Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Immunology ; 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38798068

RESUMO

Members of the Protein kinases D (PKD) family are described as regulators of T cell responses. From the two T cell-expressed isoforms PKD2 and PKD3, so far mainly the former was thoroughly investigated and is well understood. Recently, we have investigated also PKD3 using conventional as well as conditional T cell-specific knockout models. These studies suggested PKD3 to be a T cell-extrinsic regulator of the cells' fate. However, these former model systems did not take into account possible redundancies with the highly homologous PKD2. To overcome this issue and thus properly unravel PKD3's T cell-intrinsic functions, here we additionally used a mouse model overexpressing a constitutively active isoform of PKD3 specifically in the T cell compartment. These transgenic mice showed a slightly higher proportion of central memory T cells in secondary lymphoid organs and blood. This effect could not be explained via differences upon polyclonal stimulation in vitro, however, may be connected to the observed developmental aberrances in the CD8 single positive compartment during thymic development. Lastly, the observed alterations in the CD8+ T cell compartment did not impact proper immune response upon immunization with ovalbumin or in a subcutaneous tumour model suggesting only a small to absent biological relevance. Taking together the knowledge of all our published studies on PKD3 in the T cell compartment, we now conclude that T cell-intrinsic PKD3 is a fine-tuner of central memory T cell as well as CD8 single positive thymocyte development.

2.
Cancers (Basel) ; 14(3)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35159064

RESUMO

Protein kinase C iota (PKCι) functions as a bonafide human oncogene in lung and ovarian cancer and is required for KrasG12D-mediated lung cancer initiation and progression. PKCι expression is required for pancreatic cancer cell growth and maintenance of the transformed phenotype; however, nothing is known about the role of PKCι in pancreas development or pancreatic tumorigenesis. In this study, we investigated the effect of pancreas-specific ablation of PKCι expression on pancreatic cellular homeostasis, susceptibility to pancreatitis, and KrasG12D-mediated pancreatic cancer development. Knockout of pancreatic Prkci significantly increased pancreatic immune cell infiltration, acinar cell DNA damage, and apoptosis, but reduced sensitivity to caerulein-induced pancreatitis. Prkci-ablated pancreatic acinar cells exhibited P62 aggregation and a loss of autophagic vesicles. Loss of pancreatic Prkci promoted KrasG12D-mediated pancreatic intraepithelial neoplasia formation but blocked progression to adenocarcinoma, consistent with disruption of autophagy. Our results reveal a novel promotive role for PKCι in pancreatic epithelial cell autophagy and pancreatic cancer progression.

3.
Cell Rep ; 37(8): 110054, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34818553

RESUMO

We report that atypical protein kinase Cι (PKCι) is an oncogenic driver of glioblastoma (GBM). Deletion or inhibition of PKCι significantly impairs tumor growth and prolongs survival in murine GBM models. GBM cells expressing elevated PKCι signaling are sensitive to PKCι inhibitors, whereas those expressing low PKCι signaling exhibit active SRC signaling and sensitivity to SRC inhibitors. Resistance to the PKCι inhibitor auranofin is associated with activated SRC signaling and response to a SRC inhibitor, whereas resistance to a SRC inhibitor is associated with activated PKCι signaling and sensitivity to auranofin. Interestingly, PKCι- and SRC-dependent cells often co-exist in individual GBM tumors, and treatment of GBM-bearing mice with combined auranofin and SRC inhibitor prolongs survival beyond either drug alone. Thus, we identify PKCι and SRC signaling as distinct therapeutic vulnerabilities that are directly translatable into an improved treatment for GBM.


Assuntos
Glioblastoma/genética , Glioblastoma/metabolismo , Isoenzimas/metabolismo , Proteína Quinase C/metabolismo , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/classificação , Humanos , Isoenzimas/genética , Camundongos , Oncogenes/genética , Proteína Quinase C/genética , Proteína Quinase C/fisiologia , Transdução de Sinais/fisiologia
4.
J Clin Invest ; 131(16)2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34255743

RESUMO

In view of emerging drug-resistant tuberculosis (TB), host-directed adjunct therapies are urgently needed to improve treatment outcomes with currently available anti-TB therapies. One approach is to interfere with the formation of lipid-laden "foamy" macrophages in the host, as they provide a nutrient-rich host cell environment for Mycobacterium tuberculosis (Mtb). Here, we provide evidence that Wnt family member 6 (WNT6), a ligand of the evolutionarily conserved Wingless/Integrase 1 (WNT) signaling pathway, promotes foam cell formation by regulating key lipid metabolic genes including acetyl-CoA carboxylase 2 (ACC2) during pulmonary TB. Using genetic and pharmacological approaches, we demonstrated that lack of functional WNT6 or ACC2 significantly reduced intracellular triacylglycerol (TAG) levels and Mtb survival in macrophages. Moreover, treatment of Mtb-infected mice with a combination of a pharmacological ACC2 inhibitor and the anti-TB drug isoniazid (INH) reduced lung TAG and cytokine levels, as well as lung weights, compared with treatment with INH alone. This combination also reduced Mtb bacterial numbers and the size of mononuclear cell infiltrates in livers of infected mice. In summary, our findings demonstrate that Mtb exploits WNT6/ACC2-induced storage of TAGs in macrophages to facilitate its intracellular survival, a finding that opens new perspectives for host-directed adjunctive treatment of pulmonary TB.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Proteínas Proto-Oncogênicas/metabolismo , Triglicerídeos/metabolismo , Proteínas Wnt/metabolismo , Acetil-CoA Carboxilase/antagonistas & inibidores , Animais , Antituberculosos/administração & dosagem , Inibidores Enzimáticos/administração & dosagem , Células Espumosas/metabolismo , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Isoniazida/administração & dosagem , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/efeitos dos fármacos , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais/efeitos dos fármacos , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/metabolismo , Tuberculose Pulmonar/microbiologia , Proteínas Wnt/deficiência , Proteínas Wnt/genética
5.
Life Sci Alliance ; 4(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34145024

RESUMO

Members of the protein kinase D (PKD) family (PKD1, 2, and 3) integrate hormonal and nutritional inputs to regulate complex cellular metabolism. Despite the fact that a number of functions have been annotated to particular PKDs, their molecular targets are relatively poorly explored. PKD3 promotes insulin sensitivity and suppresses lipogenesis in the liver of animals fed a high-fat diet. However, its substrates are largely unknown. Here we applied proteomic approaches to determine PKD3 targets. We identified more than 300 putative targets of PKD3. Furthermore, biochemical analysis revealed that PKD3 regulates cAMP-dependent PKA activity, a master regulator of the hepatic response to glucagon and fasting. PKA regulates glucose, lipid, and amino acid metabolism in the liver, by targeting key enzymes in the respective processes. Among them the PKA targets phenylalanine hydroxylase (PAH) catalyzes the conversion of phenylalanine to tyrosine. Consistently, we showed that PKD3 is activated by glucagon and promotes glucose and tyrosine levels in hepatocytes. Therefore, our data indicate that PKD3 might play a role in the hepatic response to glucagon.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glucagon/farmacologia , Hepatócitos/citologia , Proteína Quinase C/metabolismo , Proteômica/métodos , Animais , Células Cultivadas , Jejum , Glucose/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Camundongos , Fenilalanina Hidroxilase/metabolismo , Fosforilação , Cultura Primária de Células , Mapas de Interação de Proteínas , Tirosina/metabolismo
6.
Stem Cells ; 39(6): 819-830, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33539629

RESUMO

Survival of chronic lymphocytic leukemia (CLL) cells critically depends on the support of an adapted and therefore appropriate tumor microenvironment. Increasing evidence suggests that B-cell receptor-associated kinases such as protein kinase C-ß (PKCß) or Lyn kinase are essential for the formation of a microenvironment supporting leukemic growth. Here, we describe the impact of PKCß on the glucose metabolism in bone marrow stromal cells (BMSC) upon CLL contact. BMSC get activated by CLL contact expressing stromal PKCß that diminishes mitochondrial stress and apoptosis in CLL cells by stimulating glucose uptake. In BMSC, the upregulation of PKCß results in increased mitochondrial depolarization and leads to a metabolic switch toward oxidative phosphorylation. In addition, PKCß-deficient BMSC regulates the expression of Hnf1 promoting stromal insulin signaling after CLL contact. Our data suggest that targeting PKCß and the glucose metabolism of the leukemic niche could be a potential therapeutic strategy to overcome stroma-mediated drug resistance.


Assuntos
Células da Medula Óssea/metabolismo , Glucose/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteína Quinase C beta/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Proteína Quinase C beta/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Microambiente Tumoral/efeitos dos fármacos
7.
iScience ; 24(1): 102019, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33521594

RESUMO

Doublecortin-like kinase 1 (DCLK1)-positive pancreatic cancer stem cells develop at a precancerous stage and may contribute to the lack of efficacy of pancreatic cancer therapy. Although PanIN cells express oncogenic KRas and have an increased activity of epidermal growth factor receptor (EGFR), we demonstrate that, in DCLK1+ PanIN cells, EGFR signaling is not propagated to the nucleus. Mimicking blockage of EGFR with erlotinib in PanIN organoid culture or in p48cre;KrasG12D mice led to a significant increase in DCLK1+ PanIN cells. As a mechanism of how EGFR inhibition leads to formation of DCLK1+ cells, we identify an increase in hydrogen peroxide contributing to activation of Protein Kinase D1 (PKD1). Active PKD1 then drives stemness and abundance of DCLK1+ cells in lesions. Our data suggest a signaling mechanism that leads to the development of DCLK1+ pancreatic cancer stem cells, which can be exploited to target this population in potential therapeutic approaches.

8.
Adv Biol Regul ; 78: 100756, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32992232

RESUMO

PKC isozymes have been put in place as oncoproteins since the discovery that they can function as receptors for potent tumor-promoting phorbol esters in the 1980s. Despite nearly two decades of research, a clear in vivo proof of that concept was missing. The availability of so-called knock out mouse lines of individual PKC genes provided a tool to investigate isozyme specific in vivo functions in the context of tumor initiation, development and progression. This review aims to provide a limited overview of how the application of these mouse lines in combination with a cancer mouse model helped to understand PKC's in vivo function during tumorigenesis. The focus of this review will be on skin, colon and lung cancer.


Assuntos
Carcinogênese , Isoenzimas/metabolismo , Proteína Quinase C/metabolismo , Animais , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Isoenzimas/genética , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Knockout , Proteína Quinase C/genética
9.
Sci Transl Med ; 12(526)2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941829

RESUMO

Overcoming drug resistance remains a key challenge to cure patients with acute and chronic B cell malignancies. Here, we describe a stromal cell-autonomous signaling pathway, which contributes to drug resistance of malignant B cells. We show that protein kinase C (PKC)-ß-dependent signals from bone marrow-derived stromal cells markedly decrease the efficacy of cytotoxic therapies. Conversely, small-molecule PKC-ß inhibitors antagonize prosurvival signals from stromal cells and sensitize tumor cells to targeted and nontargeted chemotherapy, resulting in enhanced cytotoxicity and prolonged survival in vivo. Mechanistically, stromal PKC-ß controls the expression of adhesion and matrix proteins, required for activation of phosphoinositide 3-kinases (PI3Ks) and the extracellular signal-regulated kinase (ERK)-mediated stabilization of B cell lymphoma-extra large (BCL-XL) in tumor cells. Central to the stroma-mediated drug resistance is the PKC-ß-dependent activation of transcription factor EB, regulating lysosome biogenesis and plasma membrane integrity. Stroma-directed therapies, enabled by direct inhibition of PKC-ß, enhance the effectiveness of many antileukemic therapies.


Assuntos
Proteína Quinase C beta/metabolismo , Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Fosforilação/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Células Tumorais Cultivadas
11.
Cancer Cell ; 36(2): 156-167.e7, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31378680

RESUMO

We report that mouse LSL-KrasG12D;Trp53fl/fl (KP)-mediated lung adenocarcinoma (LADC) tumorigenesis can proceed through both PKCι-dependent and PKCι-independent pathways. The predominant pathway involves PKCι-dependent transformation of bronchoalveolar stem cells (BASCs). However, KP mice harboring conditional knock out Prkci alleles (KPI mice) develop LADC tumors through PKCι-independent transformation of Axin2+ alveolar type 2 (AT2) stem cells. Transformed growth of KPI, but not KP, tumors is blocked by Wnt pathway inhibition in vitro and in vivo. Furthermore, a KPI-derived genomic signature predicts sensitivity of human LADC cells to Wnt inhibition, and identifies a distinct subset of primary LADC tumors exhibiting a KPI-like genotype. Thus, LADC can develop through both PKCι-dependent and PKCι-independent pathways, resulting in tumors exhibiting distinct oncogenic signaling and pharmacologic vulnerabilities.


Assuntos
Adenocarcinoma de Pulmão/enzimologia , Transformação Celular Neoplásica/metabolismo , Genes ras , Isoenzimas/metabolismo , Neoplasias Pulmonares/enzimologia , Proteína Quinase C/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Via de Sinalização Wnt , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Isoenzimas/deficiência , Isoenzimas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteína Quinase C/deficiência , Proteína Quinase C/genética , Inibidores de Proteínas Quinases/farmacologia , Carga Tumoral , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , beta Catenina/genética , beta Catenina/metabolismo
12.
Oncogene ; 37(37): 5136-5146, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29789715

RESUMO

The polarity proteins Par3 and aPKC are key regulators of processes altered in cancer. Par3/aPKC are thought to dynamically interact with Par6 but increasing evidence suggests that aPKC and Par3 also exert complex-independent functions. Whereas aPKCλ serves as tumor promotor, Par3 can either promote or suppress tumorigenesis. Here we asked whether and how Par3 and aPKCλ genetically interact to control two-stage skin carcinogenesis. Epidermal loss of Par3, aPKCλ, or both, strongly reduced tumor multiplicity and increased latency but inhibited invasion to similar extents, indicating that Par3 and aPKCλ function as a complex to promote tumorigenesis. Molecularly, Par3/aPKCλ cooperate to promote Akt, ERK and NF-κB signaling during tumor initiation to sustain growth, whereas aPKCλ dominates in promoting survival. In the inflammatory tumorigenesis phase Par3/aPKCλ cooperate to drive Stat3 activation and hyperproliferation. Unexpectedly, the reduced inflammatory signaling did not alter carcinogen-induced immune cell numbers but reduced IL-4 Receptor-positive stromal macrophage numbers in all mutant mice, suggesting that epidermal aPKCλ and Par3 promote a tumor-permissive environment. Importantly, aPKCλ also serves a distinct, carcinogen-independent role in controlling skin immune cell homeostasis. Collectively, our data demonstrates that Par3 and aPKCλ cooperate to promote skin tumor initiation and progression, likely through sustaining growth, survival, and inflammatory signaling.


Assuntos
Carcinogênese/genética , Moléculas de Adesão Celular/genética , Proteína Quinase C/genética , Neoplasias Cutâneas/genética , Pele/patologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Carcinogênese/patologia , Proteínas de Ciclo Celular , Polaridade Celular/genética , Proliferação de Células/genética , Modelos Animais de Doenças , Inflamação/patologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , NF-kappa B/genética , Receptores de Interleucina-4/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais/genética , Neoplasias Cutâneas/patologia
13.
Cell Signal ; 38: 223-229, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28739484

RESUMO

Platelet activation at sites of vascular injury is crucial for hemostasis, but it may also cause myocardial infarction or ischemic stroke. Upon platelet activation, cytoskeletal reorganization is essential for platelet secretion and thrombus formation. Members of the protein kinase C family, which includes 12 isoforms, are involved in most platelet responses required for thrombus formation. The atypical protein kinase Cι/λ (PKCι/λ) has been implicated as an important mediator of cell polarity, carcinogenesis and immune cell responses. PKCι/λ is known to be associated with the small GTPase Cdc42, an important mediator of multiple platelet functions; however, its exact function in platelets is not known. To study the role of PKCι/λ, we generated platelet- and megakaryocyte-specific PKCι/λ knockout mice (Prkcifl/fl, Pf4-Cre) and used them to investigate the function of PKCι/λ in platelet activation and aggregation in vitro and in vivo. Surprisingly, lack of PKCι/λ had no detectable effect on platelet spreading and function in vitro and in vivo under all tested conditions. These results indicate that PKCι/λ is dispensable for Cdc42-triggered processes and for thrombosis and hemostasis in mice.


Assuntos
Plaquetas/metabolismo , Hemostasia , Isoenzimas/metabolismo , Proteína Quinase C/metabolismo , Trombose/enzimologia , Trombose/patologia , Animais , Colágeno/metabolismo , Feminino , Fibrinogênio/metabolismo , Humanos , Integrinas/metabolismo , Isoenzimas/deficiência , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Adesividade Plaquetária , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Proteína Quinase C/deficiência , Transdução de Sinais
14.
Cell Metab ; 25(1): 197-207, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-27866837

RESUMO

Membrane cholesterol modulates a variety of cell signaling pathways and functions. While cholesterol depletion by high-density lipoproteins (HDLs) has potent anti-inflammatory effects in various cell types, its effects on inflammatory responses in macrophages remain elusive. Here we show overt pro-inflammatory effects of HDL-mediated passive cholesterol depletion and lipid raft disruption in murine and human primary macrophages in vitro. These pro-inflammatory effects were confirmed in vivo in peritoneal macrophages from apoA-I transgenic mice, which have elevated HDL levels. In line with these findings, the innate immune responses required for clearance of P. aeruginosa bacterial infection in lung were compromised in mice with low HDL levels. Expression analysis, ChIP-PCR, and combinatorial pharmacological and genetic intervention studies unveiled that both native and reconstituted HDL enhance Toll-like-receptor-induced signaling by activating a PKC-NF-κB/STAT1-IRF1 axis, leading to increased inflammatory cytokine expression. HDL's pro-inflammatory activity supports proper functioning of macrophage immune responses.


Assuntos
Colesterol/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Lipoproteínas HDL/farmacologia , Macrófagos/metabolismo , Macrófagos/patologia , Transdução de Sinais/efeitos dos fármacos , Animais , Sequência de Bases , Transporte Biológico/efeitos dos fármacos , Células Cultivadas , Humanos , Fator Regulador 1 de Interferon/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , NF-kappa B/metabolismo , Proteína Quinase C/metabolismo , Infecções Respiratórias/metabolismo , Infecções Respiratórias/microbiologia , Infecções Respiratórias/patologia , Fator de Transcrição STAT1/metabolismo , Receptores Toll-Like/metabolismo
15.
Cell Rep ; 16(12): 3297-3310, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27653691

RESUMO

Paneth cells are a highly specialized population of intestinal epithelial cells located in the crypt adjacent to Lgr5(+) stem cells, from which they differentiate through a process that requires downregulation of the Notch pathway. Their ability to store and release antimicrobial peptides protects the host from intestinal pathogens and controls intestinal inflammation. Here, we show that PKCλ/ι is required for Paneth cell differentiation at the level of Atoh1 and Gfi1, through the control of EZH2 stability by direct phosphorylation. The selective inactivation of PKCλ/ι in epithelial cells results in the loss of mature Paneth cells, increased apoptosis and inflammation, and enhanced tumorigenesis. Importantly, PKCλ/ι expression in human Paneth cells decreases with progression of Crohn's disease. Kaplan-Meier survival analysis of colorectal cancer (CRC) patients revealed that low PRKCI levels correlated with significantly worse patient survival rates. Therefore, PKCλ/ι is a negative regulator of intestinal inflammation and cancer through its role in Paneth cell homeostasis.


Assuntos
Transformação Celular Neoplásica/metabolismo , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Isoenzimas/metabolismo , Celulas de Paneth/metabolismo , Proteína Quinase C/metabolismo , Animais , Diferenciação Celular/imunologia , Transformação Celular Neoplásica/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Humanos , Inflamação/patologia , Mucosa Intestinal/patologia , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos C57BL , Celulas de Paneth/patologia
16.
Am J Pathol ; 186(11): 3011-3027, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27639165

RESUMO

Integrins are transmembrane receptors composed of one α subunit and one ß subunit and are involved in cellular growth, differentiation, and apoptosis. The collagen-binding integrins α1ß1 and α2ß1 have been shown to regulate wound and tumor vascularization by different mechanisms. In this study, we assessed wound and tumor vascularization in mice with genetic ablation of both integrin subunits α1 and α2, which resulted in loss of integrins α1ß1 and α2ß1. Wound angiogenesis was investigated in excisional wounds that were inflicted on the back skin of control and mice lacking integrin α1ß1 and α2ß1. Mutant mice displayed reduced wound angiogenesis, which correlated with decreased macrophage numbers at 3 and 7 days after injury, and showed significantly attenuated vascularization of sponge implants. Angiogenesis induced by tumors arising from intradermal injection of B16 F1 melanoma cells was also reduced in comparison to controls 7 days after injection. This reduction in angiogenesis correlated with increased levels and activity of circulating matrix metalloproteinase 9 and elevated angiostatin levels in plasma of mutant mice, which reduced endothelial cell proliferation. Ex vivo mutant aortic ring explants developed significantly fewer and thinner aortic sprouts with fewer branch points than controls because of impaired endothelial cell proliferation. In conclusion, the loss of integrins α1ß1 and α2ß1 in mice results in reduced wound and tumor angiogenesis by cell-autonomous and extrinsic mechanisms.


Assuntos
Integrina alfa1beta1/metabolismo , Integrina alfa2beta1/metabolismo , Neoplasias/irrigação sanguínea , Cicatrização/fisiologia , Ferimentos e Lesões/patologia , Animais , Modelos Animais de Doenças , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Integrina alfa1beta1/genética , Integrina alfa2beta1/genética , Melanoma/irrigação sanguínea , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/etiologia , Neoplasias/patologia , Neovascularização Patológica , Pele/irrigação sanguínea , Pele/lesões , Pele/metabolismo , Pele/patologia , Neoplasias Cutâneas/irrigação sanguínea , Ferimentos e Lesões/etiologia
17.
Mol Cell Oncol ; 3(1): e1035477, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27308552

RESUMO

Pancreatic ductal adenocarcinoma originates from acinar cells that undergo acinar-to-ductal metaplasia (ADM). ADM is initiated in response to growth factors, inflammation, and oncogene activation and leads to a de-differentiated, duct-like phenotype. Our recent publication demonstrated a transforming growth factor α-Kras(G12D)-protein kinase D1-Notch1 signaling axis driving the induction of ADM and further progression to pancreatic intraepithelial neoplasia. This suggests that protein kinase D1 might be an early marker for tumor development and a potential target for drug development.

18.
Sci Signal ; 9(427): ra47, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27165780

RESUMO

Alzheimer's disease (AD) is a progressive dementia disorder characterized by synaptic degeneration and amyloid-ß (Aß) accumulation in the brain. Through whole-genome sequencing of 1345 individuals from 410 families with late-onset AD (LOAD), we identified three highly penetrant variants in PRKCA, the gene that encodes protein kinase Cα (PKCα), in five of the families. All three variants linked with LOAD displayed increased catalytic activity relative to wild-type PKCα as assessed in live-cell imaging experiments using a genetically encoded PKC activity reporter. Deleting PRKCA in mice or adding PKC antagonists to mouse hippocampal slices infected with a virus expressing the Aß precursor CT100 revealed that PKCα was required for the reduced synaptic activity caused by Aß. In PRKCA(-/-) neurons expressing CT100, introduction of PKCα, but not PKCα lacking a PDZ interaction moiety, rescued synaptic depression, suggesting that a scaffolding interaction bringing PKCα to the synapse is required for its mediation of the effects of Aß. Thus, enhanced PKCα activity may contribute to AD, possibly by mediating the actions of Aß on synapses. In contrast, reduced PKCα activity is implicated in cancer. Hence, these findings reinforce the importance of maintaining a careful balance in the activity of this enzyme.


Assuntos
Doença de Alzheimer/genética , Mutação , Proteína Quinase C-alfa/genética , Sinapses/patologia , Animais , Células COS , Chlorocebus aethiops , Saúde da Família , Genoma , Genoma Humano , Hipocampo/metabolismo , Humanos , Camundongos , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Domínios Proteicos
19.
Cell Rep ; 14(10): 2325-36, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26947075

RESUMO

The development of pancreatic cancer requires the acquisition of oncogenic KRas mutations and upregulation of growth factor signaling, but the relationship between these is not well established. Here, we show that mutant KRas alters mitochondrial metabolism in pancreatic acinar cells, resulting in increased generation of mitochondrial reactive oxygen species (mROS). Mitochondrial ROS then drives the dedifferentiation of acinar cells to a duct-like progenitor phenotype and progression to PanIN. This is mediated via the ROS-receptive kinase protein kinase D1 and the transcription factors NF-κB1 and NF-κB2, which upregulate expression of the epidermal growth factor, its ligands, and their sheddase ADAM17. In vivo, interception of KRas-mediated generation of mROS reduced the formation of pre-neoplastic lesions. Hence, our data provide insight into how oncogenic KRas interacts with growth factor signaling to induce the formation of pancreatic cancer.


Assuntos
Células Acinares/metabolismo , Receptores ErbB/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína ADAM17/metabolismo , Células Acinares/citologia , Animais , Células Cultivadas , Fator de Crescimento Epidérmico/metabolismo , Humanos , Ligantes , Camundongos , Mutagênese Sítio-Dirigida , Subunidade p52 de NF-kappa B/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Lesões Pré-Cancerosas , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Regulação para Cima
20.
Diabetes ; 65(7): 1892-903, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26895791

RESUMO

Increased coexistence of Alzheimer disease (AD) and type 2 diabetes mellitus (T2DM) suggests that insulin resistance abets neurodegenerative processes, but linkage mechanisms are obscure. Here, we examined insulin signaling factors in brains of insulin-resistant high-fat-fed mice, ob/ob mice, mice with genetically impaired muscle glucose transport, and monkeys with diet-dependent long-standing obesity/T2DM. In each model, the resting/basal activities of insulin-regulated brain protein kinases, Akt and atypical protein kinase C (aPKC), were maximally increased. Moreover, Akt hyperactivation was accompanied by hyperphosphorylation of substrates glycogen synthase kinase-3ß and mammalian target of rapamycin and FOXO proteins FOXO1, FOXO3A, and FOXO4 and decreased peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) expression. Akt hyperactivation was confirmed in individual neurons of anterocortical and hippocampal regions that house cognition/memory centers. Remarkably, ß-amyloid (Aß1-40/42) peptide levels were as follows: increased in the short term by insulin in normal mice, increased basally in insulin-resistant mice and monkeys, and accompanied by diminished amyloid precursor protein in monkeys. Phosphorylated tau levels were increased in ob/ob mice and T2DM monkeys. Importantly, with correction of hyperinsulinemia by inhibition of hepatic aPKC and improvement in systemic insulin resistance, brain insulin signaling normalized. As FOXOs and PGC-1α are essential for memory and long-term neuronal function and regeneration and as Aß1-40/42 and phospho-tau may increase interneuronal plaques and intraneuronal tangles, presently observed aberrations in hyperinsulinemic states may participate in linking insulin resistance to AD.


Assuntos
Encéfalo/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Resistência à Insulina/fisiologia , Insulina/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Transdução de Sinais/fisiologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Proteínas de Ciclo Celular , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Feminino , Insulina/farmacologia , Macaca mulatta , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Obesidade/metabolismo , Fragmentos de Peptídeos/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA