Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 149: 105235, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33383186

RESUMO

Rett syndrome (RTT) is a severe X-linked neurodevelopmental disorder that is primarily caused by mutations in the methyl CpG binding protein 2 gene (MECP2). RTT is the second most prevalent genetic cause of intellectual disability in girls, and there is currently no cure for the disease. We have previously shown that gene therapy using a self-complementary AAV9 viral vector expressing a codon-optimized Mecp2 version (AAV9-MCO) significantly improved symptoms and increased survival in male Mecp2-deficient mice. Here, we pursued our studies and investigated the safety and efficacy of long-term gene therapy in the genetically relevant RTT mouse model: the heterozygous (HET) Mecp2 deficient female mouse. These mice were injected with the AAV9-MCO vector through the tail vein and an array of behavioral tests was performed. At 16- and 30-weeks post-injection, this treatment was able to rescue apneas and improved the spontaneous locomotor deficits and circadian locomotor activity in Mecp2 HET mice treated with AAV9-MCO at a dose of 5 × 1011 vg/mouse. To examine whether a higher dose of vector could result in increased improvements, we injected Mecp2 HET mice with a higher MCO vector dose (1012 vg/mouse), which resulted in some severe, sometimes lethal, side effects. In order to confirm these effects, a new cohort of Mecp2 HET mice were administered increasing doses of MCO vector (1011, 5 × 1011 and 1012 vg/mouse). Again, two weeks after vector administration, some Mecp2 HET mice were found dead while others displayed severe side effects and had to be euthanized. These deleterious effects were not observed in Mecp2 HET mice injected with a high dose of AAV9-GFP and were directly proportionate to vector dosage (0, 23 or 54% mortality at an AAV9-MCO dose of 1011, 5 × 1011, 1012 vg/mouse, respectively), and no such lethality was observed in wild-type (WT) mice. In the Mecp2 HET mice treated with the high and medium AAV9-MCO doses, blood chemistry analysis and post-mortem histology showed liver damage with drastically elevated levels of liver transaminases and disorganized liver architecture. Apoptosis was confirmed by the presence of TUNEL- and cleaved-caspase 3-positive cells in the Mecp2 HET mice treated with the higher doses of AAV9-MCO. We then studied the involvement of the unfolded protein response (UPR) in triggering apoptosis since it can be activated by AAV vectors. Increased expression of the C/EBP homologous protein (CHOP), one of UPR downstream effectors, was confirmed in Mecp2 HET mice after vector administration. The toxic reaction seen in some treated mice indicates that, although gene therapy for RTT improved breathing deficits observed in Mecp2 HET mice, further studies are needed to better understand the underlying mechanisms and caution must be exercised before similar attempts are undertaken in female Rett patients.


Assuntos
Adenoviridae , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Proteína 2 de Ligação a Metil-CpG/deficiência , Síndrome de Rett/metabolismo , Síndrome de Rett/terapia , Adenoviridae/genética , Administração Intravenosa , Animais , Modelos Animais de Doenças , Feminino , Vetores Genéticos/genética , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Síndrome de Rett/genética
2.
Brain Res ; 1697: 45-52, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29902467

RESUMO

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the MECP2 gene. In the absence of MeCP2, expression of FXYD domain-containing transport regulator 1 (FXYD1) is deregulated in the frontal cortex (FC) of mice and humans. Because Fxyd1 is a membrane protein that controls cell excitability by modulating Na+, K+-ATPase activity (NKA), an excess of Fxyd1 may reduce NKA activity and contribute to the neuronal phenotype of Mecp2 deficient (KO) mice. To determine if Fxyd1 can rescue these RTT deficits, we studied the male progeny of Fxyd1 null males bred to heterozygous Mecp2 female mice. Maximal NKA enzymatic activity was not altered by the loss of MeCP2, but it increased in mice lacking one Fxyd1 allele, suggesting that NKA activity is under Fxyd1 inhibitory control. Deletion of one Fxyd1 allele also prevented the increased extracellular potassium (K+) accumulation observed in cerebro-cortical neurons from Mecp2 KO animals in response to the NKA inhibitor ouabain, and rescued the loss of dendritic arborization observed in FC neurons of Mecp2 KO mice. These effects were gene-dose dependent, because the absence of Fxyd1 failed to rescue the MeCP2-dependent deficits, and mimicked the effect of MeCP2 deficiency in wild-type animals. These results indicate that excess of Fxyd1 in the absence of MeCP2 results in deregulation of endogenous K+ conductances functionally associated with NKA and leads to stunted neuronal growth.


Assuntos
Proteínas de Membrana/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Plasticidade Neuronal/genética , Fosfoproteínas/metabolismo , Animais , Membrana Celular/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Homeostase , Masculino , Proteínas de Membrana/genética , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Fenótipo , Fosfoproteínas/genética , Potássio/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/fisiopatologia , ATPase Trocadora de Sódio-Potássio/metabolismo
3.
Neurobiol Dis ; 99: 1-11, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27974239

RESUMO

Rett syndrome (RTT) is a severe X-linked neurodevelopmental disorder that is primarily caused by mutations in the methyl CpG binding protein 2 gene (MECP2). RTT is the second most prevalent cause of intellectual disability in girls and there is currently no cure for the disease. The finding that the deficits caused by the loss of Mecp2 are reversible in the mouse has bolstered interest in gene therapy as a cure for RTT. In order to assess the feasibility of gene therapy in a RTT mouse model, and in keeping with translational goals, we investigated the efficacy of a self-complementary AAV9 vector expressing a codon-optimized version of Mecp2 (AAV9-MCO) delivered via a systemic approach in early symptomatic Mecp2-deficient (KO) mice. Our results show that AAV9-MCO administered at a dose of 2×1011 viral genome (vg)/mouse was able to significantly increase survival and weight gain, and delay the occurrence of behavioral deficits. Apneas, which are one of the core RTT breathing deficits, were significantly decreased to WT levels in Mecp2 KO mice after AAV9-MCO administration. Semi-quantitative analysis showed that AAV9-MCO administration in Mecp2 KO mice resulted in 10 to 20% Mecp2 immunopositive cells compared to WT animals, with the highest Mecp2 expression found in midbrain regions known to regulate cardio-respiratory functions. In addition, we also found a cell autonomous increase in tyrosine hydroxylase levels in the A1C1 and A2C2 catecholaminergic Mecp2+ neurons in treated Mecp2 KO mice, which may partly explain the beneficial effect of AAV9-MCO administration on apneas occurrence.


Assuntos
Terapia Genética , Proteína 2 de Ligação a Metil-CpG/administração & dosagem , Síndrome de Rett/terapia , Aminas , Animais , Apneia/metabolismo , Apneia/patologia , Apneia/prevenção & controle , Códon , Ácidos Cicloexanocarboxílicos , Dependovirus , Modelos Animais de Doenças , Progressão da Doença , Gabapentina , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Respiração , Síndrome de Rett/metabolismo , Síndrome de Rett/patologia , Análise de Sobrevida , Tirosina 3-Mono-Oxigenase/metabolismo , Aumento de Peso , Ácido gama-Aminobutírico
4.
Nat Commun ; 6: 10195, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26671628

RESUMO

In primates, puberty is unleashed by increased GnRH release from the hypothalamus following an interval of juvenile quiescence. GWAS implicates Zinc finger (ZNF) genes in timing human puberty. Here we show that hypothalamic expression of several ZNFs decreased in agonadal male monkeys in association with the pubertal reactivation of gonadotropin secretion. Expression of two of these ZNFs, GATAD1 and ZNF573, also decreases in peripubertal female monkeys. However, only GATAD1 abundance increases when gonadotropin secretion is suppressed during late infancy. Targeted delivery of GATAD1 or ZNF573 to the rat hypothalamus delays puberty by impairing the transition of a transcriptional network from an immature repressive epigenetic configuration to one of activation. GATAD1 represses transcription of two key puberty-related genes, KISS1 and TAC3, directly, and reduces the activating histone mark H3K4me2 at each promoter via recruitment of histone demethylase KDM1A. We conclude that GATAD1 epitomizes a subset of ZNFs involved in epigenetic repression of primate puberty.


Assuntos
Epigênese Genética , Fatores de Transcrição GATA/genética , Regulação da Expressão Gênica no Desenvolvimento , Hipotálamo/metabolismo , Puberdade/genética , RNA Mensageiro/metabolismo , Animais , Western Blotting , Imunoprecipitação da Cromatina , Feminino , Imunofluorescência , Hormônio Foliculoestimulante/metabolismo , Fatores de Transcrição GATA/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Gonadotropinas/metabolismo , Histona Desmetilases/metabolismo , Hibridização in Situ Fluorescente , Kisspeptinas/genética , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Macaca mulatta , Masculino , Neurocinina B/genética , Neurocinina B/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Dedos de Zinco/genética
5.
Mol Ther ; 19(6): 1058-69, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21487395

RESUMO

Other labs have previously reported the ability of adeno-associated virus serotype 9 (AAV9) to cross the blood-brain barrier (BBB). In this report, we carefully characterized variables that might affect AAV9's efficiency for central nervous system (CNS) transduction in adult mice, including dose, vehicle composition, mannitol coadministration, and use of single-stranded versus self-complementary AAV. We report that AAV9 is able to transduce approximately twice as many neurons as astrocytes across the entire extent of the adult rodent CNS at doses of 1.25 × 10¹², 1 × 10¹³, and 8 × 10¹³ vg/kg. Vehicle composition or mannitol coadministration had only modest effects on CNS transduction, suggesting AAV9 crosses the BBB by an active transport mechanism. Self-complementary vectors were greater than tenfold more efficient than single-stranded vectors. When this approach was applied to juvenile nonhuman primates (NHPs) at the middle dose (9-9.5 × 10¹² vg/kg) tested in mice, a reduction in peripheral organ and brain transduction was observed compared to mice, along with a clear shift toward mostly glial transduction. Moreover, the presence of low levels of pre-existing neutralizing antibodies (NAbs) mostly occluded CNS and peripheral transduction using this delivery approach. Our results indicate that high peripheral tropism, limited neuronal transduction in NHPs, and pre-existing NAbs represent significant barriers to human translation of intravascular AAV9 delivery.


Assuntos
Dependovirus/genética , Vetores Genéticos/genética , Neuroglia/metabolismo , Neurônios/metabolismo , Animais , Feminino , Células HEK293 , Células HeLa , Humanos , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase , Primatas
6.
Endocr Dev ; 17: 44-51, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19955755

RESUMO

The initiation of mammalian puberty requires an increased pulsatile release of gonadotropin-releasing hormone (GnRH) from the hypothalamus. This increase is brought about by changes in transsynaptic and glial-neuronal communication. Coordination of these cellular interactions likely requires the participation of sets of genes hierarchically arranged within functionally connected networks. Using high throughput, genetic, molecular and bioinformatics strategies, in combination with a systems biology approach, three transcriptional regulators of the pubertal process have been identified, and the structure of at least one hypothalamic gene network has been proposed. A genomewide analysis of hypothalamic DNA methylation revealed profound changes in methylation patterns associated with the onset of female puberty. Pharmacological disruption of two epigenetic marks associated with gene silencing (DNA methylation and histone deacetylation) resulted in pubertal failure, instead of advancing the onset of puberty, suggesting that disruption of these two silencing mechanisms leads to activation of repressor genes whose expression would normally decrease at puberty. These observations suggest that the genetic underpinnings of puberty are polygenic rather than specified by a single gene, and that epigenetic mechanisms may provide coordination and transcriptional plasticity to this genetic network.


Assuntos
Puberdade/fisiologia , Epigenômica , Feminino , Regulação da Expressão Gênica/fisiologia , Hormônio Liberador de Gonadotropina/fisiologia , Humanos , Hipotálamo/fisiologia , Masculino , Puberdade/genética
7.
Endocrinology ; 150(4): 1870-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19022886

RESUMO

A gene termed EAP1 (enhanced at puberty 1) was recently identified as a transcriptional regulator of female neuroendocrine reproductive function. We have now used in vivo and in vitro assays, and the female rat as an animal model, to determine whether Eap1 gene expression is regulated by ovarian steroids. Eap1 mRNA abundance decreases in both the hypothalamus and cerebral cortex during the infantile-juvenile phases of development, but it increases selectively in the hypothalamus at puberty, suggesting that in contrast to the general decline in expression observed in immature animals, the region-specific increase in Eap1 mRNA levels that occurs at puberty might be elicited by ovarian steroids. This is, however, not the case, because hypothalamic Eap1 mRNA levels increase at the expected time of puberty in rats ovariectomized at the beginning of the juvenile period. Although a subpopulation of EAP1-containing cells in the medial basal hypothalamus (MBH) and preoptic area express estrogen receptor-alpha (ERalpha), the 5'-flanking region of the rat Eap1 (rEap1) gene does not contain a complete estrogen-responsive element, and no such estrogen-responsive element is detected within 100 kb of the rEap1 locus. Functional promoter assays showed that neither estradiol (E(2)) alone nor a combination of E(2) plus progesterone increases rEap1 gene transcription. Likewise, E(2) administered to ovariectomized immature rats elicited a robust surge of LH but increased neither preoptic area nor MBH Eap1 mRNA levels. E(2)/progesterone-treated rats showed a massive elevation in plasma LH but only a modest increase in Eap1 mRNA levels, limited to the MBH. These results indicate that hypothalamic Eap1 expression is not directly controlled by ovarian steroids and suggest that Eap1 expression increases at puberty driven by ovary-independent, centrally initiated events.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hipotálamo/metabolismo , Ovário/metabolismo , Esteroides/farmacologia , Transativadores/genética , Transativadores/metabolismo , Animais , Células Cultivadas , Estradiol/farmacologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Imuno-Histoquímica , Ovariectomia , Gravidez , Progesterona/farmacologia , Regiões Promotoras Genéticas/genética , RNA Mensageiro , Ratos , Elementos de Resposta/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
8.
Horm Res ; 69(2): 114-23, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18059092

RESUMO

BACKGROUND: Hypothalamic hamartomas (HHs) are congenital lesions composed of neurons and astroglia. Frequently, HHs cause central precocious puberty (CPP) and/or gelastic seizures. Because HHs might express genes similar to those required for the initiation of normal puberty, we used cDNA arrays to compare the gene expression profile of an HH associated with CPP with three HHs not accompanied by sexual precocity. METHODS: Global changes in gene expression were detected using Affymetrix arrays. The results were confirmed by semiquantitative PCR, which also served to examine the expression of selected genes in the hypothalamus of female monkeys undergoing puberty. RESULTS: All HHs were associated with seizures. Ten genes whose expression was increased in the HH with CPP were identified. They encode proteins involved in three key cellular processes: transcriptional regulation, cell-cell signaling, and cell adhesiveness. They include IA-1 and MEF2A, two transcription factors required for neuronal development; mGluR1 and VILIP-1, which encode proteins involved in neuronal communication, and TSG-6 that encodes a protein involved in cell adhesiveness. Of these, expression of mGluR1 also increases in the female monkey hypothalamus at puberty. CONCLUSIONS: Increased expression of these genes in HHs may be relevant to the ability of some HHs to induce sexual precocity.


Assuntos
Perfilação da Expressão Gênica , Hamartoma/genética , Doenças Hipotalâmicas/genética , Puberdade Precoce/genética , Adolescente , Adulto , Animais , Moléculas de Adesão Celular/genética , Criança , Pré-Escolar , Proteínas de Ligação a DNA/genética , Feminino , Hormônio Liberador de Gonadotropina/genética , Hamartoma/complicações , Humanos , Doenças Hipotalâmicas/complicações , Kisspeptinas , Macaca mulatta , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Puberdade Precoce/etiologia , Receptores Acoplados a Proteínas G/genética , Receptores de Kisspeptina-1 , Receptores de Glutamato Metabotrópico/genética , Proteínas Repressoras/genética , Maturidade Sexual/genética , Fator de Crescimento Transformador alfa/genética , Proteínas Supressoras de Tumor/genética
9.
Endocrinology ; 149(3): 1358-65, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18039781

RESUMO

It has been earlier proposed that oxytocin could play a facilitatory role in the preovulatory LH surge in both rats and humans. We here provide evidence that oxytocin also facilitates sexual maturation in female rats. The administration of an oxytocin antagonist for 6 d to immature female rats decreased GnRH pulse frequency ex vivo and delayed the age at vaginal opening and first estrus. The in vitro reduction in GnRH pulse frequency required chronic blockade of oxytocin receptors, because it was not acutely observed after a single injection of the antagonist. Hypothalamic explants exposed to the antagonist in vitro showed a reduced GnRH pulse frequency and failed to respond to oxytocin with GnRH release. Prostaglandin E(2) (PGE(2)) mimicked the stimulatory effect of oxytocin on GnRH pulse frequency, and inhibition of PG synthesis blocked the effect of oxytocin, suggesting that oxytocin accelerates pulsatile GnRH release via PGE(2). The source of PGE(2) appears to be astrocytes, because oxytocin stimulates PGE(2) release from cultured hypothalamic astrocytes. Moreover, astrocytes express oxytocin receptors, whereas GnRH neurons do not. These results suggest that oxytocin facilitates female sexual development and that this effect is mediated by a mechanism involving glial production of PGE(2).


Assuntos
Neuroglia/metabolismo , Neurônios/metabolismo , Ocitocina/fisiologia , Maturidade Sexual/fisiologia , Transdução de Sinais/fisiologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Células Cultivadas , Dinoprostona/metabolismo , Relação Dose-Resposta a Droga , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Neuroglia/patologia , Neurônios/patologia , Ocitocina/antagonistas & inibidores , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores de Ocitocina/antagonistas & inibidores , Receptores de Ocitocina/metabolismo
10.
Hum Mol Genet ; 16(6): 640-50, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17309881

RESUMO

Rett syndrome (RTT) is an X-linked neurodevelopmental disorder linked to heterozygous de novo mutations in the MECP2 gene. MECP2 encodes methyl-CpG-binding protein 2 (MeCP2), which represses gene transcription by binding to 5-methylcytosine residues in symmetrically positioned CpG dinucleotides. Direct MeCP2 targets underlying RTT pathogenesis remain largely unknown. Here, we report that FXYD1, which encodes a transmembrane modulator of Na(+), K(+) -ATPase activity, is elevated in frontal cortex (FC) neurons of RTT patients and Mecp2-null mice. Increasing neuronal FXDY1 expression is sufficient to reduce dendritic arborization and spine formation, hallmarks of RTT neuropathology. Mecp2-null mouse cortical neurons have diminished Na(+),K(+)-ATPase activity, suggesting that aberrant FXYD1 expression contributes to abnormal neuronal activity in RTT. MeCP2 represses Fxyd1 transcription through direct interactions with sequences in the Fxyd1 promoter that are methylated in FC neurons. FXYD1 is therefore a MeCP2 target gene whose de-repression may directly contribute to RTT neuronal pathogenesis.


Assuntos
Encéfalo/metabolismo , Proteínas de Membrana/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Fosfoproteínas/genética , Síndrome de Rett/genética , Animais , Estudos de Casos e Controles , Metilação de DNA , Feminino , Expressão Gênica , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Regiões Promotoras Genéticas , Síndrome de Rett/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
11.
Endocrinology ; 147(3): 1166-74, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16373420

RESUMO

The initiation of mammalian puberty requires an increase in pulsatile release of GnRH from the hypothalamus. This increase is brought about by coordinated changes in transsynaptic and glial-neuronal communication. As the neuronal and glial excitatory inputs to the GnRH neuronal network increase, the transsynaptic inhibitory tone decreases, leading to the pubertal activation of GnRH secretion. The excitatory neuronal systems most prevalently involved in this process use glutamate and the peptide kisspeptin for neurotransmission/neuromodulation, whereas the most important inhibitory inputs are provided by gamma-aminobutyric acid (GABA)ergic and opiatergic neurons. Glial cells, on the other hand, facilitate GnRH secretion via growth factor-dependent cell-cell signaling. Coordination of this regulatory neuronal-glial network may require a hierarchical arrangement. One level of coordination appears to be provided by a host of unrelated genes encoding proteins required for cell-cell communication. A second, but overlapping, level might be provided by a second tier of genes engaged in specific cell functions required for productive cell-cell interaction. A third and higher level of control involves the transcriptional regulation of these subordinate genes by a handful of upper echelon genes that, operating within the different neuronal and glial subsets required for the initiation of the pubertal process, sustain the functional integration of the network. The existence of functionally connected genes controlling the pubertal process is consistent with the concept that puberty is under genetic control and that the genetic underpinnings of both normal and deranged puberty are polygenic rather than specified by a single gene. The availability of improved high-throughput techniques and computational methods for global analysis of mRNAs and proteins will allow us to not only initiate the systematic identification of the different components of this neuroendocrine network but also to define their functional interactions.


Assuntos
Sistema Endócrino/fisiologia , Neurônios/metabolismo , Sistemas Neurossecretores , Puberdade , Biologia de Sistemas/métodos , Animais , Comunicação Celular , DNA/metabolismo , Genes Supressores de Tumor , Hormônio Liberador de Gonadotropina/metabolismo , Substâncias de Crescimento/metabolismo , Humanos , Hipotálamo/metabolismo , Kisspeptinas , Modelos Biológicos , Neuroglia/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas , RNA Mensageiro/metabolismo , Transdução de Sinais , Software , Sinapses , Transcrição Gênica , Proteínas Supressoras de Tumor
12.
Endocrine ; 28(3): 281-6, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16388117

RESUMO

Excitatory amino acids, glutamate in particular, have a marked stimulatory effect on the reproductive axis, particularly at puberty. Glutamate, N-methyl-D-aspartate (NMDA), and kainate stimulate gonadotropin-releasing hormone (GnRH) secretion in immature mammals and NMDA receptor stimulation results in precocious puberty in rats and monkeys. Puberty is characterized by an increased sensitivity of GnRH to glutamate as well as an increase in glutaminase activity in the hypothalamus. Glutamatergic and GABAergic regulation of GnRH secretion seem strongly interdependent around puberty. In addition to the transsynaptic glutamatergic regulation of GnRH secretion, a coordinated activity of glutamatergic neurons and astroglial cells has been shown to play an active role in puberty. The participation of kainate receptors in the estradiol-induced advancement of puberty suggest that these receptors may be involved in the estradiol-mediated activation of GnRH secretion at puberty. A case of precocious puberty associated with hyperglycinemia illustrates the NMDA involvement in puberty in humans. In this patient, the occurrence of precocious puberty was thought to result from excessive stimulation by glycine of the NMDA receptors linked to the GnRH neurons. Glutamate plays several roles in the hypothalamic mechanism of puberty as it has been shown in animal models, but there are still few clinical data supporting the role of glutamate in human puberty.


Assuntos
Ácido Glutâmico/fisiologia , Hormônio Liberador de Gonadotropina/fisiologia , Puberdade Precoce/fisiopatologia , Puberdade/fisiologia , Maturidade Sexual/fisiologia , Adolescente , Animais , Criança , Feminino , Gônadas/fisiologia , Gônadas/fisiopatologia , Humanos , Hiperglicinemia não Cetótica/complicações , Hiperglicinemia não Cetótica/fisiopatologia , Sistema Hipotálamo-Hipofisário/fisiologia , Sistema Hipotálamo-Hipofisário/fisiopatologia , Puberdade Precoce/etiologia , Ratos , Receptores de Glutamato/fisiologia , Transdução de Sinais/fisiologia
13.
Ann N Y Acad Sci ; 1007: 129-42, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14993047

RESUMO

The elaboration of in vitro paradigms has enabled direct study of GnRH secretion and the regulation of this process. Common findings using different models are the pulsatile nature and calcium-dependency of GnRH secretion, the excitatory effect of glutamate, and the inhibitory or excitatory effect of GABA. Among the different paradigms, the fetal olfactory placode cultures exhibit the unique property of migration in vitro and may retain the capacity to undergo maturational changes in vitro. The short-term incubation of hypothalamic explants obtained at different ages enables one to study developmental changes as well. Estrogens may have important roles in the regulation of GnRH function and can act indirectly via the neighboring neuronal/glial apparatus and directly on GnRH neurons at the cell body and terminal levels. A direct effect is supported by the recent localization of ERalpha and ERbeta transcripts in GnRH neurons using most paradigms. Discrepant effects of estrogens on GnRH neurons were observed since GnRH biosynthesis is inhibited while GnRH secretion can be either stimulated, unaffected, or reduced. It is likely that the regulatory role of sex steroids including estradiol is very complex since it could involve direct and indirect effects on GnRH neurons through genomic and/or non-genomic mechanisms.


Assuntos
Estrogênios/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo , Animais , Hormônio Liberador de Gonadotropina/biossíntese , Humanos , Hipotálamo/metabolismo , Receptores de Estrogênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA