Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37786709

RESUMO

The ability to precisely control the activity of defined cell populations enables studies of their physiological roles and may provide therapeutic applications. While prior studies have shown that magnetic activation of ferritin-tagged ion channels allows cell-specific modulation of cellular activity, the large size of the constructs made the use of adeno-associated virus, AAV, the vector of choice for gene therapy, impractical. In addition, simple means for generating magnetic fields of sufficient strength have been lacking. Toward these ends, we first generated a novel anti-ferritin nanobody that when fused to transient receptor potential cation channel subfamily V member 1, TRPV1, enables direct binding of the channel to endogenous ferritin in mouse and human cells. This smaller construct can be delivered in a single AAV and we validated that it robustly enables magnetically induced cell activation in vitro . In parallel, we developed a simple benchtop electromagnet capable of gating the nanobody-tagged channel in vivo . Finally, we showed that delivering these new constructs by AAV to pancreatic beta cells in combination with the benchtop magnetic field delivery stimulates glucose-stimulated insulin release to improve glucose tolerance in mice in vivo . Together, the novel anti-ferritin nanobody, nanobody-TRPV1 construct and new hardware advance the utility of magnetogenetics in animals and potentially humans.

2.
Neuroscience ; 535: 1-12, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37890609

RESUMO

Inflammasome activation and the consequent release of pro-inflammatory cytokines play a crucial role in the development of sensory/motor deficits following spinal cord injury (SCI). Immunomodulatory activities are exhibited by Schwann cells (SCs) and Wharton's jelly mesenchymal stem cells (WJ-MSCs). In this study, we aimed to compare the effectiveness of these two cell sources in modulating the absent in melanoma 2 (AIM2) inflammasome complex in rats with SCI. The Basso, Beattie, Bresnahan (BBB) test, Nissl staining, and Luxol fast blue (LFB) staining were performed to evaluate locomotor function, neuronal survival, and myelination, respectively. Real-time polymerase chain reaction (RT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA) were employed to analyze the gene and protein expressions of inflammasome components, including AIM2, ASC, caspase-1, interleukin-1ß (IL-1ß), and IL-18. Both gene and protein expressions of all evaluated factors were decreased after SC or WJ-MSC treatment, with a more pronounced effect observed in the SCs group (P < 0.05). Additionally, SCs promoted neuronal survival and myelination. Moreover, the administration of 3 × 105 cells resulted in motor recovery improvement in both treatment groups (P < 0.05). Although not statistically significant, these effects were more prominent in the SC-treated animals. In conclusion, SC therapy demonstrated greater efficacy in targeting AIM2 inflammasome activation and the associated inflammatory pathway in SCI experiments compared to WJ-MSCs.


Assuntos
Melanoma , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Geleia de Wharton , Animais , Ratos , Diferenciação Celular , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Inflamassomos/metabolismo , Melanoma/metabolismo , Modelos Teóricos , Células de Schwann/metabolismo , Traumatismos da Medula Espinal/metabolismo , Geleia de Wharton/metabolismo
3.
J Biochem Mol Toxicol ; 37(11): e23459, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37431890

RESUMO

Diabetic neuropathy (DN) is the most prevalent complication of diabetes. Pharmacological treatments for DN are often limited in efficacy, so the development of new agents to alleviate DN is essential. The aim of this study was to evaluate the effects of rolipram, a selective phosphodiesterase-4 inhibitor (PDE-4I), and pentoxifylline, a general PDE inhibitor, using a rat model of DN. In this study, a diabetic rat model was established by i.p. injection of STZ (55 mg/kg). Rats were treated with rolipram (1 mg/kg), pentoxifylline (100 mg/kg), and combination of rolipram (0.5 mg/kg) and pentoxifylline (50 mg/kg), orally for 5 weeks. After treatments, sensory function was assessed by hot plate test. Then rats were anesthetized and dorsal root ganglion (DRG) neurons isolated. Cyclic adenosine monophosphate (cAMP), adenosine triphosphate (ATP, adenosine diphosphate and mitochondrial membrane potential (MMP) levels, Cytochrome c release, Bax, Bcl-2, caspase-3 proteins expression in DRG neurons were assessed by biochemical and ELISA methods, and western blot analysis. DRG neurons were histologically examined using hematoxylin and eosin (H&E) staining method. Rolipram and/or pentoxifylline significantly attenuated sensory dysfunction by modulating nociceptive threshold. Rolipram and/or pentoxifylline treatment dramatically increased the cAMP level, prevented mitochondrial dysfunction, apoptosis and degeneration of DRG neurons, which appears to be mediated by inducing ATP and MMP, improving cytochrome c release, as well as regulating the expression of Bax, Bcl-2, and caspase-3 proteins, and improving morphological abnormalities of DRG neurons. We found maximum effectiveness with rolipram and pentoxifylline combination on mentioned factors. These findings encourage the use of rolipram and pentoxifylline combination as a novel experimental evidence for further clinical investigations in the treatment of DN.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Pentoxifilina , Ratos , Animais , Pentoxifilina/farmacologia , Pentoxifilina/uso terapêutico , Rolipram/farmacologia , Rolipram/metabolismo , Rolipram/uso terapêutico , Neuropatias Diabéticas/metabolismo , Caspase 3/metabolismo , Citocromos c/metabolismo , Gânglios Espinais/metabolismo , Proteína X Associada a bcl-2/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/metabolismo , Inibidores de Fosfodiesterase/uso terapêutico , Apoptose , Neurônios/metabolismo , Trifosfato de Adenosina/metabolismo , Mitocôndrias , Diabetes Mellitus/metabolismo
4.
IUBMB Life ; 75(10): 794-810, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37278718

RESUMO

The NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome is a multimeric protein complex that is engaged in the innate immune system and plays a vital role in inflammatory reactions. Activation of the NLRP3 inflammasome and subsequent release of proinflammatory cytokines can be triggered by microbial infection or cellular injury. The NLRP3 inflammasome has been implicated in the pathogenesis of many disorders affecting the central nervous system (CNS), ranging from stroke, traumatic brain injury, and spinal cord injury to Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, and depression. Furthermore, emerging evidence has suggested that mesenchymal stem cells (MSCs) and their exosomes may modulate NLRP3 inflammasome activation in a way that might be promising for the therapeutic management of CNS diseases. In the present review, particular focus is placed on highlighting and discussing recent scientific evidence regarding the regulatory effects of MSC-based therapies on the NLRP3 inflammasome activation and their potential to counteract proinflammatory responses and pyroptotic cell death in the CNS, thereby achieving neuroprotective impacts and improvement in behavioral impairments.


Assuntos
Doenças do Sistema Nervoso Central , Exossomos , Células-Tronco Mesenquimais , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Exossomos/metabolismo , Modelos Animais
5.
J Mol Endocrinol ; 71(2)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37256589

RESUMO

Arylalkylamine N-acetyltransferase (AANAT), a rate-limiting enzyme in melatonin synthesis, is present in extra-pineal tissues such as the hippocampus. The hippocampal AANAT activity in amyloid ß (Aß) neurotoxicity has not been exactly defined. Adult male rats received bilateral intra-CA1 Aß administration. The hippocampus tissue sampling was performed 2, 12, and 24 h after Aß injection in the morning and night. The inflammation was monitored using tumor necrosis factor-alpha (TNF-α) immunohistochemistry. The AANAT enzyme activity and melatonin levels were measured using western blotting and high-performance liquid chromatography. The sampling in the morning vs night showed no significant differences in the AANAT activity. The Aß increased the area of TNF-α positive staining 24 h after injection, which indicated the induction of an inflammatory context. It was accompanied by a significant reduction in AANAT activity and hippocampal melatonin. A reverse correlation was also detected between TNF-α and AANAT activity in the 24-h group. The TNF-α positive area was significantly increased in the 24-h group as compared to the 12-h group. Data showed that inflammatory processes began 12 h after the Aß injection and augmented 24 h later. In the second experiment, the impact of Aß injection on hippocampus AANAT activity was examined in the pinealectomized (PIN×) animals. The PIN× per se did not affect the hippocampal AANAT and melatonin levels. However, there was a significant decrease in hippocampal melatonin in the PIN×+Aß group. The findings suggest the accompanying hippocampal inflammatory context and AANAT enzyme activity reduction in early stages after Aß administration. Understanding the underlying mechanism of the decreased AANAT activity may suggest new treatment strategies.


Assuntos
Melatonina , Glândula Pineal , Ratos , Masculino , Animais , Melatonina/farmacologia , Arilalquilamina N-Acetiltransferase/metabolismo , Peptídeos beta-Amiloides , Fator de Necrose Tumoral alfa , Glândula Pineal/metabolismo , Hipocampo/metabolismo , Ritmo Circadiano
6.
Front Public Health ; 11: 1140506, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37081949

RESUMO

Introduction: Failed back surgery syndrome (FBSS) is defined as back pain which either persists after attempted surgical intervention or originates after a spine surgery. There is a high risk of perioperative morbidity and a high likelihood of extensive revision surgery in geriatric patients with FBSS or post-laminectomy foraminal stenosis. Methods: There is a need for less invasive methodologies for the treatment of FBSS, such as patient-tailored exercise training, with attention to the cost and special needs of the geriatric patients with FBSS. This commentary will provide some background regarding teleexercise (utilizing an internet-based platform for the provision of exercise-related care) for FBSS and will propose three exercises which are easy to administer over online-based platforms and can be the subject of future investigation. Results: Given the documented benefits of regular rehabilitative exercises for patients with FBSS, the high cost of face-to-face services, and the need for infection mitigation in the wake of the COVID-19 Pandemic, teleexercise may be a practical and cost-beneficial method of exercise delivery, especially for geriatric patients with limitations in mobility and access to care. It should be noted that, prescription of these exercises should be done after face-to-face evaluation by the physician and careful evaluation for any "red flag" symptoms. Conclusion: In this commentary, we will suggest three practical exercise training methodologies and discuss the benefits of teleexercise for geriatric patients with FBSS. Future research should aim to assess the efficacy of these exercises, especially when administered through telehealth platforms.


Assuntos
COVID-19 , Síndrome Pós-Laminectomia , Humanos , Idoso , Síndrome Pós-Laminectomia/diagnóstico , Síndrome Pós-Laminectomia/epidemiologia , Pandemias
7.
Curr Radiopharm ; 16(1): 57-63, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36056845

RESUMO

AIM: In the current study, we aimed to mitigate radiation-induced small intestinal toxicity using post-irradiation treatment with nano-micelle curcumin. BACKGROUND: Small intestine is one of the most radiosensitive organs within the body. Wholebody exposure to an acute dose of ionizing radiation may lead to severe injuries to this tissue and may even cause death after some weeks. OBJECTIVE: This study aimed to evaluate histopathological changes in the small intestine following whole-body irradiation and treatment with nanocurcumin. MATERIALS AND METHODS: Forty male Nordic Medical Research Institute mice were grouped into control, treatment with 100 mg/kg nano-micelle curcumin, whole-body irradiation with cobalt-60 gamma-rays (dose rate of 60 cGy/min and a single dose of 7 Gy), and treatment with 100 mg/kg nano-micelle curcumin 1 day after whole-body irradiation for 4 weeks. Afterward, all mice were sacrificed for histopathological evaluation of their small intestinal tissues. RESULTS: Irradiation led to severe damage to villi, crypts, glands as well as vessels, leading to bleeding. Administration of nano-micelle curcumin after whole-body irradiation showed a statistically significant improvement in radiation toxicity of the duodenum, jejunum and ileum (including a reduction in infiltration of polymorphonuclear cells, villi length shortening, goblet cells injury, Lieberkühn glands injury and bleeding). Although treatment with nano-micelle curcumin showed increased bleeding in the ileum for non-irradiated mice, its administration after irradiation was able to reduce radiation-induced bleeding in the ileum. CONCLUSION: Treatment with nano-micelle curcumin may be useful for mitigation of radiationinduced gastrointestinal system toxicity via suppression of inflammatory cells' infiltration and protection against villi and crypt shortening.


Assuntos
Curcumina , Masculino , Camundongos , Animais , Curcumina/farmacologia , Compostos Radiofarmacêuticos , Intestino Delgado/patologia , Intestino Delgado/efeitos da radiação , Íleo , Mucosa Intestinal/patologia , Mucosa Intestinal/efeitos da radiação
8.
J Mol Histol ; 53(6): 883-890, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36100803

RESUMO

COVID-19 is a contagious disease that attacks many organs but the lungs are the main organs affected. The inflammasome activation results in the exacerbation of inflammatory response in infectious disease. The aim of this study is to investigate the formation and activity of the NLRP3 inflammasome complex and the histopathological changes caused by the coronavirus in the lung of deceased persons with COVID-19. In total, 10 corpses; 5 corpses with no history of any infectious diseases and COVID-19 and 5 corpses with the cause of death of COVID-19 were included in this study. Lung tissue samples were harvested during autopsy under safe conditions. Fresh tissues in each group were used to measure the genes expression and proteins level of NLRP3, ASC, Caspase-1, IL-1ß, IL-6 and TNF-α and a routine hematoxylin and eosin staining was performed for histological assessment. Data are represented as the means ± SD. Statistical significance difference was accepted at a p-value less than 5%. The NLRP3, ASC, Caspase-1, IL-1ß, IL-6 and TNF-α genes expression and proteins level were elevated in the lung of the COVID-19 group in comparison with the control group. Histological findings presented the increasing number of polymorphonuclear leukocytes, macrophages and also pulmonary fibrosis in the lungs of corpses with the cause of death of COVID-19. High expression of NLRP3 inflammasome components and its relation with the pathophysiology of the coronavirus-infected lung suggested that targeting the NLRP3 inflammasome could be helpful in achieving a more effective treatment in patients with COVID-19.


Assuntos
COVID-19 , Inflamassomos , Pulmão , Humanos , Cadáver , Caspase 1/metabolismo , COVID-19/patologia , Inflamassomos/metabolismo , Interleucina-6 , Pulmão/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator de Necrose Tumoral alfa
9.
Cytokine ; 160: 156050, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36179535

RESUMO

BACKGROUND: Fractalkine (CX3CL1) is a key chemokine, affects neuronal cell communication and involves in Alzheimer's disease pathogenesis. Microvesicles (MVs) participate in neuronal cells' cross-talk in physiological and pathological states. Microvesicles released in cerebrospinal fluid (CSF) may provide a valuable footprint of brain changes. Little information is available regarding the release of fractalkine-positive MVs (CX3CL1+ -MVs) in the nervous system. METHODS: We induced cognitive impairment by bilateral injection of amyloid-beta (Aß) into the cerebral ventricles. We analyzed the CSF by flow cytometry in two experiments (trained and untrained) to elucidate the presence of CX3CL1+ -MVs. The hippocampal TNF-α as an inflammatory factor was assessed by immunohistochemistry. RESULTS: The Aß induced spatial memory impairment after two weeks, verified by a decrease in the escape latency in Morris water maze test. It caused an increase in the anxiety-like behaviors demonstrated by a decrease in entries into the open arms of elevated plus maze test. The Aß increased the percent of the positive area for TNF-α staining. Histological evaluation of the hippocampus confirmed the tissue injuries. The CSF levels of CX3CL1+ -MVs, increased 2 and 7 days after Aß injection. The Aß increased the TNF-α staining and provided an inflammatory context to facilitate the MVs release. The rise of CX3CL1+ -MVs was transient and subsided after two weeks. Both trained and untrained experiments showed a similar rise pattern of CX3CL1+ -MVs. CONCLUSION: Increase of fractalkine-positive microvesicles preceded the cognitive impairment, more studies are required to approve the CX3CL1+ -MVs as a potential biomarker in the early diagnosis of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/patologia , Biomarcadores/líquido cefalorraquidiano , Quimiocina CX3CL1 , Humanos , Transtornos da Memória , Memória Espacial , Fator de Necrose Tumoral alfa
10.
J Mol Neurosci ; 72(5): 947-962, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35147911

RESUMO

Spinal cord injury (SCI) is a significant public health issue that imposes numerous burdens on patients and society. Uncontrolled excessive inflammation in the second pathological phase of SCI can aggravate the injury. In this paper, we hypothesized that suppressing inflammatory pathways via autophagy could aid functional recovery, and prevent spinal cord tissue degeneration following SCI. To this end, we examined the effects of intrathecal injection of all-trans retinoic acid (ATRA)-preconditioned bone marrow mesenchymal stem cells (BM-MSCs) (ATRA-MSCs) on autophagy activity and the HMGB1/NF-κB/NLRP3 inflammatory pathway in an SCI rat model. This study demonstrated that SCI increased the expression of Beclin-1 (an autophagy-related gene) and NLRP3 inflammasome components such as NLRP3, ASC, Caspase-1, and pro-inflammatory cytokines IL-1ß, IL-18, IL-6, and TNF-α. Additionally, following SCI, the protein levels of key autophagy factors (Beclin-1 and LC3-II) and HMGB1/NF-κB/NLRP3 pathway factors (HMGB1, p-NF-κB, NLRP3, IL-1ß, and TNF-α) increased. Our findings indicated that ATRA-MSCs enhanced Beclin-1 and LC3-II levels, regulated the HMGB1/NF-κB/NLRP3 pathway, and inhibited pro-inflammatory cytokines. These factors improved hind limb motor activity and aided in the survival of neurons. Furthermore, ATRA-MSCs demonstrated greater beneficial effects than MSCs in treating spinal cord injury. Overall, ATRA-MSC treatment revealed beneficial effects on the damaged spinal cord by suppressing excessive inflammation and activating autophagy. Further research and investigation of the pathways involved in SCI and the use of amplified stem cells may be beneficial for future clinical use.


Assuntos
Proteína HMGB1 , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Animais , Autofagia , Proteína Beclina-1/genética , Proteína HMGB1/genética , Humanos , Inflamação , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Ratos , Traumatismos da Medula Espinal/tratamento farmacológico , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Fator de Necrose Tumoral alfa
11.
Iran J Basic Med Sci ; 24(5): 551-560, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34249256

RESUMO

Flaxseed is a plant that grows and is cultivated in more than 50 countries; the main flax producer countries are Canada, China, the United States, and India. The purpose of the present study was to overview the source, chemical compounds, and mechanisms of the therapeutic effects of this valuable plant. For writing this manuscript, we made a list of relevant keywords and phrases, and then we started searching for studies in PubMed, Scopus, and Web of Science databases. The main constituents of flaxseed include lipids, proteins, lignans, fibers, and minerals. Flaxseed is full of antioxidants such as tocopherols, betacarotene, cysteine, and methionine which result in a decrease in blood pressure, heart disease, hepatic and neurological disorders, and increased insulin sensitivity. Flaxseed is commonly used for its antidiabetic and anticancer activities and also it is beneficial for cardiovascular, gastrointestinal, hepatic, urological, and reproductive disorders, and because of these beneficial effects, it is recognized as a medical plant.

12.
Biomed Pharmacother ; 140: 111709, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34020250

RESUMO

It is well accepted that the success of mesenchymal stem cells (MSCs) therapy against experimental stroke is mainly due to cellular paracrine manners rather than to replace lost tissue per se. Given such "bystander" effects, cell-free therapeutics manifest as a promising approach in regenerative medicine. Here we aimed at evaluating the effect of conditioned medium (CM) derived from human embryonic MSCs (hESC-MSC) on the neurological deficit, neurogenesis, and angiogenesis in experimental stroke. Adult male Wistar rats subjected to middle cerebral artery occlusion (MCAO), were treated with intracerebroventricular CM either one time (1 h post MCAO) or three times (1, 24, and 48 h post MCAO). Motor performance was assessed by the cylinder test on days 3 and 7. Cerebral samples were obtained for infarct size and molecular analysis on day 7 post-injury. Neurogenesis was evaluated by probing Nestin, Ki67, DCX, and Reelin transcripts and protein levels in the striatum, cortex, subventricular zone, and corpus callosum. The mRNA and protein expression of CD31 were also assessed in the striatum and cortical region to estimate angiogenesis post MCAO. Our findings demonstrate that CM treatment could significantly ameliorate neurological deficits and infarct volume in MCAO rats. Furthermore, ischemic stroke was associated with higher levels of neurogenesis and angiogenesis markers. Following treatment with CM, these markers were further potentiated in the brain regions. This study suggests that the therapeutic benefits of CM obtained from hESC-MSCs at least partly are mediated through improved neurogenesis and angiogenesis to accelerate the recovery of cerebral ischemia insult.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Células-Tronco Embrionárias Humanas/citologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , Células-Tronco Mesenquimais , Neovascularização Fisiológica/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Proteína Duplacortina , Humanos , Infarto da Artéria Cerebral Média/fisiopatologia , Injeções Intraventriculares , AVC Isquêmico/fisiopatologia , Masculino , Ratos Wistar , Proteína Reelina
13.
Neurosci Res ; 170: 87-98, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32717259

RESUMO

Activation of inflammasome complexes during spinal cord injury (SCI) lead to conversion of pro-inflammatory cytokines, interleukin-1beta (IL-1ß) and interleukin-18 (IL-18) to their active form to initiates the neuroinflammation. Mesenchymal stem cells (MSCs) showed anti-inflammatory properties through their extracellular vehicles (EVs). We investigated immunomodulatory potential of human Wharton's jelly mesenchymal stem cells derived extracellular vesicles (hWJ-MSC-EVs) on inflammasome activity one week after SCI in rats. The gene expression and protein level of IL-1ß, IL-18, tumor necrosis factor alpha (TNF-α) and caspase1, were assessed by QPCR and western blotting. Immunohistochemistry (IHC) was done to measure the glial fibrillary acidic protein (GFAP) and Nestin expression. Cell death, histological evaluation and hind limb locomotion was studied by TUNEL assay, Nissl staining and Basso, Beattie, Bresnaham (BBB), respectively. Our finding represented that intrathecally administrated of hWJ-MSC-EVs significantly attenuated expression of the examined factors in both mRNA (P < 0.05 and P ≤ 0.01) and protein levels (P < 0.05 and P ≤ 0.01), decreased GFAP and increased Nestin expression (P < 0.05), reduced cell death and revealed the higher number of typical neurons in ventral horn of spinal cord. Consequently, progress in locomotion. We came to the conclusion that hWJ-MSC-EVs has the potential to control the inflammasome activity after SCI in rats. Moreover, EVs stimulated the neural progenitor cells and modulate the astrocyte activity.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Geleia de Wharton , Animais , Humanos , Inflamassomos , Inflamação , Ratos , Traumatismos da Medula Espinal/terapia
14.
J Cell Physiol ; 236(3): 1967-1979, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32730642

RESUMO

The transplantation of mesenchymal stem cells (MSCs) is of main approaches in regenerative therapy for stroke. Due to the potential tumorigenicity and low survival rate of transplanted cells, focuses have been shifted from cell replacement to their paracrine effects. Therefore, stem cell-conditioned medium (CM) therapy has emerged as an alternative candidate. Here, we investigated the effect of CM derived from human embryonic MSCs on experimental ischemic stroke. Wistar rats underwent ischemic stroke by the right middle cerebral artery occlusion (MCAO). CM was infused either one time (1 hr post-MCAO) or three times (1, 24, and 48 hr post-MCAO) through guide cannula into the left lateral ventricle. Neurological functions were evaluated using Bederson's test and modified Neurological Severity Score on Days 1, 3, and 7 following MCAO. Infarction volumes and cerebral edema were measured on Days 3 and 7. growth-associated protein-43, synaptophysin, cAMP response element-binding protein, and phosphorylated-cAMP response element-binding protein levels were also assessed in peri-ischemic cortical tissue on Day 7 postsurgery. Our results indicated that three times injections of CM could significantly reduce body weight loss, mortality rate, infarct volumes, cerebral edema, and improve neurological deficits in MCAO rats. Moreover, three injections of CM could restore decreased levels of synaptic markers in MCAO rats up to its normal levels observed in the sham group. Our data suggest that using the CM obtained from embryonic stem cells-MSCs could be a potent therapeutic approach to attenuate cerebral ischemia insults which may be partly mediated through modulation of synaptic plasticity.


Assuntos
Encéfalo/patologia , Meios de Cultivo Condicionados/farmacologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Mesenquimais/metabolismo , Acidente Vascular Cerebral/patologia , Sinapses/patologia , Animais , Biomarcadores/metabolismo , Peso Corporal/efeitos dos fármacos , Infarto Encefálico/complicações , Infarto Encefálico/patologia , Linhagem Celular , Edema/complicações , Edema/patologia , Humanos , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Injeções Intraventriculares , Masculino , Neurogênese/efeitos dos fármacos , Ratos Wistar , Sinapses/efeitos dos fármacos
15.
Heliyon ; 6(9): e04807, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33024852

RESUMO

There is little information available about the effects of early-life parental stress on the reproductive potential of the next generation. The aim of this study is to examine the reproductive potential of male mice whose parents experienced maternal separation stress. In the present study, male first-generation offspring from parents were undergone of maternal separation (MS) were examined. Sperm characteristics, histological changes in testis, reactive oxygen species (ROS) production, expression of apoptotic and inflammatory genes and proteins were assessed. Findings showed that MS experienced by parents significantly decreased the morphology and viability of spermatozoa. Furthermore, significant changes in testicular tissue histology were observed. Increased production of ROS, decreased glutathione peroxidase (GPX) and adenosine triphosphate (ATP) concentrations, and affected the expression of genes and cytokines involved in inflammation. Finally, the mean percentage of caspase-1 and NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) positive cells was significantly higher in first-generation group. MS experienced by parents may negatively affect the reproduction of first generation offspring.

16.
J Maxillofac Oral Surg ; 19(4): 596-602, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33071509

RESUMO

PURPOSE: The nasal index has a great value in anthropological studies, because it is one of the anthropometric indices acknowledged in nasal surgery as well as management. Anthropometric studies are very important area for craniofacial surgery and syndromology. The aim of this research was to compare the nasal characteristics between northwestern Nigerian and Iranian populations and compare them with other studies. METHODS: The nasal breadths and heights were measured from 400 individuals with 200 participants from Hausa ethnic group of northwestern Nigeria and 200 participants from Northern Tehran, Iran. Nasal index (NI) was calculated and analyzed statistically. RESULTS: There were significant difference in the nasal breadth (P = 0.0001), height (P = 0.0001) and NI (P = 0.0001) of sex groups in both Iranian and Nigeria population. The distribution of the nasal shapes for Iranian population is 127 leptorrhine (31.9%), 62 mesorrhine (15.6%) and nine platyrrhine (2.3%), while Nigeria population has 120 mesorrhine (30.2%), 75 leptorrhine (18.8%) and five platyrrhine (1.3%). This shows that Nigeria Hausa population has predominantly mesorrhine nose shape, while Northern Iranians are leptorrhine. CONCLUSION: The NI of males is higher than females in both population and this study can be of clinical and surgical interest in Rhinology. We recommend further studies to compare the NI of Nigeria and Iranian population of different ethnic groups and with other countries.

17.
Iran Biomed J ; 24(6): 347-60, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32872749

RESUMO

Background: Ischemic stroke, as a health problem caused by the reduced blood supply to the brain, can lead to the neuronal death. The number of reliable therapies for stroke is limited. Mesenchymal stem cells (MSCs) exhibit therapeutic achievement. A major limitation of MSC application in cell therapy is the short survival span. MSCs affect target tissues through the secretion of many paracrine agents including extracellular vesicles (EVs). This study aimed to investigate the effect of human umbilical cord perivascular cells (HUCPVCs)-derived EVs on apoptosis, functional recovery, and neuroprotection. Methods: Ischemia was induced by middle cerebral artery occlusion (MCAO) in male Wistar rats. Animals were classified into sham, MCAO, MCAO + HUCPVC, and MCAO + EV groups. Treatments began at two hours after ischemia. Expressions of apoptotic-related proteins (BAX/BCl-2 [B-cell lymphoma-2] and caspase-3 and -9), the amount of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells, neuronal density (microtubule-associated protein 2 [MAP2]), and dead neurons (Nissl staining) were assessed on day seven post MCAO. Results: Administration of EVs improved the sensorimotor function (p < 0.001) and reduced the apoptotic rate of Bax/Bcl-2 ratio (p < 0.001), as well as caspases and TUNEL-positive cells (p < 0.001) in comparison to the MCAO group. EV treatment also reduced the number of dead neurons and increased the number of MAP2+ cells in the ischemic boundary zone (p < 0.001), as compared to the MCAO group. Conclusion: Our findings showed that HUCPVCs-derived EVs are more effective than their mother's cells in improving neural function, possibly via the regulation of apoptosis in the ischemic rats. The strategy of cell-free extracts is, thus, helpful in removing the predicaments surrounding cell therapy in targeting brain diseases.


Assuntos
Apoptose , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Vesículas Extracelulares/metabolismo , Recuperação de Função Fisiológica , Cordão Umbilical/citologia , Animais , Isquemia Encefálica/complicações , Caspase 3/metabolismo , Caspase 9/metabolismo , Morte Celular , Vesículas Extracelulares/ultraestrutura , Humanos , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/patologia , Ratos Wistar
18.
Metab Brain Dis ; 35(5): 809-818, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32185593

RESUMO

Spinal cord injury (SCI) is the destruction of spinal cord motor and sensory resulted from an attack on the spinal cord, which can cause significant physiological damage. The inflammasome is a multiprotein oligomer resulting in inflammation; the NLRP3 inflammasome composed of NLRP3, apoptosis-associated speck-like protein (ASC), procaspase-1, and cleavage of procaspase-1 into caspase-1 initiates the inflammatory response. Subventricular Zone (SVZ) is the origin of neural stem/progenitor cells (NS/PCs) in the adult brain. Extracellular vesicles (EVs) are tiny lipid membrane bilayer vesicles secreted by different types of cells playing an important role in cell-cell communications. The aim of this study was to investigate the effect of intrathecal transplantation of EVs on the NLRP3 inflammasome formation in SCI rats. Male wistar rats were divided into three groups as following: laminectotomy group, SCI group, and EVs group. EVs was isolated from SVZ, and characterized by western blot and DLS, and then injected into the SCI rats. Real-time PCR and western blot were carried out for gene expression and protein level of NLRP3, ASC, and Caspase-1. H&E and cresyl violet staining were performed for histological analyses, as well as BBB test for motor function. The results indicated high level in mRNA and protein level in SCI group in comparison with laminectomy (p < 0.001), and injection of EVs showed a significant reduction in the mRNA and protein levels in EVs group compared to SCI (p < 0.001). H&E and cresyl violet staining showed recovery in neural cells of spinal cord tissue in EVs group in comparison with SCI group. BBB test showed the promotion of motor function in EVs group compared to SCI in 14 days (p < 0.05). We concluded that the injection of EVs could recover the motor function in rats with SCI and rescue the neural cells of spinal cord tissue by suppressing the formation of the NLRP3 inflammasome complex.


Assuntos
Vesículas Extracelulares/transplante , Ventrículos Laterais/transplante , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Traumatismos da Medula Espinal/reabilitação , Animais , Proteínas Adaptadoras de Sinalização CARD/biossíntese , Proteínas Adaptadoras de Sinalização CARD/genética , Caspase 1/biossíntese , Caspase 1/genética , Transtornos Neurológicos da Marcha/prevenção & controle , Inflamassomos , Injeções Espinhais , Laminectomia , Ventrículos Laterais/citologia , Bicamadas Lipídicas , Locomoção , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/biossíntese , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Wistar , Recuperação de Função Fisiológica
19.
J Chem Neuroanat ; 104: 101744, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31926979

RESUMO

BACKGROUND: There are evidences showing the relation between chronic hypoxia and Alzheimer's disease (AD) as a metabolic neurodegenerative disease. This study was designed to evaluate the effects of chronic hypoxia on factors which characterized in AD to introduce a new model of AD-dementia. METHODS AND MATERIALS: Twenty-four male rats were randomly divided in three groups: Control group (Co), Sham group (Sh), Hypoxia induction group (Hx, exposed to hypoxic chamber [oxygen 8% and nitrogen 92%] for 30 days, 4 h/day). Spatial learning and memory were analyzed using the Morris water maze task. At day 30 after hypoxia period, animals were sacrificed and serum was gathered for pro-inflammatory cytokines (interleukin-1ß and tumor necrosis factor) measurements and brains were used for molecular and histopathological investigations. RESULTS: According to behavioral studies, a significant impairment was seen in Hx group (P < 0.05). TNF-α and IL-1ß showed a significant enhanced in Hx group comparing with Co group and Sh group (P < 0.05). As well, the gene expression of seladin-1, Tuj1 and the number of seladin-1+, Tuj1+neurons significantly decreased and also the mean number of dark neurons significantly increased in CA1 and CA3 regions of hippocampus. CONCLUSIONS: In this study, a new model of AD was developed which showed the underlying mechanisms of AD and its relations with chronic hypoxia. Hypoxia for 30 days decreased seladin-1, Tuj1 expression, increased the number of dark neurons, and also induced memory impairment. These results indicated that chronic hypoxia mediated the dementia underlying AD and AD-related pathogenesis in rat.

20.
Galen Med J ; 9: e1829, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34466599

RESUMO

BACKGROUND: Spermatogonial stem cells (SSCs) are considered as special stem cells since they have the ability of self-renewal, differentiation, and transferring genetic information to the next generation. Also, they considered as vital players in initiating and preserving spermatogenesis. The fate decisions of SSCs are mediated by intrinsic and extrinsic factors, among which microRNAs (miRNAs) are one of the most essential factors in spermatogenesis among endogenous regulators. However, the mechanisms by which individual miRNAs regulate self-renewal and differentiation of SSCs are unclear. The present study aimed to evaluate the impact of miRNA-30 mimic on fate determinations of SSCs. MATERIALS AND METHODS: The obtained SSCs from neonatal mice (3-6 days old) were purified by MACS and flow cytometry with a promyelocytic leukemia zinc-finger marker. Then, the cultured cells were transfected with miRNA- 30 mimic, and finally, the changes in expressing ID4 and c-kit proteins were assessed by western blot analysis. RESULTS: According to flow cytometry findings, the percentage of SSC purity was about 98.32. The expression of ID4 protein and colonization increased significantly through the transfection of miRNA-30 mimic (P<0.05). CONCLUSION: The miRNA-30 controls spermatogonial stem cell self-renewal and differentiation, which may have significant implications for treating male infertility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA