs showed enhanced expression of p53 (2.5-fold increase, p < 0.05) and ß-galactosidase activity (1.8-fold increase, p < 0.001), the cellular senescence markers. siRNA-mediated p53 knockdown reduced calcium deposition (8.1-fold decrease, p < 0.01), mitochondrial length (3.0-fold decrease, p < 0.001) and ß-galactosidase activity (2.6-fold decrease, p < 0.001), with concomitant mitophagy induction (3.1-fold increase, p < 0.05). Reduced OPA1 (4.1-fold decrease, p < 0.05) and increased DRP1 protein expression (2.6-fold increase, p < 0.05) with decreased phosphorylation of DRP1 Ser637 (3.20-fold decrease, p < 0.001) was also observed upon p53 knockdown in calcifying VSMCs. In summary, we demonstrate that VSMC calcification promotes notable mitochondrial elongation and cellular senescence via DRP1 phosphorylation. Furthermore, our work indicates that p53-induced mitochondrial fusion underpins cellular senescence by reducing mitochondrial function.


Assuntos
Dinâmica Mitocondrial , Músculo Liso Vascular , Calcificação Vascular , Humanos , beta-Galactosidase/metabolismo , Células Cultivadas , Dinâmica Mitocondrial/genética , Dinâmica Mitocondrial/fisiologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Calcificação Vascular/genética , Calcificação Vascular/metabolismo
5.
EMBO J ; 41(10): e109390, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35411952

RESUMO

Mitophagy removes defective mitochondria via lysosomal elimination. Increased mitophagy coincides with metabolic reprogramming, yet it remains unknown whether mitophagy is a cause or consequence of such state changes. The signalling pathways that integrate with mitophagy to sustain cell and tissue integrity also remain poorly defined. We performed temporal metabolomics on mammalian cells treated with deferiprone, a therapeutic iron chelator that stimulates PINK1/PARKIN-independent mitophagy. Iron depletion profoundly rewired the metabolome, hallmarked by remodelling of lipid metabolism within minutes of treatment. DGAT1-dependent lipid droplet biosynthesis occurred several hours before mitochondrial clearance, with lipid droplets bordering mitochondria upon iron chelation. We demonstrate that DGAT1 inhibition restricts mitophagy in vitro, with impaired lysosomal homeostasis and cell viability. Importantly, genetic depletion of DGAT1 in vivo significantly impaired neuronal mitophagy and locomotor function in Drosophila. Our data define iron depletion as a potent signal that rapidly reshapes metabolism and establishes an unexpected synergy between lipid homeostasis and mitophagy that safeguards cell and tissue integrity.


Assuntos
Ferro , Mitofagia , Animais , Ferro/metabolismo , Lisossomos/metabolismo , Mamíferos , Mitocôndrias/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
6.
Cell Chem Biol ; 27(9): 1164-1180.e5, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32668203

RESUMO

The affinity-directed protein missile (AdPROM) system utilizes specific polypeptide binders of intracellular proteins of interest (POIs) conjugated to an E3 ubiquitin ligase moiety to enable targeted proteolysis of the POI. However, a chemically tuneable AdPROM system is more desirable. Here, we use Halo-tag/VHL-recruiting proteolysis-targeting chimera (HaloPROTAC) technology to develop a ligand-inducible AdPROM (L-AdPROM) system. When we express an L-AdPROM construct consisting of an anti-GFP nanobody conjugated to the Halo-tag, we achieve robust degradation of GFP-tagged POIs only upon treatment of cells with the HaloPROTAC. For GFP-tagged POIs, ULK1, FAM83D, and SGK3 were knocked in with a GFP-tag using CRISPR/Cas9. By substituting the anti-GFP nanobody for a monobody that binds H- and K-RAS, we achieve robust degradation of unmodified endogenous RAS proteins only in the presence of the HaloPROTAC. Through substitution of the polypeptide binder, the highly versatile L-AdPROM system is useful for the inducible degradation of potentially any intracellular POI.


Assuntos
Proteólise , Anticorpos de Cadeia Única/metabolismo , Marcadores de Afinidade , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Técnicas de Introdução de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/imunologia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Ubiquitinação , Proteínas ras/metabolismo
7.
Cell Stress ; 4(5): 99-113, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32420530

RESUMO

Mitophagy is thought to play a key role in eliminating damaged mitochondria, with diseases such as cancer and neurodegeneration exhibiting defects in this process. Mitophagy is also involved in cell differentiation and maturation, potentially through modulating mitochondrial metabolic reprogramming. Here we examined mitophagy that is induced upon iron chelation and found that the transcriptional activity of HIF1α, in part through upregulation of BNIP3 and NIX, is an essential mediator of this pathway in SH-SY5Y cells. In contrast, HIF1α is dispensable for mitophagy occurring upon mitochondrial depolarisation. To examine the role of this pathway in a metabolic reprogramming and differentiation context, we utilised the H9c2 cell line model of cardiomyocyte maturation. During differentiation of these cardiomyoblasts, mitophagy increased and required HIF1α-dependent upregulation of NIX. Though HIF1α was essential for expression of key cardiomyocyte markers, mitophagy was not directly required. However, enhancing mitophagy through NIX overexpression, accelerated marker gene expression. Taken together, our findings provide a molecular link between mitophagy signalling and cardiomyocyte differentiation and suggest that although mitophagy may not be essential per se, it plays a critical role in maintaining mitochondrial integrity during this energy demanding process.

8.
Biochem J ; 477(4): 801-814, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32011652

RESUMO

Autophagy is a critical cellular homeostatic mechanism, the dysfunction of which has been linked to a wide variety of disease states. It is regulated through the activity of specific kinases, in particular Unc-51 like autophagy activating kinase 1 (ULK1) and Phosphatidylinositol 3-kinase vacuolar protein sorting 34 (VPS34), which have both been suggested as potential targets for drug development. To identify new chemical compounds that might provide useful chemical tools or act as starting points for drug development, we screened each protein against the Published Kinase Inhibitor Set (PKIS), a library of known kinase inhibitors. In vitro screening and analysis of the published selectivity profiles of the hits informed the selection of three relatively potent ATP-competitive inhibitors against each target that presented the least number of off-target kinases in common. Cellular assays confirmed potent inhibition of autophagy in response to two of the ULK1 inhibitors and all three of the VPS34 inhibitors. These compounds represent not only a new resource for the study of autophagy but also potential chemical starting points for the validation or invalidation of these two centrally important autophagy kinases in disease models.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/antagonistas & inibidores , Autofagia , Classe III de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Descoberta de Drogas , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Osteossarcoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo , Fosforilação , Células Tumorais Cultivadas
9.
Methods Mol Biol ; 1880: 621-642, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30610727

RESUMO

Autophagy evolved as a mechanism to sustain cellular homeostasis during instances of nutrient deprivation. Mounting evidence has also clarified that under basal and stress conditions, selective autophagy pathways can target the destruction of specific organelles. Mitochondrial autophagy, or mitophagy, has emerged as a key quality control (QC) mechanism to sustain the integrity of eukaryotic mitochondrial networks. We recently reported the development of mito-QC, a novel reporter mouse model that enables the high-resolution study of mammalian mitophagy with precision, in fixed and live preparations. This model holds significant potential to transform our understanding of mammalian mitophagy pathways in vivo, in a variety of physiological contexts. We outline a detailed protocol for use of our recently described mito-QC mouse model, including tips and troubleshooting advice for those interested in monitoring mitophagy in vitro and in vivo.


Assuntos
Proteínas Luminescentes/genética , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Modelos Animais , Animais , Células Cultivadas , Embrião de Mamíferos , Genes Reporter/genética , Proteínas Luminescentes/química , Camundongos , Camundongos Transgênicos , Microdissecção/instrumentação , Microdissecção/métodos , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Cultura Primária de Células/instrumentação , Cultura Primária de Células/métodos
10.
EMBO J ; 37(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29789389

RESUMO

Mutations in the leucine-rich repeat kinase 2 (LRRK2) are associated with Parkinson's disease, chronic inflammation and mycobacterial infections. Although there is evidence supporting the idea that LRRK2 has an immune function, the cellular function of this kinase is still largely unknown. By using genetic, pharmacological and proteomics approaches, we show that LRRK2 kinase activity negatively regulates phagosome maturation via the recruitment of the Class III phosphatidylinositol-3 kinase complex and Rubicon to the phagosome in macrophages. Moreover, inhibition of LRRK2 kinase activity in mouse and human macrophages enhanced Mycobacterium tuberculosis phagosome maturation and mycobacterial control independently of autophagy. In vivo, LRRK2 deficiency in mice resulted in a significant decrease in M. tuberculosis burdens early during the infection. Collectively, our findings provide a molecular mechanism explaining genetic evidence linking LRRK2 to mycobacterial diseases and establish an LRRK2-dependent cellular pathway that controls M. tuberculosis replication by regulating phagosome maturation.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/imunologia , Macrófagos/imunologia , Mycobacterium tuberculosis/imunologia , Fagossomos/imunologia , Tuberculose/imunologia , Animais , Proteínas Relacionadas à Autofagia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Macrófagos/microbiologia , Camundongos , Camundongos Knockout , Fagossomos/genética , Fagossomos/microbiologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/imunologia , Tuberculose/genética
11.
FEBS J ; 285(7): 1185-1202, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29151277

RESUMO

The autophagic turnover of mitochondria, termed mitophagy, is thought to play an essential role in not only maintaining the health of the mitochondrial network but also that of the cell and organism as a whole. We have come a long way in identifying the molecular components required for mitophagy through extensive in vitro work and cell line characterisation, yet the physiological significance and context of these pathways remain largely unexplored. This is highlighted by the recent development of new mouse models that have revealed a striking level of variation in mitophagy, even under normal conditions. Here, we focus on programmed mitophagy and summarise our current understanding of why, how and where this takes place in mammals.


Assuntos
Mamíferos , Mitofagia , Modelos Biológicos , Animais , Linhagem Celular , Humanos , Proteínas de Membrana/metabolismo , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo
12.
Sci Rep ; 7(1): 11023, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28887499

RESUMO

Autophagy plays a critical role in the maintenance of cellular homeostasis by degrading proteins, lipids and organelles. Autophagy is activated in response to stress, but its regulation in the context of other stress response pathways, such as those mediated by heat shock factor 1 (HSF1) and nuclear factor-erythroid 2 p45-related factor 2 (NRF2), is not well understood. We found that the Michael acceptor bis(2-hydoxybenzylidene)acetone (HBB2), a dual activator of NRF2 and HSF1, protects against the development of UV irradiation-mediated cutaneous squamous cell carcinoma in mice. We further show that HBB2 is an inducer of autophagy. In cells, HBB2 increases the levels of the autophagy-cargo protein p62/sequestosome 1, and the lipidated form of microtubule-associated protein light chain 3 isoform B. Activation of autophagy by HBB2 is impaired in NRF2-deficient cells, which have reduced autophagic flux and low basal and induced levels of p62. Conversely, HSF1-deficient cells have increased autophagic flux under both basal as well as HBB2-induced conditions, accompanied by increased p62 levels. Our findings suggest that NRF2 and HSF1 have opposing roles during autophagy, and illustrate the existence of tight mechanistic links between the cellular stress responses.


Assuntos
Autofagia , Regulação da Expressão Gênica , Fatores de Transcrição de Choque Térmico/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Neoplasias Experimentais/patologia , Osteoblastos/fisiologia , Neoplasias Cutâneas/patologia
13.
Autophagy ; 12(12): 2506-2507, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27715383

RESUMO

The past decade has seen an intensive and concerted research effort into the molecular regulation of mitophagy, the selective autophagy of mitochondria. Cell-based studies have implicated mitophagy in the pathology of diverse conditions ranging from cancer to neurodegeneration. However, a definitive link between mitophagy and the etiology of human disease remains to be demonstrated. Moreover, we do not know how pervasive mammalian mitophagy is in vivo and fundamental questions remain unanswered. For example, is mitophagy common to all tissues under basal conditions or does it only occur in highly oxidative tissues under stress? This paucity of knowledge is largely due to a lack of experimentally tractable tools that can measure and monitor mitophagy in tissues. Our recent work describes the development of mito-QC, a mouse model to study mitophagy at single cell resolution in vivo.


Assuntos
Lisossomos/metabolismo , Mitocôndrias/metabolismo , Animais , Humanos , Camundongos , Mitofagia , Transporte Proteico
14.
EMBO J ; 34(17): 2272-90, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26139536

RESUMO

Lysosomes are essential organelles that function to degrade and recycle unwanted, damaged and toxic biological components. Lysosomes also act as signalling platforms in activating the nutrient-sensing kinase mTOR. mTOR regulates cellular growth, but it also helps to maintain lysosome identity by initiating lysosomal tubulation through a process termed autophagosome-lysosome reformation (ALR). Here we identify a lysosomal pool of phosphatidylinositol 3-phosphate that, when depleted by specific inhibition of the class III phosphoinositide 3-kinase VPS34, results in prolonged lysosomal tubulation. This tubulation requires mTOR activity, and we identified two direct mTOR phosphorylation sites on UVRAG (S550 and S571) that activate VPS34. Loss of these phosphorylation sites reduced VPS34 lipid kinase activity and resulted in an increase in number and length of lysosomal tubules. In cells in which phosphorylation at these UVRAG sites is disrupted, the result of impaired lysosomal tubulation alongside ALR activation is massive cell death. Our data imply that ALR is critical for cell survival under nutrient stress and that VPS34 is an essential regulatory element in this process.


Assuntos
Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Lisossomos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Classe III de Fosfatidilinositol 3-Quinases/genética , Células HEK293 , Células HeLa , Humanos , Lisossomos/genética , Camundongos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fosforilação/fisiologia , Serina-Treonina Quinases TOR/genética , Proteínas Supressoras de Tumor/genética
15.
J Biol Chem ; 290(18): 11376-83, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25833948

RESUMO

Autophagy is a cell-protective and degradative process that recycles damaged and long-lived cellular components. Cancer cells are thought to take advantage of autophagy to help them to cope with the stress of tumorigenesis; thus targeting autophagy is an attractive therapeutic approach. However, there are currently no specific inhibitors of autophagy. ULK1, a serine/threonine protein kinase, is essential for the initial stages of autophagy, and here we report that two compounds, MRT67307 and MRT68921, potently inhibit ULK1 and ULK2 in vitro and block autophagy in cells. Using a drug-resistant ULK1 mutant, we show that the autophagy-inhibiting capacity of the compounds is specifically through ULK1. ULK1 inhibition results in accumulation of stalled early autophagosomal structures, indicating a role for ULK1 in the maturation of autophagosomes as well as initiation.


Assuntos
Autofagia/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Camundongos
16.
Biochem J ; 463(3): 413-27, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25177796

RESUMO

The Vps34 (vacuolar protein sorting 34) class III PI3K (phosphoinositide 3-kinase) phosphorylates PtdIns (phosphatidylinositol) at endosomal membranes to generate PtdIns(3)P that regulates membrane trafficking processes via its ability to recruit a subset of proteins possessing PtdIns(3)P-binding PX (phox homology) and FYVE domains. In the present study, we describe a highly selective and potent inhibitor of Vps34, termed VPS34-IN1, that inhibits Vps34 with 25 nM IC50 in vitro, but does not significantly inhibit the activity of 340 protein kinases or 25 lipid kinases tested that include all isoforms of class I as well as class II PI3Ks. Administration of VPS34-IN1 to cells induces a rapid dose-dependent dispersal of a specific PtdIns(3)P-binding probe from endosome membranes, within 1 min, without affecting the ability of class I PI3K to regulate Akt. Moreover, we explored whether SGK3 (serum- and glucocorticoid-regulated kinase-3), the only protein kinase known to interact specifically with PtdIns(3)P via its N-terminal PX domain, might be controlled by Vps34. Mutations disrupting PtdIns(3)P binding ablated SGK3 kinase activity by suppressing phosphorylation of the T-loop [PDK1 (phosphoinositide-dependent kinase 1) site] and hydrophobic motif (mammalian target of rapamycin site) residues. VPS34-IN1 induced a rapid ~50-60% loss of SGK3 phosphorylation within 1 min. VPS34-IN1 did not inhibit activity of the SGK2 isoform that does not possess a PtdIns(3)P-binding PX domain. Furthermore, class I PI3K inhibitors (GDC-0941 and BKM120) that do not inhibit Vps34 suppressed SGK3 activity by ~40%. Combining VPS34-IN1 and GDC-0941 reduced SGK3 activity ~80-90%. These data suggest SGK3 phosphorylation and hence activity is controlled by two pools of PtdIns(3)P. The first is produced through phosphorylation of PtdIns by Vps34 at the endosome. The second is due to the conversion of class I PI3K product, PtdIns(3,4,5)P3 into PtdIns(3)P, via the sequential actions of the PtdIns 5-phosphatases [SHIP1/2 (Src homology 2-domain-containing inositol phosphatase 1/2)] and PtdIns 4-phosphatase [INPP4B (inositol polyphosphate 4-phosphatase type II)]. VPS34-IN1 will be a useful probe to delineate physiological roles of the Vps34. Monitoring SGK3 phosphorylation and activity could be employed as a biomarker of Vps34 activity, in an analogous manner by which Akt is used to probe cellular class I PI3K activity. Combining class I (GDC-0941) and class III (VPS34-IN1) PI3K inhibitors could be used as a strategy to better analyse the roles and regulation of the elusive class II PI3K.


Assuntos
Aminopiridinas/farmacologia , Classe III de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Pirimidinas/farmacologia , Motivos de Aminoácidos , Linhagem Celular , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Classe II de Fosfatidilinositol 3-Quinases/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Endossomos/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Inositol Polifosfato 5-Fosfatases , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Inibidores de Fosfoinositídeo-3 Quinase , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína
17.
EMBO Rep ; 14(12): 1127-35, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24176932

RESUMO

In this study, we develop a simple assay to identify mitophagy inducers on the basis of the use of fluorescently tagged mitochondria that undergo a colour change on lysosomal delivery. Using this assay, we identify iron chelators as a family of compounds that generate a strong mitophagy response. Iron chelation-induced mitophagy requires that cells undergo glycolysis, but does not require PINK1 stabilization or Parkin activation, and occurs in primary human fibroblasts as well as those isolated from a Parkinson's patient with Parkin mutations. Thus, we have identified and characterized a mitophagy pathway, the induction of which could prove beneficial as a potential therapy for several neurodegenerative diseases in which mitochondrial clearance is advantageous.


Assuntos
Quelantes de Ferro/farmacologia , Deficiências de Ferro , Mitofagia , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células HeLa , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mutação , Ubiquitina-Proteína Ligases/genética
18.
PLoS One ; 8(6): e65250, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762328

RESUMO

Coibamide A is an N-methyl-stabilized depsipeptide that was isolated from a marine cyanobacterium as part of an International Cooperative Biodiversity Groups (ICBG) program based in Panama. Previous testing of coibamide A in the NCI in vitro 60 cancer cell line panel revealed a potent anti-proliferative response and "COMPARE-negative" profile indicative of a unique mechanism of action. We report that coibamide A is a more potent and efficacious cytotoxin than was previously appreciated, inducing concentration- and time-dependent cytotoxicity (EC50<100 nM) in human U87-MG and SF-295 glioblastoma cells and mouse embryonic fibroblasts (MEFs). This activity was lost upon linearization of the molecule, highlighting the importance of the cyclized structure for both anti-proliferative and cytotoxic responses. We show that coibamide A induces autophagosome accumulation in human glioblastoma cell types and MEFs via an mTOR-independent mechanism; no change was observed in the phosphorylation state of ULK1 (Ser-757), p70 S6K1 (Thr-389), S6 ribosomal protein (Ser-235/236) and 4EBP-1 (Thr-37/46). Coibamide A also induces morphologically and biochemically distinct forms of cell death according to cell type. SF-295 glioblastoma cells showed caspase-3 activation and evidence of apoptotic cell death in a pattern that was also seen in wild-type and autophagy-deficient (ATG5-null) MEFs. In contrast, cell death in U87-MG glioblastoma cells was characterized by extensive cytoplasmic vacuolization and lacked clear apoptotic features. Cell death was attenuated, but still triggered, in Apaf-1-null MEFs lacking a functional mitochondria-mediated apoptotic pathway. From the study of ATG5-null MEFs we conclude that a conventional autophagy response is not required for coibamide A-induced cell death, but likely occurs in dying cells in response to treatment. Coibamide A represents a natural product scaffold with potential for the study of mTOR-independent signaling and cell death mechanisms in apoptotic-resistant cancer cells.


Assuntos
Autofagia/efeitos dos fármacos , Citotoxinas/farmacologia , Depsipeptídeos/farmacologia , Fibroblastos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose/efeitos dos fármacos , Fator Apoptótico 1 Ativador de Proteases/deficiência , Fator Apoptótico 1 Ativador de Proteases/genética , Proteína 5 Relacionada à Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Caspase 3/genética , Caspase 3/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , Especificidade de Órgãos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas/genética , Proteínas Quinases S6 Ribossômicas/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
19.
Sci Rep ; 3: 1275, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23429453

RESUMO

Tenovin-6 (Tnv-6) is a bioactive small molecule with anti-neoplastic activity. Inhibition of the Sirtuin class of protein deacetylases with activation of p53 function is associated with the pro-apoptotic effects of Tnv-6 in many tumors. Here, we demonstrate that in chronic lymphocytic leukemia (CLL) cells, Tnv-6 causes non-genotoxic cytotoxicity, without adversely affecting human clonogenic hematopoietic progenitors in vitro, or murine hematopoiesis. Mechanistically, exposure of CLL cells to Tnv-6 did not induce cellular apoptosis or p53-pathway activity. Transcriptomic profiling identified a gene program influenced by Tnv-6 that included autophagy-lysosomal pathway genes. The dysregulation of autophagy was confirmed by changes in cellular ultrastructure and increases in the autophagy-regulatory proteins LC3 (LC3-II) and p62/Sequestosome. Adding bafilomycin-A1, an autophagy inhibitor to Tnv-6 containing cultures did not cause synergistic accumulation of LC3-II, suggesting inhibition of late-stage autophagy by Tnv-6. Thus, in CLL, the cytotoxic effects of Tnv-6 result from dysregulation of protective autophagy pathways.


Assuntos
Autofagia/efeitos dos fármacos , Benzamidas/toxicidade , Sirtuínas/antagonistas & inibidores , Idoso , Animais , Células Cultivadas , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Macrolídeos/toxicidade , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Sirtuínas/metabolismo , Proteína Supressora de Tumor p53/metabolismo
20.
Autophagy ; 9(2): 124-37, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23295650

RESUMO

The Atg1/ULK1 complex plays a central role in starvation-induced autophagy, integrating signals from upstream sensors such as MTOR and AMPK and transducing them to the downstream autophagy pathway. Much progress has been made in the last few years in understanding the mechanisms by which the complex is regulated through protein-protein interactions and post-translational modifications, providing insights into how the cell modulates autophagy, particularly in response to nutrient status. However, how the ULK1 complex transduces upstream signals to the downstream central autophagy pathway is still unclear. Although the protein kinase activity of ULK1 is required for its autophagic function, its protein substrate(s) responsible for autophagy activation has not been identified. Furthermore, examples of potential ULK1-independent autophagy have emerged, indicating that under certain specific contexts, the ULK1 complex might be dispensable for autophagy activation. This raises the question of how the autophagic machinery is activated independent of the ULK1 complex and what are the biological functions of such noncanonical autophagy pathways.


Assuntos
Autofagia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Animais , Humanos , Mamíferos/metabolismo , Neoplasias/enzimologia , Neoplasias/patologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA