Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 12(6): 1007-1017, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33651587

RESUMO

One of the objectives within the medicinal chemistry discipline is to design tissue targeting molecules. The objective of tissue specificity can be either to gain drug access to the compartment of interest (e.g., the CNS) for Neuroscience targets or to restrict drug access to the CNS for all other therapeutic areas. Both neuroscience and non-neuroscience therapeutic areas have struggled to quantitatively estimate brain penetration or the lack thereof with compounds that are substrates of efflux transport proteins such as P-glycoprotein (P-gp) and breast cancer resistant protein (BCRP) that are key components of the blood-brain barrier (BBB). It has been well established that drug candidates with high efflux ratios (ER) of these transporters have poor penetration into brain tissue. In the current work, we outline a parallel analysis to previously published models for the prediction of brain penetration that utilize an alternate MDR1-MDCK cell line as a better predictor of brain penetration and whether a correlation between in vitro, rodent data, non-human primate (NHP), and human in vivo brain penetration data could be established. Analysis of structural and physicochemical properties in conjunction with in vitro parameters and preclinical in vivo data has been highlighted in this manuscript as a continuation of the previously published work.


Assuntos
Encéfalo , Proteínas de Neoplasias , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Cães , Humanos , Células Madin Darby de Rim Canino , Proteínas de Neoplasias/metabolismo
2.
J Pharm Sci ; 108(7): 2476-2483, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30794795

RESUMO

It is of great challenge to predict human brain penetration for substrates of multidrug resistance protein 1 (MDR1) and breast cancer resistance protein (BCRP), 2 major efflux transporters at blood-brain barrier. Thus, a physiologically based pharmacokinetic (PBPK) model with the incorporation of in vitro MDR1 and BCRP transporter function data and transporter protein expression levels has been developed. As such, it is crucial to generate MDR1 and BCRP substrate data with a high fidelity. In this study, 2 widely used human MDR1 cell lines from Borst and National Institutes of Health laboratories were evaluated using rodent brain penetration data, and the study suggested that the MDR1 expressed in Madin-Darby canine kidney (MDCK) cell line from National Institutes of Health laboratory predicted brain penetration better, particularly for compounds with a high passive permeability. In addition, human BCRP-MDCK cell line with 1 µM PSC833, a specific MDR1 inhibitor, demonstrated the ability to identify BCRP substrates without the confounding of endogenous canine Mdr1. Comparison of human BCRP and mouse Bcrp transporter functions revealed that the functional differences of BCRP between the 2 species is minimal. The incorporation of both the validated MDR1 and BCRP assays into our brain PBPK model has significantly improved the prediction for the brain penetration of MDR1 and BCRP substrates across species.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico/fisiologia , Encéfalo/metabolismo , Proteínas de Neoplasias/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Linhagem Celular , Cães , Humanos , Células Madin Darby de Rim Canino , Camundongos
3.
Drug Metab Dispos ; 47(4): 405-411, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30683809

RESUMO

Understanding the quantitative implications of P-glycoprotein and breast cancer resistance protein efflux is a key hurdle in the design of effective, centrally acting or centrally restricted therapeutics. Previously, a comprehensive physiologically based pharmacokinetic model was developed to describe the in vivo unbound brain-to-plasma concentration ratio as a function of efflux activity measured in vitro. In the present work, the predictive utility of this framework was examined through application to in vitro and in vivo data generated on 133 unique compounds across three preclinical species. Two approaches were examined for the scaling of efflux activity to in vivo, namely relative expression as determined by independent proteomics measurements and relative activity as determined via fitting the in vivo neuropharmacokinetic data. The results with both approaches indicate that in vitro efflux data can be used to accurately predict the degree of brain penetration across species within the context of the proposed physiologically based pharmacokinetic framework.


Assuntos
Transporte Biológico/fisiologia , Barreira Hematoencefálica/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular , Cães , Células Madin Darby de Rim Canino , Ratos , Ratos Sprague-Dawley
4.
J Med Chem ; 61(10): 4635-4640, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29718668

RESUMO

We disclose the discovery and X-ray cocrystal data of potent, selective quinazoline inhibitors of PDE1. Inhibitor ( S)-3 readily attains free plasma concentrations above PDE1 IC50 values and has restricted brain access. The racemic compound 3 inhibits >75% of PDE hydrolytic activity in soluble samples of human myocardium, consistent with heightened PDE1 activity in this tissue. These compounds represent promising new tools to probe the value of PDE1 inhibition in the treatment of cardiovascular disease.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/antagonistas & inibidores , Descoberta de Drogas , Miocárdio/enzimologia , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/farmacologia , Quinazolinas/química , AMP Cíclico/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Conformação Proteica
5.
J Pharm Sci ; 107(8): 2225-2235, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29608887

RESUMO

Four P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) substrates with human cerebrospinal fluid (CSF) concentrations and preclinical neuropharmacokinetics were used to assess in vitro-in vivo extrapolation of brain penetration in preclinical species and the ability to predict human brain penetration. Unbound brain (Cb,u), unbound plasma (Cp,u), and CSF compound concentrations (CCSF) were measured in rats and nonhuman primates (NHPs), and the unbound partition coefficients (Cb,u/Cp,u and CCSF/Cp,u) were used to assess brain penetration. The results indicated that for P-gp and BCRP dual substrates, brain penetration was severally impaired in all species. In comparison, for P-gp substrates that are weak or non-BCRP substrates, improved brain penetration was observed in NHPs and humans than in rats. Overall, NHP appears to be more predictive of human brain penetration for P-gp substrates with weak or no interaction with BCRP than rat. Although CCSF does not quantitatively correspond to Cb,u for efflux transporter substrates, it is mostly within 3-fold higher of Cb,u in rat and NHP, suggesting that CCSF can be used as a surrogate for Cb,u. Taken together, a holistic approach including both in vitro transporter and in vivo neuropharmacokinetics data enables a better estimation of human brain penetration of P-gp/BCRP substrates.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Encéfalo/metabolismo , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Farmacocinética , Animais , Compostos Azabicíclicos/farmacocinética , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Cães , Descoberta de Drogas , Humanos , Mesilato de Imatinib/farmacocinética , Imidazóis/farmacocinética , Células Madin Darby de Rim Canino , Masculino , Modelos Animais , Inibidores de Proteínas Quinases/farmacocinética , Ratos Sprague-Dawley
6.
Curr Drug Discov Technol ; 8(2): 87-101, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21513485

RESUMO

Significant efforts through genomic approaches have been dedicated toward the identification of novel protein-protein interactions as promising therapeutic targets for indications such as Alzheimer's disease, Parkinson's disease and neuropsychiatric disorders. Additionally, the number of biotherapeutic agents entering the Pharmaceutical sector continues to increase and according to EvaluatePharma's "World Preview 2014" report, "the compounded annual growth rate of biologics is expected to be 8.5 percent from 2008-2014, eight to 10 times greater than the growth rate of small molecules". However, there are limited examples of success in developing biotherapeutic modalities for central nervous system (CNS) diseases in the drug development pipeline. A primary reason for the lack of application of biotherapeutics to neuroscience targets, is that the blood-brain barrier (BBB) isolates and protects CNS structures creating a unique biochemically and immunologically privileged environment, therefore passage of macromolecules across this barrier has additional challenges. An understanding of the anatomical and physiological properties of this barrier with respect to penetration of biotherapeutics is presented in this review document. In this summary, recent advances in biotherapeutic delivery mechanisms across the BBB including transcranial brain drug delivery, focused ultrasound technology, nasal delivery, absorptive endocytosis, and receptor mediated endocytosis are evaluated using an industrial perspective. With acknowledgement that each approach has advantages and disadvantages, this review discusses the opportunities and challenges that are encountered during application of these methods across a variety of therapeutic areas such as, pain, obesity, neuroscience, and oncology. Utilizing an industrial perspective, including consideration of cost of goods and commercial feasibility for these approaches, this review highlights technology features which would enable industry investments toward novel BBB delivery technologies for biologics. Through continued development and improvement of such technology, new therapeutic options to treat and potentially cure central nervous system diseases could eventually evolve.


Assuntos
Produtos Biológicos/administração & dosagem , Barreira Hematoencefálica/metabolismo , Fármacos do Sistema Nervoso Central/administração & dosagem , Sistemas de Liberação de Medicamentos , Animais , Produtos Biológicos/farmacocinética , Transporte Biológico , Fármacos do Sistema Nervoso Central/farmacocinética , Química Farmacêutica , Vias de Administração de Medicamentos , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/economia , Sistemas de Liberação de Medicamentos/métodos , Humanos , Permeabilidade , Tecnologia Farmacêutica/economia , Tecnologia Farmacêutica/métodos
7.
Bioorg Med Chem Lett ; 13(19): 3243-6, 2003 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-12951101

RESUMO

A series of novel MMP-13 and TNF-alpha converting enzyme inhibitors based on piperazine 2-hydroxamic acid scaffolds are described. The TACE, MMP-1 and MMP-13 activity of these inhibitors as well as the effect of substitution of the piperazine nitrogen and the P-1' benzyloxy tailpiece is discussed. Moderate in vivo activity is observed with several members of this group.


Assuntos
Inibidores Enzimáticos/síntese química , Inibidores de Metaloproteinases de Matriz , Metaloendopeptidases/antagonistas & inibidores , Piperazinas/síntese química , Fator de Necrose Tumoral alfa/metabolismo , Proteínas ADAM , Proteína ADAM17 , Animais , Colagenases/metabolismo , Inibidores Enzimáticos/farmacologia , Metaloproteinase 13 da Matriz , Metaloendopeptidases/metabolismo , Piperazinas/farmacologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA