RESUMO
Cathepsin C plays a key role in the activation of several degradative enzymes linked to tissue destruction in chronic inflammatory and autoimmune diseases. Therefore, Cathepsin C inhibitors could potentially be effective therapeutics for the treatment of diseases such as chronic obstructive pulmonary disease (COPD) or acute respiratory distress syndrome (ARDS). In our efforts towards the development of a novel series of Cathepsin C inhibitors, we started working around AZD5248 (1), an α-amino acid based scaffold having potential liability of aortic binding. A novel series of amidoacetonitrile based Cathepsin C inhibitors were developed by the application of a conformational restriction strategy on 1. In particular, this work led to the development of a potent and selective Cathepsin C inhibitor 3p, free of aortic binding liability.
Assuntos
Aorta/metabolismo , Tratamento Farmacológico da COVID-19 , Catepsina C/antagonistas & inibidores , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/farmacologia , Síndrome do Desconforto Respiratório/tratamento farmacológico , Acetonitrilas/química , Acetonitrilas/farmacologia , Aminoácidos/química , Aminoácidos/farmacologia , Compostos de Bifenilo/farmacologia , COVID-19/complicações , Humanos , Modelos Moleculares , Estrutura Molecular , Síndrome do Desconforto Respiratório/etiologia , Relação Estrutura-AtividadeRESUMO
Whole-cell high-throughput screening of the AstraZeneca compound library against the asexual blood stage of Plasmodium falciparum (Pf) led to the identification of amino imidazoles, a robust starting point for initiating a hit-to-lead medicinal chemistry effort. Structure-activity relationship studies followed by pharmacokinetics optimization resulted in the identification of 23 as an attractive lead with good oral bioavailability. Compound 23 was found to be efficacious (ED90 of 28.6 mg·kg(-1)) in the humanized P. falciparum mouse model of malaria (Pf/SCID model). Representative compounds displayed a moderate to fast killing profile that is comparable to that of chloroquine. This series demonstrates no cross-resistance against a panel of Pf strains with mutations to known antimalarial drugs, thereby suggesting a novel mechanism of action for this chemical class.
Assuntos
Antimaláricos/farmacologia , Benzimidazóis/uso terapêutico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/química , Benzimidazóis/farmacocinética , Benzimidazóis/farmacologia , Disponibilidade Biológica , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Concentração Inibidora 50 , Camundongos , Bibliotecas de Moléculas Pequenas , Relação Estrutura-AtividadeRESUMO
4-Aminoquinolone piperidine amides (AQs) were identified as a novel scaffold starting from a whole cell screen, with potent cidality on Mycobacterium tuberculosis (Mtb). Evaluation of the minimum inhibitory concentrations, followed by whole genome sequencing of mutants raised against AQs, identified decaprenylphosphoryl-ß-d-ribose 2'-epimerase (DprE1) as the primary target responsible for the antitubercular activity. Mass spectrometry and enzyme kinetic studies indicated that AQs are noncovalent, reversible inhibitors of DprE1 with slow on rates and long residence times of â¼100 min on the enzyme. In general, AQs have excellent leadlike properties and good in vitro secondary pharmacology profile. Although the scaffold started off as a single active compound with moderate potency from the whole cell screen, structure-activity relationship optimization of the scaffold led to compounds with potent DprE1 inhibition (IC50 < 10 nM) along with potent cellular activity (MIC = 60 nM) against Mtb.
Assuntos
Amidas/química , Antituberculosos/química , Proteínas de Bactérias/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Piperidinas/química , Quinolonas/química , Oxirredutases do Álcool , Amidas/farmacocinética , Amidas/farmacologia , Animais , Antituberculosos/farmacocinética , Antituberculosos/farmacologia , Domínio Catalítico , Linhagem Celular Tumoral , Farmacorresistência Bacteriana , Genoma Bacteriano , Humanos , Cinética , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mutação , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Piperidinas/farmacocinética , Piperidinas/farmacologia , Ligação Proteica , Quinolonas/farmacocinética , Quinolonas/farmacologia , Ratos Wistar , Estereoisomerismo , Relação Estrutura-AtividadeRESUMO
An elegant reagent-controlled strategy has been developed for the generation of a diverse range of biologically active scaffolds from a chiral bicyclic lactam. Reduction of the chiral lactam with LAH or alkylation with LHMDS to trigger different cyclization reactions have been shown to generate privileged scaffolds, such as pyrrolidines, indolines, and cyclotryptamines. Their amenability to substitution allows us to create various compound libraries by using these scaffolds. Inâ silico studies were used to estimate the drug-like properties of these compounds. Selected compounds were subjected to anticancer screening by using three different cell lines. In addition, all these compounds were subjected to antibacterial screening to gauge the spectrum of biological activity that was conferred by our DOS methodology. Gratifyingly, with no additional iterative cycles, our method directly generated anticancer compounds with potency at low nanomolar concentrations, as represented by spiroindoline 14.
Assuntos
Antibacterianos/síntese química , Antineoplásicos/síntese química , Compostos Heterocíclicos/síntese química , Lactamas Macrocíclicas/química , Compostos de Espiro/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclização , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Humanos , Metilação , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Peso Molecular , Compostos de Espiro/química , Compostos de Espiro/farmacologiaRESUMO
Herein, we report a diversity-oriented-synthesis (DOS) approach for the synthesis of biologically relevant molecular scaffolds. Our methodology enables the facile synthesis of fused N-heterocycles, spirooxoindolones, tetrahydroquinolines, and fused N-heterocycles. The two-step sequence starts with a chiral-bicyclic-lactam-directed enolate-addition/substitution step. This step is followed by a ring-closure onto the built-in scaffold electrophile, thereby leading to stereoselective carbocycle- and spirocycle-formation. We used in silico tools to calibrate our compounds with respect to chemical diversity and selected drug-like properties. We evaluated the biological significance of our scaffolds by screening them in two cancer cell-lines. In summary, our DOS methodology affords new, diverse scaffolds, thereby resulting in compounds that may have significance in medicinal chemistry.
Assuntos
Compostos Heterocíclicos/química , Compostos de Espiro/química , Compostos Bicíclicos com Pontes/química , Cristalografia por Raios X , Ciclização , Lactamas/química , Conformação Molecular , Eletricidade Estática , EstereoisomerismoRESUMO
Cascade reactions of internal and terminal alkynes, zirconocene hydrochloride, dimethylzinc, and phosphinoyl imines (prepared in one step from aldehydes and diphenylphosphinoyl amide) lead to allylic phosphinoyl amides after aqueous workup. Microwave acceleration allows the completion of this one-pot reaction sequence in 10 min. These allylic amides can be converted into a variety of derivatives, including carbamates and sulfonamides, or reacted prior to workup with diiodomethane to give novel C-cyclopropylalkylamides. A solution-phase "libraries from libraries" approach was used to generate an intermediate 20-member library which was subsequently expanded to a 100-member library by a series of N-functionalizations. The biological activity was evaluated in an assay for competitive binding to the estrogen receptor (ERalpha), revealing three potent lead compounds of a new structural type.