Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 289: 121764, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36067565

RESUMO

Peripheral nerve innervation is essential for regulating tissue repair and regeneration. MAA-based biomaterials have been previously shown to promote angiogenesis. Here we show a new role for MAA-based biomaterials in promoting terminal axon nerve growth. Our results demonstrate that MAA-based biomaterials promote peripheral nerve growth in an Igf-1 and Shh dependent manner. The resulting nerves increased the sensitivity of treated mice paws to nociception. iDISCO clearing showed that MAA increased the presence of peripheral nerve structures in whole explants. MAA was also able to increase the expression of key neuronal markers and growth factors in a peripheral neuropathy model, the diabetic db/db mouse, suggesting that MAA-based biomaterials may be relevant to treatment of peripheral neuropathy. Moreover, in a peripheral neuropathy model, MAA was able to up-regulate the expression of growth factors for an extended duration suggesting MAA may prevent degeneration through an effect on factors that promote survival. As all tissues are innervated, MAA-based biomaterials could have broad applications in the promoting regeneration and preventing degeneration of peripheral nerves.


Assuntos
Materiais Biocompatíveis , Fator de Crescimento Insulin-Like I , Animais , Materiais Biocompatíveis/química , Metacrilatos , Camundongos , Regeneração Nervosa , Cicatrização
2.
Stem Cell Res Ther ; 8(1): 199, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28962589

RESUMO

BACKGROUND: Multipotent mesenchymal stromal cells (MSC) enhance viability and function of islets of Langerhans. We aimed to examine the interactions between human MSC and human islets of Langerhans that influence the function of islets. METHODS: Human MSC and human islets (or pseudoislets, obtained after digestion and reaggregation of islet cells) were cocultured with or without cellular contact and glucose-stimulated insulin secretion assays were performed to assess cell function. The expression of several adhesion molecules, notably ICAM-1 and N-cadherin on islets and MSC, was investigated by qPCR. The role of N-cadherin was analyzed by adding an anti-N-cadherin antibody in islets cultured with or without MSC for 24 h followed by insulin measurements in static incubation assays. Islets and MSC were coencapsulated in new hydrogel microspheres composed of calcium alginate and covalently crosslinked polyethylene glycol. Encapsulated cells were transplanted intraperitoneally in streptozotocin-induced diabetic mice and glycemia was monitored. Islet function was evaluated by the intraperitoneal glucose tolerance test. RESULTS: In vitro, free islets and pseudoislets cocultured in contact with MSC showed a significantly increased insulin secretion when compared to islets or pseudoislets cultured alone or cocultured without cell-to-cell contact with MSC (p < 0.05). The expression of ICAM-1 and N-cadherin was present on islets and MSC. Blocking N-cadherin prevented the enhanced insulin secretion by islets cultured in contact with MSC whereas it did not affect insulin secretion by islets cultured alone. Upon transplantation in diabetic mice, islets microencapsulated together with MSC showed significantly prolonged normoglycemia when compared with islets alone (median 69 and 39 days, respectively, p < 0.01). The intraperitoneal glucose tolerance test revealed an improved glycemic response in mice treated with islets microencapsulated together with MSC compared to mice transplanted with islets alone (p < 0.001). CONCLUSIONS: MSC improve survival and function of islets of Langerhans by cell-to-cell contact mediated by the adhesion molecule N-cadherin.


Assuntos
Diabetes Mellitus Experimental/terapia , Transplante das Ilhotas Pancreáticas/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Alginatos/química , Animais , Glicemia/metabolismo , Caderinas/metabolismo , Células Cultivadas , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Hidrogéis/química , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microesferas , Células-Tronco Pluripotentes/metabolismo , Polietilenoglicóis/química
3.
Biomaterials ; 144: 199-210, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28841464

RESUMO

The IGF-1 signaling pathway and IGF-1-dependent macrophage/endothelial cell crosstalk was found to be critical features of the vascular regenerative effect displayed by implanted methacrylic acid -co-isodecyl acrylate (MAA-co-IDA; 40% MAA) coated disks in CD1 mice. Inhibition of IGF-1 signaling using AG1024 an IGF1-R tyrosine kinase inhibitor abrogated vessel formation 14 days after disk implantation in a subcutaneous pocket. Explanted tissue had increased arginase 1 expression and reduced iNOS expression consistent with the greater shift from "M1" ("pro-inflammatory") macrophages to "M2" ("pro-angiogenic") macrophages for MAA coated disks relative to control MM (methyl methacrylate-co-IDA) disks; the latter did not generate a vascular response and the polarization shift was muted with AG1024. In vitro, medium conditioned by macrophages (both human dTHP1 cells and mouse bone marrow derived macrophages) had elevated IGF-1 mRNA and protein levels, while the cells had reduced IGF1-R but elevated IGFBP-3 mRNA levels. These cells also had reduced iNOS and elevated Arg1 expression, consistent with the in vivo polarization results, including the inhibitory effects of AG1024. On the other hand, HUVEC exposed to dTHP1 conditioned medium migrated and proliferated faster suggesting that the primary target of the macrophage released IGF-1 was endothelial cells. Although further investigation is warranted, IGF-1 appears to be a key feature underpinning the observed vascularization. Why MAA based materials have this effect remains to be defined, however.


Assuntos
Materiais Revestidos Biocompatíveis/farmacologia , Células Endoteliais/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/metabolismo , Macrófagos/efeitos dos fármacos , Metacrilatos/farmacologia , Receptor IGF Tipo 1/antagonistas & inibidores , Tirfostinas/farmacologia , Animais , Linhagem Celular , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Methods Mol Biol ; 1506: 259-271, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27830559

RESUMO

Encapsulated hepatocyte transplantation and encapsulated mesenchymal stem cell transplantation are newly developed potential treatments for acute and chronic liver diseases, respectively. Cells are microencapsulated in biocompatible semipermeable alginate-based hydrogels. Microspheres protect cells against antibodies and immune cells, while allowing nutrients, small/medium size proteins and drugs to diffuse inside and outside the polymer matrix. Microencapsulated cells are assessed in vitro and designed for experimental transplantation and for future clinical applications.Here, we describe the protocol for microencapsulation of hepatocytes and mesenchymal stem cells within hybrid poly(ethylene glycol)-alginate hydrogels.


Assuntos
Cápsulas/química , Composição de Medicamentos/métodos , Doença Hepática Terminal/terapia , Hepatócitos/transplante , Transplante de Células-Tronco Mesenquimais/métodos , Alginatos/química , Animais , Materiais Biocompatíveis/química , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Composição de Medicamentos/instrumentação , Ácido Glucurônico/química , Hepatócitos/fisiologia , Ácidos Hexurônicos/química , Humanos , Hidrogéis/química , Imunoquímica , Fígado/citologia , Fígado/patologia , Transplante de Células-Tronco Mesenquimais/instrumentação , Transplante de Células-Tronco Mesenquimais/mortalidade , Células-Tronco Mesenquimais/fisiologia , Camundongos , Polietilenoglicóis/química , Cultura Primária de Células/métodos , Análise de Sobrevida
5.
Proc Natl Acad Sci U S A ; 112(34): 10673-8, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26261332

RESUMO

An unbiased phosphoproteomic method was used to identify biomaterial-associated changes in the phosphorylation patterns of macrophage-like cells. The phosphorylation differences between differentiated THP1 (dTHP1) cells treated for 10, 20, or 30 min with a vascular regenerative methacrylic acid (MAA) copolymer or a control methyl methacrylate (MM) copolymer were determined by MS. There were 1,470 peptides (corresponding to 729 proteins) that were differentially phosphorylated in dTHP1 cells treated with the two materials with a greater cellular response to MAA treatment. In addition to identifying pathways (such as integrin signaling and cytoskeletal arrangement) that are well known to change with cell-material interaction, previously unidentified pathways, such as apoptosis and mRNA splicing, were also discovered.


Assuntos
Materiais Biocompatíveis/farmacologia , Perfilação da Expressão Gênica , Macrófagos/efeitos dos fármacos , Fosfoproteínas/análise , Ácidos Polimetacrílicos/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteômica/métodos , Adsorção , Proteínas Reguladoras de Apoptose/metabolismo , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/química , Teste de Materiais , Proteínas de Membrana/metabolismo , Metilmetacrilato , Proteínas de Neoplasias/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Fatores de Transcrição/metabolismo
6.
J Hepatol ; 62(3): 634-41, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25450712

RESUMO

BACKGROUND & AIMS: Mesenchymal stem cell (MSC) transplantation was shown to be effective for the treatment of liver fibrosis, but the mechanisms of action are not yet fully understood. We transplanted encapsulated human MSCs in two mouse models of liver fibrosis to determine the mechanisms behind the protective effect. METHODS: Human bone marrow-derived MSCs were microencapsulated in novel alginate-polyethylene glycol microspheres. In vitro, we analyzed the effect of MSC-conditioned medium on the activation of hepatic stellate cells and the viability, proliferation, cytokine secretion, and differentiation capacity of encapsulated MSCs. The level of fibrosis induced by bile duct ligation (BDL) or carbon tetrachloride (CCl4) was assessed after intraperitoneal transplantation of encapsulated MSCs, encapsulated human fibroblasts, and empty microspheres. RESULTS: MSC-conditioned medium inhibited hepatic stellate cell activation and release of MSC secreted anti-apoptotic (IL-6, IGFBP-2) and anti-inflammatory (IL-1Ra) cytokines. Viability, proliferation, and cytokine secretion of microencapsulated MSCs were similar to those of non-encapsulated MSCs. Within the microspheres, MSCs maintained their capacity to differentiate into adipocytes, chondrocytes, and osteocytes. 23% (5/22) of the MSC clones were able to produce anti-inflammatory IL-1Ra in vitro. Microencapsulated MSCs significantly delayed the development of BDL- and CCl4-induced liver fibrosis. Fibroblasts had an intermediate effect against CCl4-induced fibrosis. Mice transplanted with encapsulated MSCs showed lower mRNA levels of collagen type I, whereas levels of matrix metalloproteinase 9 were significantly higher. Human IL-1Ra was detected in the serum of 36% (4/11) of the mice transplanted with microencapsulated MSCs. CONCLUSIONS: MSC-derived soluble molecules are responsible for an anti-fibrotic effect in experimental liver fibrosis.


Assuntos
Cirrose Hepática Experimental/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Adulto , Células-Tronco Adultas/transplante , Alanina Transaminase/sangue , Alginatos , Animais , Aspartato Aminotransferases/sangue , Ductos Biliares , Tetracloreto de Carbono/toxicidade , Proliferação de Células , Sobrevivência Celular , Meios de Cultivo Condicionados , Citocinas/metabolismo , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Xenoenxertos , Humanos , Ligadura , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Masculino , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Endogâmicos DBA , Microesferas , Polietilenoglicóis , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
PLoS One ; 9(3): e91268, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24625569

RESUMO

Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow) and 10 days (kidney capsule). Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation.


Assuntos
Células da Medula Óssea/citologia , Diabetes Mellitus Experimental/terapia , Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas/citologia , Animais , Medula Óssea/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Proliferação de Células , Sobrevivência Celular , Rejeição de Enxerto , Humanos , Insulina/metabolismo , Secreção de Insulina , Rim/patologia , Camundongos , Camundongos Endogâmicos C57BL , Embolia Pulmonar/patologia , Ratos , Ratos Sprague-Dawley , Baço/citologia , Transplante Heterólogo
8.
Materials (Basel) ; 7(1): 275-286, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-28788456

RESUMO

The progress of medical therapies, which rely on the transplantation of microencapsulated living cells, depends on the quality of the encapsulating material. Such material has to be biocompatible, and the microencapsulation process must be simple and not harm the cells. Alginate-poly(ethylene glycol) hybrid microspheres (alg-PEG-M) were produced by combining ionotropic gelation of sodium alginate (Na-alg) using calcium ions with covalent crosslinking of vinyl sulfone-terminated multi-arm poly(ethylene glycol) (PEG-VS). In a one-step microsphere formation process, fast ionotropic gelation yields spherical calcium alginate gel beads, which serve as a matrix for simultaneously but slowly occurring covalent cross-linking of the PEG-VS molecules. The feasibility of cell microencapsulation was studied using primary human foreskin fibroblasts (EDX cells) as a model. The use of cell culture media as polymer solvent, gelation bath, and storage medium did not negatively affect the alg-PEG-M properties. Microencapsulated EDX cells maintained their viability and proliferated. This study demonstrates the feasibility of primary cell microencapsulation within the novel microsphere type alg-PEG-M, serves as reference for future therapy development, and confirms the suitability of EDX cells as control model.

9.
J Mater Sci Mater Med ; 23(1): 171-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22160783

RESUMO

Novel calcium alginate poly(ethylene glycol) hybrid microspheres (Ca-alg-PEG) were developed and evaluated as potentially suitable materials for cell microencapsulation. Grafting 5-13% of the backbone units of sodium alginate (Na-alg) with α-amine-ω-thiol PEG maintained the gelling capacity in presence of calcium ions, while thiol end groups allowed for preparing chemically crosslinked hydrogel via spontaneous disulfide bond formation. The combination of these two gelling mechanisms yielded Ca-alg-PEG. Human hepatocellular carcinoma cells (Huh-7) were encapsulated in Ca-alg-PEG and calcium alginate beads (Ca-alg), and cultured for 2 weeks under agitation conditions. Immediately after completion of the microencapsulation, the cell viability was 60% and similar in Ca-alg-PEG and Ca-alg. The proliferation of Huh-7 encapsulated in Ca-alg-PEG was slightly higher than in Ca-alg. Accelerated proliferation after 2 weeks was observed for the encapsulation in Ca-alg-PEG. The production of albumin confirmed the functionality of the encapsulated Huh-7 cells. The study confirms the suitability of Ca-alg-PEG and the one-step technology for cell microencapsulation.


Assuntos
Alginatos , Engenharia Celular , Microesferas , Polietilenoglicóis , Linhagem Celular Tumoral , Proliferação de Células , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA