RESUMO
The delivery of encapsulated islets or stem cell-derived insulin-producing cells (i.e., bioartificial pancreas devices) may achieve a functional cure for type 1 diabetes, but their efficacy is limited by mass transport constraints. Modeling such constraints is thus desirable, but previous efforts invoke simplifications which limit the utility of their insights. Herein, we present a computational platform for investigating the therapeutic capacity of generic and user-programmable bioartificial pancreas devices, which accounts for highly influential stochastic properties including the size distribution and random localization of the cells. We first apply the platform in a study which finds that endogenous islet size distribution variance significantly influences device potency. Then we pursue optimizations, determining ideal device structures and estimates of the curative cell dose. Finally, we propose a new, device-specific islet equivalence conversion table, and develop a surrogate machine learning model, hosted on a web application, to rapidly produce these coefficients for user-defined devices.
Assuntos
Diabetes Mellitus Tipo 1 , Insulinas , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Diabetes Mellitus Tipo 1/terapia , Humanos , Insulina , PâncreasRESUMO
Regulatory T cells (Tregs) modulate alloimmune responses and may facilitate minimization or withdrawal of immunosuppression posttransplant. Current approaches, however, rely on complex ex vivo Treg expansion protocols. Herein, we explore endogenous in vivo Treg expansion through antibody-mediated agonistic stimulation of the tumor necrosis factor receptor superfamily member 25 (TNFRSF25) pathway and its potential to prolong graft survival in a mouse model of islet allotransplantation. C57BL/6 male mice were treated with a single dose of TNFRSF25 agonistic antibodies (4C12 or mPTX-35) or IgG control. Diabetes was induced using streptozotocin. Four days later, flow cytometry was completed to corroborate Treg expansion, and 500 islets (CBA/J male mice) were transplanted. Glycemia was assessed thrice weekly until rejection/endpoint. Early intra-graft Treg infiltration was assessed 36 h posttransplant. TNFRSF25 antibodies enabled pronounced Treg expansion and treated mice had significantly prolonged graft survival compared with controls (p < .001). Additionally, the degree of Treg expansion significantly correlated with graft survival (p < .001). Immunohistochemistry demonstrated marked Treg infiltration in long-term surviving grafts; intra-graft Treg infiltration occurred early posttransplant. In conclusion, a single dose of TNFRSF25 antibodies enabled in vivo Treg expansion, which promotes prolonged graft survival. TNFRSF25-mediated in vivo Treg expansion could contribute to achieving lasting immunological tolerance in organ transplantation.
Assuntos
Transplante das Ilhotas Pancreáticas , Aloenxertos , Animais , Rejeição de Enxerto/etiologia , Sobrevivência de Enxerto , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Linfócitos T ReguladoresRESUMO
The successful landmark discovery of mouse and human inducible pluripotential stem cells (iPSC's) by Takahashi and Yamanaka in 2006 and 2007 has triggered a revolution in the potential generation of self-compatible cells for regenerative medicine, and further opened up a new avenue for "disease in dish" drug screening of self-target cells (Neofytou et al. 2015). The introduction of four 'Yamanaka' transcription factors through viral or other transfection of mature cells can induce pluripotency and acquired plasticity. These factors include transduction with octamer-binding transcription factor-4 (Oct-4), nanog homeobox (Nanog), sex-determining region Y-box-2 (Sox-2) and MYC protooncogene (cMyc). Such cells become iPSC's (Takahashi and Yamanaka 2006). These reprogrammed cells exhibit increased telomerase activity and have a hypomethylated gene promotor region similar to embryonic stem cells (ESC's). These milestone discoveries have generated immense hope that diseases such as diabetes could be treated and effectively cured by transplantation of self-compatible, personalized autologous stem cell transplantation of ß-cells that release physiological insulin under glycemic control (Maehr et al. 2009; Park et al. 2008) (Fig. 1). Diabetes is a profligate disease of disordered glucose metabolism resulting from an absolute or relative deficiency of insulin, the consequences of which lead to immense socio-economic societal burden. While there are many different types of diabetes, the two major types (type 1 diabetes (T1DM) and type 2 diabetes (T2DM) are caused respectively by immune-mediated destruction (T1DM) or malfunctioning (T2DM) insulin-producing ß-cells within the endocrine pancreas, the islets of Langerhans (Atkinson et al. 2011; Holman et al. 2015; You and Henneberg 2016). Almost 425 million people are affected by the global burden of diabetes, and this is predicted to increase by 48% (629 million) by 2045 (International Diabetes Federation Atlas 8th Ed 2018). Whole pancreas or islet cell transplantation offer an effective alternative to injected insulin, but both require lifelong potent immunosuppression to control both allo-and autoimmunity. Whole pancreas transplantation involves invasive complex surgery and is associated with greater morbidity and occasional mortality, while islet transplantation involves a minimally invasive intraportal hepatic infusion. Generally, whole pancreas transplantation provides greater metabolic reserve, but this may be matched by cumulative multiple islet infusions to achieve insulin independence. An additional challenge of islet transplantation is progressive loss of complete insulin independence over time, which may be multifactorial, the dominant factor however being ineffective control of autoimmunity. Both whole pancreas and islet transplantation are restricted to patients at risk of severe hypoglycemia that cannot be stabilized by alternate means, or in recipients that are already immunosuppressed in order to sustain a kidney or other solid organ transplant. The risks of chronic immunosuppression and the scarcity of human organ donors mean that both of these transplantation therapies cannot presently be extended to the broader diabetic population (Shapiro 2011; Shapiro et al. 2006). Recent progress in xenotransplantation of multiple knock-out 'humanized' pig islets could offer one potential solution, perhaps aided by clustered regularly interspaced short palindromic repeats/CRISPR associated-9 (CRISPR/Cas-9) gene editing approaches, but this remains to be proven in practice. Human stem cell derived new ß-cell products could effectively address the global supply challenge for broad application across all forms of diabetes, but recurrent autoimmunity may still remain an insurmountable challenge. Considerable progress in the generation of human stem cell derived SC-ß cells from ESC, iPS and other adult cell sources such as mesenchymal stem cells (MSCs) offer huge hope that a personalized, 'syngeneic' cell could be transplanted without risk of alloimmunity, thereby securing sufficient supply to meet future global demand (Cito et al. 2018).
Assuntos
Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 2/terapia , Células-Tronco Pluripotentes Induzidas/citologia , Transplante das Ilhotas Pancreáticas , Transplante de Células-Tronco , Sistemas CRISPR-Cas , Humanos , Transplante AutólogoRESUMO
AIMS: To investigate the effect of kisspeptin on glucose-stimulated insulin secretion and appetite in humans. MATERIALS AND METHODS: In 15 healthy men (age: 25.2 ± 1.1 years; BMI: 22.3 ± 0.5 kg m-2 ), we compared the effects of 1 nmol kg-1 h-1 kisspeptin versus vehicle administration on glucose-stimulated insulin secretion, metabolites, gut hormones, appetite and food intake. In addition, we assessed the effect of kisspeptin on glucose-stimulated insulin secretion in vitro in human pancreatic islets and a human ß-cell line (EndoC-ßH1 cells). RESULTS: Kisspeptin administration to healthy men enhanced insulin secretion following an intravenous glucose load, and modulated serum metabolites. In keeping with this, kisspeptin increased glucose-stimulated insulin secretion from human islets and a human pancreatic cell line in vitro. In addition, kisspeptin administration did not alter gut hormones, appetite or food intake in healthy men. CONCLUSIONS: Collectively, these data demonstrate for the first time a beneficial role for kisspeptin in insulin secretion in humans in vivo. This has important implications for our understanding of the links between reproduction and metabolism in humans, as well as for the ongoing translational development of kisspeptin-based therapies for reproductive and potentially metabolic conditions.
Assuntos
Apetite/efeitos dos fármacos , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Kisspeptinas/farmacologia , Adolescente , Adulto , Linhagem Celular , Glucose/metabolismo , Voluntários Saudáveis , Humanos , Insulina/sangue , Masculino , Adulto JovemRESUMO
Postoperative intra-abdominal adhesions represent a serious clinical problem. In this review, we have focused on recent progress in the cellular and humoral mechanisms underpinning adhesion formation, and have reviewed strategies that interfere with these pathways as a means to prevent their occurrence. Current and previous English-language literature on the pathogenesis of adhesion formation was identified. As the burden of surgical disease in the world population increases, and the frequency of reoperation increases, prevention of adhesion formation has become a pressing goal in surgical research.
Assuntos
Doenças Peritoneais/etiologia , Complicações Pós-Operatórias , Aderências Teciduais/etiologia , Cicatrização/fisiologia , Humanos , Imunidade Celular , Imunidade Humoral , Doenças Peritoneais/imunologia , Doenças Peritoneais/prevenção & controle , Complicações Pós-Operatórias/imunologia , Complicações Pós-Operatórias/prevenção & controle , Aderências Teciduais/imunologia , Aderências Teciduais/prevenção & controle , Cicatrização/imunologiaRESUMO
Recently, several groups have introduced expanded criteria for selection of patients with hepatocellular carcinoma (HCC) prior to transplant, but the exact number of potential newly recruited patients remains unclear. This registry-based study assessed 270 patients diagnosed with HCC. The potential number of transplant candidates was based on age (< or =65 years), absence of metastases and macro-vascular invasion, and on 12 previously published, expanded selection criteria. A wide range of increase in the number of transplant candidates was observed (12-63% when compared with the number of such candidates who would have been selected solely based on the Milan criteria). The most conservative criteria were Seoul (Kwon, 2007; increase of 12%), Valencia (Silva, 2008; 16%), total tumor volume/alpha-fetoprotein (Toso, 2009; 20%) and UCSF (Yao, 2007; 20%). This data will assist Centers and policy agencies in predicting the need for resources linked to an expansion of criteria.
Assuntos
Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Transplante de Fígado/métodos , Feminino , Humanos , Masculino , Microcirculação , Pessoa de Meia-Idade , Metástase Neoplásica , Seleção de Pacientes , Cuidados Pré-Operatórios , Sistema de Registros , Fatores de Tempo , Listas de EsperaRESUMO
There is a crucial need for noninvasive assessment tools after cell transplantation. This study investigates whether a magnetic resonance imaging (MRI) strategy could be clinically applied to islet transplantation. The purest fractions of seven human islet preparations were labeled with superparamagnetic iron oxide particles (SPIO, 280 microg/mL) and transplanted into four patients with type 1 diabetes. MRI studies (T2*) were performed prior to and at various time points after transplantation. Viability and in vitro and in vivo functions of labeled islets were similar to those of control islets. All patients could stop insulin after transplantation. The first patient had diffuse hypointense images on her baseline liver MRI, typical for spontaneous high iron content, and transplant-related modifications could not be observed. The other three patients had normal intensity on pretransplant images, and iron-loaded islets could be identified after transplantation as hypointense spots within the liver. In one of them, i.v. iron therapy prevented subsequent visualization of the spots because of diffuse hypointense liver background. Altogether, this study demonstrates the feasibility and safety of MRI-based islet graft monitoring in clinical practice. Iron overload (spontaneous or induced) represents the major obstacle to the technique.
Assuntos
Meios de Contraste , Rejeição de Enxerto/diagnóstico , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Imageamento por Ressonância Magnética/métodos , Nanopartículas Metálicas , Adulto , Feminino , Compostos Férricos/química , Humanos , Masculino , Nanopartículas Metálicas/química , Pessoa de Meia-Idade , Coloração e RotulagemRESUMO
Lifelong immunosuppressive therapy and inadequate sources of transplantable islets have led the islet transplantation benefits to less than 0.5% of type 1 diabetics. Whereas the potential risk of infection by animal endogenous viruses limits the uses of islet xeno-transplantation, deriving islets from stem cells seems to be able to overcome the current problems of islet shortages and immune compatibility. Both embryonic (derived from the inner cell mass of blastocysts) and adult stem cells (derived from adult tissues) have shown controversial results in secreting insulin in vitro and normalizing hyperglycemia in vivo. ESCs research is thought to have much greater developmental potential than adult stem cells; however it is still in the basic research phase. Existing ESC lines are not believed to be identical or ideal for generating islets or beta-cells and additional ESC lines have to be established. Research with ESCs derived from humans is controversial because it requires the destruction of a human embryo and/or therapeutic cloning, which some believe is a slippery slope to reproductive cloning. On the other hand, adult stem cells are already in some degree specialized, recipients may receive their own stem cells. They are flexible but they have shown mixed degree of availability. Adult stem cells are not pluripotent. They may not exist for all organs. They are difficult to purify and they cannot be maintained well outside the body. In order to draw the future avenues in this field, existent discrepancies between the results need to be clarified. In this study, we will review the different aspects and challenges of using embryonic or adult stem cells in clinical islet transplantation for the treatment of type 1 diabetes.