Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurobiol Aging ; 59: 156-170, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28870518

RESUMO

We have previously demonstrated that anti-beta amyloid DNA vaccine (AV-1959D) based on our proprietary MultiTEP platform technology is extremely immunogenic in mice, rabbits, and monkeys. Importantly, MultiTEP platform enables development of vaccines targeting pathological molecules involved in various neurodegenerative disorders. Taking advantage of the universality of MultiTEP platform, we developed DNA vaccines targeting 3 B-cell epitopes (amino acids [aa]85-99, aa109-126, and aa126-140) of human alpha-synuclein (hα-Syn) separately or all 3 epitopes simultaneously. All 4 DNA vaccines (1) generate high titers of anti-hα-Syn antibodies and (2) induce robust MultiTEP-specific T-helper cell responses without activation of potentially detrimental autoreactive anti-hα-Syn T-helper cells. Generated antibodies recognize misfolded hα-Syn produced by neuroblastoma cells, hα-Syn in the brain tissues of transgenic mouse strains and in the brain tissues of dementia with Lewy body cases. Based on these results, the most promising vaccine targeting 3 B-cell epitopes of hα-Syn simultaneously (PV-1950D) has been chosen for ongoing preclinical assessment in mouse models of hα-Syn with the aim to translate it to the human clinical trials.


Assuntos
Epitopos de Linfócito B/imunologia , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/terapia , Vacinas de DNA/imunologia , alfa-Sinucleína/imunologia , Animais , Anticorpos , Feminino , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doenças Neurodegenerativas/genética , Linfócitos T Auxiliares-Indutores/imunologia , Vacinas de DNA/uso terapêutico
2.
Acta Neuropathol Commun ; 5(1): 21, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28283027

RESUMO

We previously demonstrated that transplantation of murine neural stem cells (NSCs) can improve motor and cognitive function in a transgenic model of Dementia with Lewy Bodies (DLB). These benefits occurred without changes in human α-synuclein pathology and were mediated in part by stem cell-induced elevation of brain-derived neurotrophic factor (BDNF). However, instrastriatal NSC transplantation likely alters the brain microenvironment via multiple mechanisms that may synergize to promote cognitive and motor recovery. The underlying neurobiology that mediates such restoration no doubt involves numerous genes acting in concert to modulate signaling within and between host brain cells and transplanted NSCs. In order to identify functionally connected gene networks and additional mechanisms that may contribute to stem cell-induced benefits, we performed weighted gene co-expression network analysis (WGCNA) on striatal tissue isolated from NSC- and vehicle-injected wild-type and DLB mice. Combining continuous behavioral and biochemical data with genome wide expression via network analysis proved to be a powerful approach; revealing significant alterations in immune response, neurotransmission, and mitochondria function. Taken together, these data shed further light on the gene network and biological processes that underlie the therapeutic effects of NSC transplantation on α-synuclein induced cognitive and motor impairments, thereby highlighting additional therapeutic targets for synucleinopathies.


Assuntos
Corpo Estriado/metabolismo , Doença por Corpos de Lewy/metabolismo , Mitocôndrias/metabolismo , Células-Tronco Neurais/metabolismo , Transplante de Células-Tronco , Transmissão Sináptica/fisiologia , Animais , Movimento Celular/genética , Movimento Celular/fisiologia , Modelos Animais de Doenças , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Doença por Corpos de Lewy/genética , Doença por Corpos de Lewy/psicologia , Lisossomos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/genética , Neuroimunomodulação/genética , Neuroimunomodulação/fisiologia , Fenótipo , Recuperação de Função Fisiológica/genética , Recuperação de Função Fisiológica/fisiologia , Transmissão Sináptica/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
3.
Stem Cells Transl Med ; 6(6): 1477-1490, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28225193

RESUMO

Synucleinopathies are a group of neurodegenerative disorders sharing the common feature of misfolding and accumulation of the presynaptic protein α-synuclein (α-syn) into insoluble aggregates. Within this diverse group, Dementia with Lewy Bodies (DLB) is characterized by the aberrant accumulation of α-syn in cortical, hippocampal, and brainstem neurons, resulting in multiple cellular stressors that particularly impair dopamine and glutamate neurotransmission and related motor and cognitive function. Recent studies show that murine neural stem cell (NSC) transplantation can improve cognitive or motor function in transgenic models of Alzheimer's and Huntington's disease, and DLB. However, examination of clinically relevant human NSCs in these models is hindered by the challenges of xenotransplantation and the confounding effects of immunosuppressant drugs on pathology and behavior. To address this challenge, we developed an immune-deficient transgenic model of DLB that lacks T-, B-, and NK-cells, yet exhibits progressive accumulation of human α-syn (h-α-syn)-laden inclusions and cognitive and motor impairments. We demonstrate that clinically relevant human neural progenitor cells (line CNS10-hNPCs) survive, migrate extensively and begin to differentiate preferentially into astrocytes following striatal transplantation into this DLB model. Critically, grafted CNS10-hNPCs rescue both cognitive and motor deficits after 1 and 3 months and, furthermore, restore striatal dopamine and glutamate systems. These behavioral and neurochemical benefits are likely achieved by reducing α-syn oligomers. Collectively, these results using a new model of DLB demonstrate that hNPC transplantation can impact a broad array of disease mechanisms and phenotypes and suggest a cellular therapeutic strategy that should be pursued. Stem Cells Translational Medicine 2017;6:1477-1490.


Assuntos
Doença por Corpos de Lewy/terapia , Células-Tronco Neurais/transplante , Transplante de Células-Tronco/métodos , alfa-Sinucleína/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Células Cultivadas , Humanos , Memória , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese
4.
Stem Cell Reports ; 5(5): 791-804, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26489892

RESUMO

Accumulation of α-synuclein (α-syn) into insoluble aggregates occurs in several related disorders collectively referred to as synucleinopathies. To date, studies have used neural stem cells (NSCs) to examine questions about α-syn propagation, but have overlooked the therapeutic potential of NSC transplantation to modulate cognition in disorders such as dementia with Lewy bodies or Parkinson's disease dementia. Here, we show that striatal transplantation of NSCs into aged α-syn transgenic mice significantly improves performance in multiple cognitive and motor domains. This recovery is associated with NSC expression of brain-derived neurotrophic factor (BDNF), which restores depleted levels and modulates dopaminergic and glutamatergic systems. Most importantly, transplantation of BDNF-depleted NSCs fails to improve behavior, whereas AAV-mediated BDNF delivery mimics the benefits of NSC transplantation, supporting a critical role for this neurotrophin in functional improvement. Thus, NSC transplantation could offer a promising approach to treat the understudied yet devastating cognitive components of many synucleinopathies.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cognição , Doença por Corpos de Lewy/terapia , Locomoção , Células-Tronco Neurais/transplante , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Células Cultivadas , Corpo Estriado/citologia , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Doença por Corpos de Lewy/genética , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , alfa-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA