RESUMO
We investigated the temperature-dependent structural evolution of thermoreversible triblock terpolypeptoid hydrogels, namely poly(N-allyl glycine)-b-poly(N-methyl glycine)-b-poly(N-decyl glycine) (AMD), using small-angle neutron scattering (SANS) with contrast matching in conjunction with X-ray scattering and cryogenic transmission electron microscopy (cryo-TEM) techniques. At room temperature, A100M101D10 triblock terpolypeptoids self-assemble into core-corona-type spherical micelles in aqueous solution. Upon heating above the critical gelation temperature (T gel), SANS analysis revealed the formation of a two-compartment hydrogel network comprising distinct micellar cores composed of dehydrated A blocks and hydrophobic D blocks. At T â³ T gel, the temperature-dependent dehydration of A block further leads to the gradual rearrangement of both A and D domains, forming well-ordered micellar network at higher temperatures. For AMD polymers with either longer D block or shorter A block, such as A101M111D21 and A43M92D9, elongated nonspherical micelles with a crystalline D core were observed at T < T gel. Although these enlarged crystalline micelles still undergo a sharp sol-to-gel transition upon heating, the higher aggregation number of chains results in the immediate association of the micelles into ordered aggregates at the initial stage, followed by a disruption of the spatial ordering as the temperature further increases. On the other hand, fiber-like structures were also observed for AMD with longer A block, such as A153M127D10, due to the crystallization of A domains. This also influences the assembly pathway of the two-compartment network. Our findings emphasize the critical impact of initial micellar morphology on the structural evolution of AMD hydrogels during the sol-to-gel transition, providing valuable insights for the rational design of thermoresponsive hydrogels with tunable network structures at the nanometer scale.
RESUMO
Pancratistatin (PST) and narciclasine (NRC) are natural therapeutic agents that exhibit specificity toward the mitochondria of cancerous cells and initiate apoptosis. Unlike traditional cancer therapeutic agents, PST and NRC are effective, targeted, and have limited adverse effects on neighboring healthy, noncancerous cells. Currently, the mechanistic pathway of action for PST and NRC remains elusive, which in part inhibits PST and NRC from becoming efficacious therapeutic alternatives. Herein, we use neutron and x-ray scattering in combination with calcein leakage assays to characterize the effects of PST, NRC, and tamoxifen (TAM) on a biomimetic model membrane. We report an increase in lipid flip-flop half-times (t1/2) (≈12.0%, ≈35.1%, and a decrease of ≈45.7%) with 2 mol percent PST, NRC, and TAM respectively. An increase in bilayer thickness (≈6.3%, ≈7.8%, and ≈7.8%) with 2 mol percent PST, NRC, and TAM, respectively, was also observed. Lastly, increases in membrane leakage (≈31.7%, ≈37.0%, and ≈34.4%) with 2 mol percent PST, NRC, and TAM, respectively, were seen. Considering the maintenance of an asymmetric lipid composition across the outer mitochondrial membrane (OMM) is crucial to eukaryotic cellular homeostasis and survival, our results suggest PST and NRC may play a role in disrupting the native distribution of lipids within the OMM. A possible mechanism of action for PST- and NRC-induced mitochondrial apoptosis is proposed via the redistribution of the native OMM lipid organization and through OMM permeabilization.
Assuntos
Neoplasias , Tamoxifeno , Humanos , Tamoxifeno/farmacologia , Apoptose , Transporte Biológico , Lipídeos , Bicamadas LipídicasRESUMO
In recent years, vaping has increased in both popularity and ease of access. This has led to an outbreak of a relatively new condition known as e-cigarette/vaping-associated lung injury (EVALI). This injury can be caused by physical interactions between the pulmonary surfactant (PS) in the lungs and toxins typically found in vaping solutions, such as medium chain triglycerides (MCT). MCT has been largely used as a carrier agent within many cannabis products commercially available on the market. Pulmonary surfactant ensures proper respiration by maintaining low surface tensions and interface stability throughout each respiratory cycle. Therefore, any impediments to this system that negatively affect the efficacy of this function will have a strong hindrance on the individual's quality of life. Herein, neutron spin echo (NSE) and Langmuir trough rheology were used to probe the effects of MCT on the mechanical properties of pulmonary surfactant. Alongside a porcine surfactant extract, two lipid-only mimics of progressing complexity were used to study MCT effects in a range of systems that are representative of endogenous surfactant. MCT was shown to have a greater biophysical effect on bilayer systems compared to monolayers, which may align with biological data to propose a mechanism of surfactant inhibition by MCT oil.
Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Surfactantes Pulmonares , Vaping , Animais , Suínos , Qualidade de Vida , Tensoativos , ElasticidadeRESUMO
Pancratistatin (PST) is a natural antiviral alkaloid that has demonstrated specificity toward cancerous cells and explicitly targets the mitochondria. PST initiates apoptosis while leaving healthy, noncancerous cells unscathed. However, the manner by which PST induces apoptosis remains elusive and impedes the advancement of PST as a natural anticancer therapeutic agent. Herein, we use neutron spin-echo (NSE) spectroscopy, molecular dynamics (MD) simulations, and supporting small angle scattering techniques to study PST's effect on membrane dynamics using biologically representative model membranes. Our data suggests that PST stiffens the inner mitochondrial membrane (IMM) by being preferentially associated with cardiolipin, which would lead to the relocation and release of cytochrome c. Second, PST has an ordering effect on the lipids and disrupts their distribution within the IMM, which would interfere with the maintenance and functionality of the active forms of proteins in the electron transport chain. These previously unreported findings implicate PST's effect on mitochondrial apoptosis.
Assuntos
Alcaloides de Amaryllidaceae , Antineoplásicos , Alcaloides de Amaryllidaceae/química , Alcaloides de Amaryllidaceae/farmacologia , Antineoplásicos/química , Apoptose , Isoquinolinas/química , Isoquinolinas/farmacologia , MitocôndriasRESUMO
The outbreak of electronic-cigarette/vaping-associated lung injury (EVALI) has made thousands ill. This lung injury has been attributed to a physical interaction between toxicants from the vaping solution and the pulmonary surfactant. In particular, studies have implicated vitamin E acetate as a potential instigator of EVALI. Pulmonary surfactant is vital to proper respiration through the mechanical processes of adsorption and interface stability to achieve and maintain low surface tension at the air-liquid interface. Using neutron spin echo spectroscopy, we investigate the impact of vitamin E acetate on the mechanical properties of two lipid-only pulmonary surfactant mimics: pure 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and a more comprehensive lipid mixture. It was found that increasing vitamin E acetate concentration nonlinearly increased membrane fluidity and area compressibility to a plateau. Softer membranes would promote adsorption to the air-liquid interface during inspiration as well as collapse from the interface during expiration. These findings indicate the potential for the failure of the pulmonary surfactant upon expiration, attributed to monolayer collapse. This collapse could contribute to the observed EVALI signs and symptoms, including shortness of breath and pneumonitis.
Assuntos
Acetatos/efeitos adversos , Sistemas Eletrônicos de Liberação de Nicotina , Lesão Pulmonar/induzido quimicamente , Vaping , Vitamina E/efeitos adversos , Acetatos/química , Humanos , Conformação Molecular , Estresse Mecânico , Vitamina E/químicaRESUMO
The antioxidant vitamin E is a commonly used vitamin supplement. Although the multi-billion dollar vitamin and nutritional supplement industry encourages the use of vitamin E, there is very little evidence supporting its actual health benefits. Moreover, vitamin E is now marketed as a lipid raft destabilizing anti-cancer agent, in addition to its antioxidant behaviour. Here, we studied the influence of vitamin E and some of its vitamers on membrane raft stability using phase separating unilamellar lipid vesicles in conjunction with small-angle scattering techniques and fluorescence microscopy. We find that lipid phase behaviour remains unperturbed well beyond physiological concentrations of vitamin E (up to a mole fraction of 0.10). Our results are consistent with a proposed line active role of vitamin E at the domain boundary. We discuss the implications of these findings as they pertain to lipid raft modification in native membranes, and propose a new hypothesis for the antioxidant mechanism of vitamin E.
Assuntos
Antioxidantes/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , Vitamina E/metabolismo , Antioxidantes/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Humanos , Microdomínios da Membrana/metabolismo , Microscopia de Fluorescência , Tocoferóis/metabolismo , Tocoferóis/farmacologia , Lipossomas Unilamelares/metabolismo , Vitamina E/farmacologiaRESUMO
Liposomes with PEG-modified surfaces are amenable to nanocarrier applications and can be prepared via two PEGylated lipid incorporation routes: before and after extrusion (i.e., co-extrusion and post-insertion, respectively). The current study quantifies the processing influence on PEG chain partitioning between the interior and exterior liposome surfaces for the first time using small angle neutron scattering.