Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
1.
Anal Chem ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937378

RESUMO

Metal nanoclusters (NCs) as a new kind of luminophore have acquired sufficient interest, but their widespread application is restricted on account of their relatively low electrochemiluminescence (ECL) efficiency. Then, aqueous metal NCs with high ECL efficiency were strongly anticipated, especially for the ultrasensitive analysis of biomarkers. Herein, a near-infrared (NIR) ECL biosensing strategy for the test of neuron-specific enolase (NSE) was proposed by utilizing N-acetyl-l-cysteine (NAC)- and cysteamine (Cys)-stabilized gold NCs (NAC/Cys-AuNCs) as ECL emitters with the NIR ECL emission around 860 nm and a metal-organic framework/palladium nanocubes (ZIF-67/PdNCs) hybrid as the coreaction accelerator through their admirable electrocatalytic activity. The NIR emission would reduce photochemical injury to the samples and even realize nondestructive analysis with highly strong susceptibility and suitability. Furthermore, the utilization of ZIF-67/PdNCs could improve the ECL response of NAC/Cys-AuNCs by facilitating the oxidation of the coreactant triethylamine (TEA), leading to the production of a larger quantity of reducing intermediate radical TEA•+. Consequently, NAC/Cys-AuNCs with ZIF-67/PdNCs displayed 2.7 fold enhanced ECL emission compared with the single NAC/Cys-AuNCs using TEA as the coreactant. In addition, HWRGWVC (HWR), a heptapeptide, was introduced to immobilize antibodies for the specially binding Fc fragment of the antibodies, which improved the binding efficiency and sensitivity. As a result, a "signal-on" immunosensor for NSE analysis was obtained with an extensive linear range of 0.1 to 5 ng/mL and a low limit of detection (0.033 fg/mL) (S/N = 3). This study provides a wonderful method for the development of an efficient nondestructive immunoassay.

2.
Biosens Bioelectron ; 259: 116387, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754194

RESUMO

The incidence of esophageal cancer is positively associated with fumonisin contamination. It is necessary to develop methods for the rapid detection of fumonisins. In this work, a self-powered photoelectrochemical aptamer sensor based on ZnIn2S4/WO3 photoanode and Au@W-Co3O4 photocathode is proposed for the sensitive detection of fumonisin B1 (FB1). Among them, under visible light irradiation, the Z-type heterostructure of ZnIn2S4/WO3 acts as a photoanode to improve the electron transfer rate, which contributes to the enhancement of the photocathode signal and lays the foundation for a wider detection range. The Au@W-Co3O4 photocathode as a sensing interface reduces the probability of false positives (comparison of anode sensing platforms). The PEC sensor has a good working performance in the detection range (10 pg/mL-1000 ng/mL) with a detection limit of 2.7 pg/mL (S/N = 3). In addition, the sensor offers good selectivity, stability and excellent recoveries in real sample analysis. This work is expected to play a role in the field of analyzing environmental toxins.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Fumonisinas , Limite de Detecção , Fumonisinas/análise , Fumonisinas/química , Aptâmeros de Nucleotídeos/química , Tungstênio/química , Eletrodos , Óxidos/química , Ouro/química , Humanos , Luz , Zinco/química
3.
Angew Chem Int Ed Engl ; : e202407109, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702296

RESUMO

Obtaining information about cellular interactions is fundamental to the elucidation of physiological and pathological processes. Proximity labeling technologies have been widely used to report cellular interactions in situ; however, the reliance on addition of tag molecules typically restricts their application to regions where tags can readily diffuse, while the application in, for example, solid tissues, is susceptible. Here, we propose an "in-situ-tag-generation mechanism" and develop the GalTag technology based on galactose oxidase (GAO) for recording cellular interactions within three-dimensional biological solid regions. GAO mounted on bait cells can in situ generate bio-orthogonal aldehyde tags as interaction reporters on prey cells. Using GalTag, we monitored the dynamics of cellular interactions and assessed the targeting ability of engineered cells. In particular, we recorded, for the first time, the footprints of Bacillus Calmette-Guérin (BCG) invasion into the bladder tissue of living mice, providing a valuable perspective to elucidate the anti-tumor mechanism of BCG.

4.
Anal Chim Acta ; 1310: 342703, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811134

RESUMO

BACKGROUND: Photoelectrochemical (PEC) sensors have attracted much attention due to their low cost, simple instrumentation and high sensitivity. However, conventional PEC sensors require layer-by-layer modification of the photoelectrode surface, which has the disadvantages of being time-consuming and unstable. In addition, complex interfering substances in real samples may lead to false-positive or false-negative detection results. It was thought that the above drawbacks could be eliminated by the construction of a polarity inversion PEC sensor. In this work, a magnetically separated PEC sensor was constructed for the detection of Carcinoembryonic antigen (CEA). RESULTS: During the experiment, the construction of the sensor was used for sensitive detection of CEA. In the experimental process, Fe3O4@SiO2@CdS, a semiconductor material with magnetic properties, was chosen as the substrate material, and ZnO/CuO was used as the marker on the DNA2 molecule, and a split magnetic separation PEC sensor was constructed, which was used to realize the sensitive detection of CEA. Eventually, the detection range of the sensor for CEA detection is 1-10000 pg/mL, with the detection limit of 0.34 pg/mL. Additionally, the PEC sensor has the advantages of high speed, high efficiency, high sensitivity, good specificity, and high stability. The sensing platform constructed in this work can also be extended to detect other targets, which provides a new idea for PEC sensing platforms. SIGNIFICANCE: In this experiment, we developed a split PEC immunosensor based on magneto-optic nanostructure and photocurrent polarity switching strategy. Specifically, the proposed magnetic nanostructure Fe3O4@SiO2@CdS-DNA1 exhibits good paramagnetism and dispersion ability. By magnetic separation process, the PEC signals of opposite polarity can be obtained.

5.
Talanta ; 277: 126321, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38805945

RESUMO

In this article, ferric ion-doped floral graphite carbon nitride (Fe-CN-3, energy donor) was used to construct the substrate of the immunosensor and copper oxide nanocubes (Cu2O, energy acceptor) were taken as an efficient ECL quenching probe. A sandwich quench electrochemiluminescence (ECL) immunosensor for soluble cytokeratin 19 fragment (Cyfra21-1) detection was preliminarily developed based on a novel resonant energy transfer donor-acceptor pair. Fe-CN-3, a carbon nitride that combines the advantages of metal ion doping as well as morphology modulation, is used in ECL luminophores to provide more excellent ECL performance, which makes a significant contribution to the application and development of carbon nitride in the field of ECL biosensors. The regular shape, high specific surface area and excellent biocompatibility of the quencher Cu2O nanocubes facilitate the labeling of secondary antibodies and the construction of sensors. Meanwhile, as an energy acceptor, the UV absorption spectrum of Cu2O can overlap efficiently with the energy donor's ECL emission spectrum, making it prone to the occurrence of ECL-RET and thus obtaining an excellent quenching effect. These merits of the donor-acceptor pair enable the sensor to have a wide detection range of 0.00005-100 ng/mL and a low detection limit of 17.4 fg/mL (S/N = 3), which provides a new approach and theoretical basis for the clinical detection of lung cancer.

6.
Nanoscale ; 16(21): 10273-10282, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38717507

RESUMO

Intravesical instillation is the common therapeutic strategy for bladder cancer. Besides chemo drugs, nanoparticles are used as intravesical instillation reagents, offering appealing therapeutic approaches for bladder cancer treatment. Metal oxide nanoparticle based chemodynamic therapy (CDT) converts tumor intracellular hydrogen peroxide to ROS with cancer cell-specific toxicity, which makes it a promising approach for the intravesical instillation of bladder cancer. However, the limited penetration of nanoparticle based therapeutic agents into the mucosa layer of the bladder wall poses a great challenge for the clinical application of CDT in intravesical instillation. Herein, we developed a 1064 nm NIR-II light driven hydrogel nanomotor for the CDT for bladder cancer via intravesical instillation. The hydrogel nanomotor was synthesized via microfluidics, wrapped with a lipid bilayer, and encapsulates CuO2 nanoparticles as a CDT reagent and core-shell structured Fe3O4@Cu9S8 nanoparticles as a fuel reagent with asymmetric distribution in the nanomotor (LipGel-NM). An NIR-II light irradiation of 1064 nm drives the active motion of LipGel-NMs, thus facilitating their distribution in the bladder and deep penetration into the mucosa layer of the bladder wall. After FA-mediated endocytosis in bladder cancer cells, CuO2 is released from LipGel-NMs due to the acidic intracellular environment for CDT. The NIR-II light powered active motion of LipGel-NMs effectively enhances CDT, providing a promising strategy for bladder cancer therapy.


Assuntos
Cobre , Hidrogéis , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/terapia , Hidrogéis/química , Hidrogéis/farmacologia , Humanos , Cobre/química , Cobre/farmacologia , Linhagem Celular Tumoral , Animais , Administração Intravesical , Camundongos , Raios Infravermelhos , Feminino
7.
Anal Chem ; 96(21): 8814-8821, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38751335

RESUMO

Highly responsive interface of semiconductor nanophotoelectrochemical materials provides a broad development prospect for the identification of low-abundance cancer marker molecules. This work innovatively proposes an efficient blank WO3/SnIn4S8 heterojunction interface formed by self-assembly on the working electrode for interface regulation and photoregulation. Different from the traditional biomolecular layered interface, a hydrogel layer containing manganese dioxide with a wide light absorption range is formed at the interface after an accurate response to external immune recognition. The formation of the hydrogel layer hinders the effective contact between the heterojunction interface and the electrolyte solution, and manganese dioxide in the hydrogel layer forms a strong competition between the light source and the substrate photoelectric material. The process effectively improves the carrier recombination efficiency at the interface, reduces the interface reaction kinetics and photoelectric conversion efficiency, and thus provides strong support for target identification. Taking advantage of the process, the resulting biosensors are being explored for sensitive detection of human epidermal growth factor receptor 2, with a limit of detection as low as 0.037 pg/mL. Also, this study contributes to the advancement of photoelectrochemical biosensing technology and opens up new avenues for the development of sensitive and accurate analytical tools in the field of bioanalysis.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Compostos de Manganês , Óxidos , Receptor ErbB-2 , Humanos , Técnicas Eletroquímicas/métodos , Óxidos/química , Compostos de Manganês/química , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Hidrogéis/química , Processos Fotoquímicos , Limite de Detecção , Eletrodos , Imunoensaio/métodos , Tungstênio/química
8.
Angew Chem Int Ed Engl ; 63(20): e202319849, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38439625

RESUMO

Glycans on tumor cell surface have significant impacts in the immune-killing process. Here an ultra-galactocation to sialic acid (Sia) strategy is designed to hugely introduce galactose (Gal) to Sia and on tumor cells in vivo by using a penta-functional dendritic probe (Den@5F), which efficiently enhances the immune-killing of tumor cells. The Den@5F contains five different kinds of functional groups, including Gal, Cy5, amino, phenylboronic acid (PBA) and 4-(4-(hydroxymethyl)-2-methoxy-5-nitrophenoxy) butanoate (mNB), which can be conveniently prepared through a two-step reaction. After injecting into the tumor-bearing mouse, Den@5F can efficiently block Sia through the specific recognition between PBA and Sia on tumor cells and hugely introduce Gal through the subsequent photo-crosslinking between mNB and amino groups to multiply conjugate excessive Den@5Fs. The comprehensively blocked Sia can prevent the immune escape, and the hugely introduced Gal can promote the immune stimulation of the immune cells, which lead to an efficient enhancement of the immune-killing. The proposed strategy provides a significant and promising tool to promote the clinical immunotherapy of tumor.


Assuntos
Galactose , Ácido N-Acetilneuramínico , Ácido N-Acetilneuramínico/química , Humanos , Animais , Camundongos , Galactose/química , Linhagem Celular Tumoral , Dendrímeros/química , Dendrímeros/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia
9.
Chem Sci ; 15(11): 3901-3906, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38487245

RESUMO

Glycan oxidation on the cell surface occurs in many specific life processes including pathogen-cell interactions. This work develops a surface-enhanced Raman scattering (SERS) imaging strategy for in situ quantitative monitoring of protein-specific glycan oxidation mediated pathogen-cell interactions by utilizing Raman reporter DTNB and aptamer co-assembled platinum shelled gold nanoparticles (Au@Pt-DTNB/Apt). Using Fusarium graminearum (FG) and MCF-7 cells as models, Au@Pt-DTNB/Apt can specifically bind to MUC1 protein on the cell surface containing heavy galactose (Gal) and N-acetylgalactosamine (GalNAc) modification. When FG interacts with cells, the secreted galactose oxidase (GO) can oxidize Gal/GalNAc, and the generated reactive oxygen species (ROS) further oxidizes DTNB to produce TNB for greatly enhancing the SERS signal. This strategy can quantitatively visualize for the first time both the protein-specific glycan oxidation and the mediated pathogen-cell interactions, thus providing key quantitative information to distinguish and explore the pathogen-resistance and pharmacological mechanisms of different drugs.

10.
Small ; : e2310039, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38431928

RESUMO

Lysosome-targeting chimera (LYTAC) links proteins of interest (POIs) with lysosome-targeting receptors (LTRs) to achieve membrane protein degradation, which is becoming a promising therapeutic modality. However, cancer cell-selective membrane protein degradation remains a big challenge considering expressions of POIs in both cancer cells and normal cells, as well as broad tissue distribution of LTRs. Here a logic-identification system is designed, termed Logic-TAC, based on cell membrane-guided DNA calculations to secure LYTAC selectively for cancer cells. Logic-TAC is designed as a duplex DNA structure, with both POI and LTR recognition regions sealed to avoid systematic toxicity during administration. MCF-7 and MCF-10A are chosen as sample cancer cell and normal cell respectively. As input 1 for logic-identification, membrane proteins EpCAM, which is highly expressed by MCF-7 but barely by MCF-10A, reacts with Logic-TAC to expose POI recognition region. As input 2 for logic-identification, Logic-TAC binds to POI, membrane protein MUC1, to expose LTR recognition region. As output, MUC1 is connected to LTR and degraded via lysosome pathway selectively for cancer cell MCF-7 with little side effect on normal cell MCF-10A. The logic-identification system also demonstrated satisfactory in vivo therapeutic results, indicating its promising potential in precise targeted therapy.

11.
Angew Chem Int Ed Engl ; 63(20): e202402522, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38421189

RESUMO

Immune checkpoint protein blockade (ICB) has emerged as a powerful immunotherapy approach, but suppressing immune-related adverse events (irAEs) for noncancerous cells and normal tissues remains challenging. Activatable ICB has been developed with tumor microenvironment highly-expressed molecules as stimuli, but they still lack precision and efficiency considering the diffusion of stimuli molecules in whole tumor tissue. Here we assemble PD-L1 with a duplex DNA strand, termed as "safety catch", to regulate its accessibility for ICB. The safety catch remains at "on" status for noncancerous cells to prevent ICB binding to PD-L1. Cancer cell membrane protein c-Met acts as a trigger protein to react with safety catch, which selectively exposes its hybridization region for ICB reagent. The ICB reagent is a retractable DNA nanostring with repeating hairpin-structural units, whose contraction drives PD-L1 clustering with endocytosis-guided degradation. The safety catch, even remained at "safety on" status, is removed from the cell membrane via a DNA strand displacement reaction to minimize its influence on noncancerous cells. This strategy demonstrates selective and potent immunotherapeutic capabilities only against cancer cells both in vitro and in vivo, and shows effective suppression of irAEs in normal tissues, therefore would become a promising approach for precise immunotherapy in mice.


Assuntos
Antígeno B7-H1 , DNA , Inibidores de Checkpoint Imunológico , Imunoterapia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Humanos , DNA/química , Camundongos , Animais , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/química , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Linhagem Celular Tumoral
12.
Anal Chem ; 96(10): 4308-4313, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38418287

RESUMO

Traditional electrochemiluminescent (ECL) bioanalysis suffers from the demand for excessive external coreactants and the damage of reaction intermediates. In this work, a poly(ethylenimine) (PEI)-coupled ECL emitter was proposed by covalently coupling tertiary amine-rich PEI to polymer dots (Pdots). The coupled PEI might act as a highly efficient coreactant to enhance the ECL emission of Pdots through intramolecular electron transfer, reducing the electron transfer distance between emitter and coreactant intermediates and avoiding the disadvantages of traditional ECL systems. Through modification of the PEI-Pdots with tDNA, a sequence partially complementary to cDNA that was complementary to the aptamer of target protein biomarker (aDNA), tDNA-PEI-Pdots were obtained. The biosensors were produced using Au/indium tin oxide (ITO) with an aDNA/cDNA hybrid, and an ECL imaging biosensor array was constructed for ultrasensitive detection of protein biomarkers. Using vascular endothelial growth factor 165 (VEGF165) as a protein model, the proposed ECL imaging method containing two simple incubations with target samples and then tDNA-PEI-Pdots showed a detectable range of 1 pg mL-1 to 100 ng mL-1 and a detection limit of 0.71 pg mL-1, as well as excellent performance such as low toxicity, high sensitivity, excellent selectivity, good accuracy, and acceptable fabrication reproducibility. The PEI-coupled Pdots provide a new avenue for the design of ECL emitters and the application of ECL imaging in disease biomarker detection.


Assuntos
Técnicas Biossensoriais , Pontos Quânticos , Técnicas Eletroquímicas , Polietilenoimina , Fator A de Crescimento do Endotélio Vascular , Medições Luminescentes , DNA Complementar , Polímeros , Reprodutibilidade dos Testes , Biomarcadores , Limite de Detecção
13.
Anal Chim Acta ; 1287: 342091, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182343

RESUMO

BACKGROUND: Carcinoembryonic antigen (CEA) is a significant glycosylated protein, and the unusual expression of CEA in human serum is used as a tumor marker in the clinical diagnosis of many cancers. Although scientists have reported many ways to detect CEA in recent years, such as electrochemistry, photoelectrochemistry, and fluorescence, their operation is complex and sensitivity is average. Therefore, finding a convenient method to accurately detect CEA is significance for the prevention of malignant tumors. With high sensitivity, quick reaction, and low background, electrochemiluminescence (ECL) has emerged as an essential method for the detection of tumor markers in blood. RESULTS: In this work, a "signal on-off" ECL immunosensor for sensitive analysis of CEA ground on the ternary extinction effects of CuFe2O4@PDA-MB towards a self-enhanced Ru(dcbpy)32+ functionalized metal-organic layer [(Hf)MOL-Ru-PEI-Pd] was prepared. The high ECL efficiency of (Hf)MOL-Ru-PEI-Pd originated from the dual intramolecular self-catalysis, including intramolecular co-reaction between polyethylenimine (PEI) and Ru(dcbpy)32+. At the same time, loading Pd NPs onto (Hf)MOL-Ru-PEI could not only improve the electron transfer ability of (Hf)MOL-Ru-PEI, but also provide more active sites for the reaction of Ru(dcbpy)32+ and PEI. In the presence of CEA, CuFe2O4@PDA-MB-Ab2 efficiently quenches the excited states of (Hf)MOL-Ru-PEI-Pd by PDA, Cu2+, and methylene blue (MB) via energy and electron transfer, leading to an ECL signal decrease. Under optimal conditions, the proposed CEA sensing strategy showed satisfactory properties ranging from 0.1 pg mL-1 to 100 ng mL-1 with a detection limit of 20 fg mL-1. SIGNIFICANCE: The (Hf)MOL-Ru-PEI-Pd and CuFe2O4@PDA-MB were prepared in this work might open up innovative directions to synthesize luminescence-functionalized MOLs and effective quencher. Besides, the ECL quenching mechanism of Ru(dcbpy)32+ by MB was successfully explained by the inner filter effect (ECL-IFE). At last, the proposed immunosensor exhibits excellent repeatability, stability, and selectivity, and may provide an attractive way for CEA and other disease markers determination.


Assuntos
Técnicas Biossensoriais , Antígeno Carcinoembrionário , Humanos , Biomarcadores Tumorais , Antígeno Carcinoembrionário/química , Antígeno Carcinoembrionário/imunologia , Imunoensaio , Metais , Azul de Metileno , Compostos Férricos/química , Cobre/química , Rutênio/química
14.
Adv Sci (Weinh) ; 11(2): e2304971, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37870206

RESUMO

The enhancement of immunotherapy is an emerging direction to develop highly effective and practical cancer therapeutic methods. Here a triply enhanced immunotherapy drug (TEID) is designed for ingeniously integrating in situ dual glycan reforming with perforation on cell membrane. The TEID is composed of galactose and neuraminidase conjugated streptolysin O (SLO-Gal and SLO-NEU), which are encapsulated in a hyaluronic acid (HA) shell for targeted recognition to tumor tissue via cell surface CD44. After targeted delivery and HAase-mediated degradation in the tumor region, the TEID releases SLO-Gal and SLO-NEU, which can easily anchor Gal and NEU on the tumor cell membrane via the perforation of SLO to perform dual glycan reforming for the introduction of Gal and the cleavage of sialic acid. The former can activate immune cells to secret cytokines for immune-killing, and the latter can weaken the immune inhibition to improve the immunotherapeutic efficacy. Meanwhile, the perforation of SLO can promote the delivery of cytokines into the tumor cells to further enhance the efficacy. The designed triply enhanced immunotherapy strategy opens a significant and promising route to promote clinical immunotherapy of cancer.


Assuntos
Neoplasias , Humanos , Membrana Celular , Citocinas , Imunoterapia
15.
Anal Chem ; 96(1): 388-393, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38153911

RESUMO

G-quadruplex (G4)/hemin DNAzyme is a promising candidate to substitute horseradish peroxidase in biosensing systems, especially for the detection of nucleic acids. However, the relatively suboptimal catalytic capacity limits its potential applications. This makes it imperative to develop an ideal signal for the construction of highly sensitive biosensing platforms. Herein, we integrated a novel chimeric peptide-DNAzyme (CPDzyme) with the ligase chain reaction (LCR) for the cost-efficient and highly sensitive detection of nucleic acids. By employing microRNA (miRNA) and single-nucleotide polymorphism detection as the model, we designed a G4-forming sequence on the LCR probe with a terminally labeled amino group. Subsequently, asymmetric hemin with carboxylic arms allowed assembly with the LCR products and peptide to form CPDzyme, followed by the magnetic separation of the extraneous components and chemiluminescence detection. Compared with the conventional G4/hemin signaling-based method, the LCR-CPDzyme system demonstrated 3 orders of magnitude improved sensitivity, with accurate quantification of as low as 25 aM miRNA and differentiation of 0.1% of mutant DNA from the pool containing a large amount of wild-type DNA. The proposed LCR-CPDzyme strategy is a potentially powerful method for in vitro diagnostics and serves as a reference for the development of other ligation- or hybridization-based nucleic acid amplification assays.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Quadruplex G , MicroRNAs , DNA Catalítico/metabolismo , Hemina , DNA/genética , MicroRNAs/genética , Técnicas Biossensoriais/métodos , Peptídeos/genética
16.
Anal Chem ; 95(48): 17798-17807, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37976298

RESUMO

The difficulty in elucidating the microenvironment of extracellular H2O2 efflux has led to the lack of a critical extracellular link in studies of the mechanisms of redox signaling pathways. Herein, we mounted horseradish peroxidase (HRP) to glycans expressed globally on the living cell surface and constructed an interception proximity labeling (IPL) platform for H2O2 efflux. The release of endogenous H2O2 is used as a "physiological switch" for HRP to enable proximity labeling. Using this platform, we visualize the oxidative stress state of tumor cells under the condition of nutrient withdrawal, as well as that of macrophages exposed to nonparticulate stimuli. Furthermore, in combination with a proteomics technique, we identify candidate proteins at the invasion interface between fungal mimics (zymosan) and macrophages by interception labeling of locally accumulated H2O2 and confirm that Toll-like receptor 2 binds zymosan in a glycan-dependent manner. The IPL platform has great potential to elucidate the mechanisms underlying biological processes involving redox pathways.


Assuntos
Peróxido de Hidrogênio , Transdução de Sinais , Peróxido de Hidrogênio/metabolismo , Zimosan , Peroxidase do Rábano Silvestre/metabolismo , Oxirredução
17.
Anal Chem ; 95(44): 16392-16397, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37885198

RESUMO

Photocurrent polarity reversal is a switching process between the anodic and cathodic pathways and is critical for eliminating false positivity and improving detection sensitivity in photoelectrochemical (PEC) sensing. In this study, we construct a PEC sensor with excellent photocurrent polarity reversal induced by ascorbic acid (AA) as an electron donor with the energy level matching the photoactive material zirconium metal-organic framework (ZrMOF). The ZrMOF-modified electrode demonstrates cathodic photocurrent in the presence of O2 as an electron acceptor, while the anodic photocurrent is generated in the presence of AA, achieving photocurrent polarity reversal. By the in situ release of AA from AA-encapsulated apoferritin modified with DNA 2 (AA@APO-S2) as a detection tag in the presence of trypsin after the recognition of hairpin DNA-modified indium tin oxide to the reaction product of aptamer/DNA 1 with the target protein and the following rolling cycle amplification for introducing the detection tag to the sensing interface, the reversed photocurrent shows an enhanced photocurrent response to the target protein, leading to a highly sensitive PEC sensing strategy. This strategy realizes the detection of vascular endothelial growth factor 165 with good specificity, a wide linear range, and a low detection limit down to 5.3 fM. The actual sample analysis offers the detection results of the proposed PEC sensor comparable to those of commercial enzyme-linked immunosorbent assay tests, indicating the promising application of the photocurrent polarity reversal-based PEC sensing strategy in biomolecule detection and clinical diagnosis.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Fator A de Crescimento do Endotélio Vascular/análise , Elétrons , DNA , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos , Limite de Detecção
18.
RSC Adv ; 13(45): 31366-31374, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37901276

RESUMO

Silver (Ag) nanomaterials featuring a cubic shape particularly represent supreme class of advance nanomaterials. This work explored a new precursor and its effect on morphological features of silver (Ag) nanocubes (NCs) serving as sacrificial templates for facile synthesis of gold NCs. The AgNCs were initially prepared utilizing sodium thiosulphate (Na2S2O3) as relatively stable S2- producing species along with a soft etchant source KCl. The effects of different potassium halides were evaluated to grasp control over seed mediated growth of Ag nanocubes. Taking the advantages of dual metallic properties, Ag@4MBA@AuNCs nanostructure was synthesized using 4-mercaptobenzoic acid (4MBA) as a Raman reporter molecule. This nanostructure showed 1010-times enhancement in surface enhanced Raman scattering (SERS) signal, leading to a highly sensitive imaging probe for the detection of even three breast cancer cells (MCF-7 cells) in vitro. Subsequently, the oxidative nanopeeling well accompanied by incorporation of Au/Ag alloy nanoparticles on AuNCs corona assembly was achieved, which facilitated the catalytic reduction of toxic nitrophenol to eco-friendly aminophenol. Such sophisticated and engineered nanoassemblies possess broad applications in bioanalysis.

19.
Angew Chem Int Ed Engl ; 62(50): e202312665, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37903741

RESUMO

Aberrant expressions of biomolecules occur much earlier than tumor visualized size and morphology change, but their common measurement strategies such as biopsy suffer from invasive sampling process. In vivo imaging of slight biomolecule expression difference is urgently needed for early cancer detection. Fluorescence of rare earth nanoparticles (RENPs) in second near-infrared (NIR-II) region makes them appropriate tool for in vivo imaging. However, the incapacity to couple with signal amplification strategies, especially programmable signal amplification strategies, limited their application in lowly expressed biomarkers imaging. Here we develop a 980/808 nm NIR programmed in vivo microRNAs (miRNAs) magnifier by conjugating activatable DNAzyme walker set to RENPs, which achieves more effective NIR-II imaging of early stage tumor than size monitoring imaging technique. Dye FD1080 (FD1080) modified substrate DNA quenches NIR-II downconversion emission of RENPs under 808 nm excitation. The miRNA recognition region in DNAzyme walker is sealed by a photo-cleavable strand to avoid "false positive" signal in systemic circulation. Upconversion emission of RENPs under 980 nm irradiation activates DNAzyme walker for miRNA recognition and amplifies NIR-II fluorescence recovery of RENPs via DNAzyme catalytic reaction to achieve in vivo miRNA imaging. This strategy demonstrates good application potential in the field of early cancer detection.


Assuntos
DNA Catalítico , Metais Terras Raras , MicroRNAs , Neoplasias , Humanos , Metais Terras Raras/química , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos
20.
Biosens Bioelectron ; 242: 115750, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37844387

RESUMO

MicroRNAs (miRNA) are the potential biomarker for breast cancer, a biosensor for detecting miRNA-21 was successfully prepared by covalently linking carbohydrazide (CON4H6) and tris (4,4 '- dicarboxylic acid-2,2' - bipyridyl) ruthenium dichloride (Ru (dcbpy)32+) as a self-enhanced emitter (Ru-CON4H6). The biosensor was prepared by coating the electrode with mesoporous silica encapsulated Ru-CON4H6 as luminophores (RMSNs) to covalently link a couple of DNA strands (Q1-H2). The RMSNs coated electrode exhibited strong ECL emission due to the intramolecular electron transfer between the electrochemically oxidized Ru (dcbpy)32+ and co-reactant CON4H6. In the presence of target miRNA-21 and an assistant hairpin H1, H2 could be released from the surface through a strand displacement reaction (SDR), and the reserved Q1 could form G-quadruplex upon the addition of K+. The formed G-quadruplex then interacted with Q2-Fc in the presence of Mg2+ to form a DNA complex on the biosensor surface, which quenched the nano-matrixes propped self-enhanced ECL emission through the electron exchange between Fc and electrode or oxidized ECL intermediates. Under optimal conditions, the ECL decrease showed a correlation with target concentration, leading to a biosensing method for sensitive detection of miRNA-21. The proposed ECL method demonstrated a detectable concentration range from 0.1 fM to 1 nM along with a detection limit of 0.03 fM, good accuracy, and acceptable reproducibility, showing that the self-enhanced ECL biosensing strategy supported by nano-matrix provided a new way for the ultrasensitive detection of miRNA, and promoted the development of breast cancer diagnosis.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , MicroRNAs , Humanos , Feminino , MicroRNAs/química , Técnicas Eletroquímicas , Reprodutibilidade dos Testes , Medições Luminescentes/métodos , Técnicas Biossensoriais/métodos , Neoplasias da Mama/diagnóstico , DNA , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA