Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Genet Genomic Med ; 11(12): e2272, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37614148

RESUMO

BACKGROUND: Genomic medicine is revolutionizing the diagnosis of rare diseases, but the implementation has not benefited underrepresented populations to the same degree. Here, we report the case of a 7-year-old boy with hypotonia, global developmental delay, strabismus, seizures, and previously suspected mitochondrial myopathy. This proband comes from an underrepresented minority and was denied exome sequencing by his public insurance. METHODS: After informed consent was obtained, buccal cells from the proband were collected and whole exome sequencing was performed. Illumina Dragen and Emedgene software was used to analyze the data at Baylor Genetics. The variants were further intepreted according to ACMG guidelines and the patient's phenotype. RESULTS: Through whole-exome sequencing (WES) under the Community Texome project, he was found to have a heterozygous de novo pathogenic variant in the ATP1A3 gene located on chromosome 19q13. CONCLUSION: In retrospect, his symptomatology matches the known medical conditions associated with the ATP1A3 gene namely Alternating Hemiplegia of Childhood 2 (AHC), a rare autosomal dominant disorder with an incidence of 1 in one million. His single nucleotide variant, (c.2401G>A, p.D801N), is predicted to be damaging. The specific amino acid change p.D801N has been previously reported in ClinVar along with the allelic variant p.D801Y and both are considered pathogenic. The identification of this variant altered medical management for this patient as he was started on a calcium antagonist and has reported no further hemiplegic episodes. This case illustrates the value of implementing genomic medicine for precision therapy in underserved populations.


Assuntos
Medicina Genômica , Hemiplegia , Masculino , Humanos , Criança , Hemiplegia/complicações , Hemiplegia/genética , Mutação , Populações Vulneráveis , Mucosa Bucal , ATPase Trocadora de Sódio-Potássio/genética
2.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836581

RESUMO

Human clinical trials suggest that inhibition of enzymes in the DNA base excision repair (BER) pathway, such as PARP1 and APE1, can be useful in anticancer strategies when combined with certain DNA-damaging agents or tumor-specific genetic deficiencies. There is also evidence suggesting that inhibition of the BER enzyme 8-oxoguanine DNA glycosylase-1 (OGG1), which initiates repair of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy-dG), could be useful in treating certain cancers. Specifically, in acute myeloid leukemia (AML), both the RUNX1-RUNX1T1 fusion and the CBFB-MYH11 subtypes have lower levels of OGG1 expression, which correlate with increased therapeutic-induced cell cytotoxicity and good prognosis for improved, relapse-free survival compared with other AML patients. Here we present data demonstrating that AML cell lines deficient in OGG1 have enhanced sensitivity to cytarabine (cytosine arabinoside [Ara-C]) relative to OGG1-proficient cells. This enhanced cytotoxicity correlated with endogenous oxidatively-induced DNA damage and Ara-C-induced DNA strand breaks, with a large proportion of these breaks occurring at common fragile sites. This lethality was highly specific for Ara-C treatment of AML cells deficient in OGG1, with no other replication stress-inducing agents showing a correlation between cell killing and low OGG1 levels. The mechanism for this preferential toxicity was addressed using in vitro replication assays in which DNA polymerase δ was shown to insert Ara-C opposite 8-oxo-dG, resulting in termination of DNA synthesis. Overall, these data suggest that incorporation of Ara-C opposite unrepaired 8-oxo-dG may be the fundamental mechanism conferring selective toxicity and therapeutic effectiveness in OGG1-deficient AML cells.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Citarabina/farmacologia , DNA Glicosilases/genética , Leucemia Mieloide Aguda/patologia , 8-Hidroxi-2'-Desoxiguanosina/genética , Linhagem Celular Tumoral , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Reparo do DNA , Humanos , Leucemia Mieloide Aguda/enzimologia , RNA Mensageiro/genética
3.
DNA Repair (Amst) ; 72: 1-9, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30389308

RESUMO

Formaldehyde is a ubiquitous DNA damaging agent, with human exposures occurring from both exogenous and endogenous sources. Formaldehyde exposure can result in multiple types of DNA damage, including DNA-protein crosslinks and thus, is representative of other exposures that induce DNA-protein crosslinks such as cigarette smoke, automobile exhaust, wood smoke, metals, ionizing radiation, and certain chemotherapeutics. Our objective in this study was to identify the genes necessary to mitigate formaldehyde toxicity following chronic exposure in human cells. We used siRNAs that targeted 320 genes representing all major human DNA repair and damage response pathways, in order to assess cell proliferation following siRNA depletion and subsequent formaldehyde treatment. Three unrelated human cell lines frequently used in genotoxicity studies (SW480, U-2 OS and GM00639) were used to identify common pathways involved in mitigating formaldehyde sensitivity. Although there were gene-specific differences among the cell lines, four inter-related cellular pathways were determined to mitigate formaldehyde toxicity: homologous recombination, DNA double-strand break repair, ionizing radiation response and DNA replication. Additional insight into cell line-specific response patterns was obtained by using a combination of exome sequencing and Cancer Cell Line Encyclopedia genomic data. The results of this DNA damage repair pathway-focused siRNA screen for formaldehyde toxicity in human cells provide a foundation for detailed mechanistic analyses of pathway-specific involvement in the response to environmentally-induced DNA-protein crosslinks and, more broadly, genotoxicity studies using human and other mammalian cell lines.


Assuntos
Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Formaldeído/toxicidade , Interferência de RNA , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Genômica , Humanos
4.
Sci Rep ; 8(1): 705, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29335541

RESUMO

The molecular basis for ultraviolet (UV) light-induced nonmelanoma and melanoma skin cancers centers on cumulative genomic instability caused by inefficient DNA repair of dipyrimidine photoproducts. Inefficient DNA repair and subsequent translesion replication past these DNA lesions generate distinct molecular signatures of tandem CC to TT and C to T transitions at dipyrimidine sites. Since previous efforts to develop experimental strategies to enhance the repair capacity of basal keratinocytes have been limited, we have engineered the N-terminally truncated form (Δ228) UV endonuclease (UVDE) from Schizosaccharomyces pombe to include a TAT cell-penetrating peptide sequence with or without a nuclear localization signal (NLS): UVDE-TAT and UVDE-NLS-TAT. Further, a NLS was engineered onto a pyrimidine dimer glycosylase from Paramecium bursaria chlorella virus-1 (cv-pdg-NLS). Purified enzymes were encapsulated into liposomes and topically delivered to the dorsal surface of SKH1 hairless mice in a UVB-induced carcinogenesis study. Total tumor burden was significantly reduced in mice receiving either UVDE-TAT or UVDE-NLS-TAT versus control empty liposomes and time to death was significantly reduced with the UVDE-NLS-TAT. These data suggest that efficient delivery of exogenous enzymes for the initiation of repair of UVB-induced DNA damage may protect from UVB induction of squamous and basal cell carcinomas.


Assuntos
Carcinogênese/efeitos da radiação , Reparo do DNA , Neoplasias Cutâneas/prevenção & controle , Raios Ultravioleta , Animais , Enzimas Reparadoras do DNA/administração & dosagem , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Camundongos Pelados , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Proc Natl Acad Sci U S A ; 113(48): 13774-13779, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27849610

RESUMO

Routine dietary consumption of foods that contain aflatoxins is the second leading cause of environmental carcinogenesis worldwide. Aflatoxin-driven mutagenesis is initiated through metabolic activation of aflatoxin B1 (AFB1) to its epoxide form that reacts with N7 guanine in DNA. The resulting AFB1-N7-dG adduct undergoes either spontaneous depurination or imidazole-ring opening yielding formamidopyrimidine AFB1 (AFB1-Fapy-dG). Because this latter adduct is known to persist in human tissues and contributes to the high frequency G-to-T mutation signature associated with many hepatocellular carcinomas, we sought to establish the identity of the polymerase(s) involved in processing this lesion. Although our previous biochemical analyses demonstrated the ability of polymerase ζ (pol ζ) to incorporate an A opposite AFB1-Fapy-dG and extend from this mismatch, biological evidence supporting a unique role for this polymerase in cellular tolerance following aflatoxin exposure has not been established. Following challenge with AFB1, survival of mouse cells deficient in pol ζ (Rev3L-/-) was significantly reduced relative to Rev3L+/- cells or Rev3L-/- cells complemented through expression of the wild-type human REV3L. Furthermore, cell-cycle progression of Rev3L-/- mouse embryo fibroblasts was arrested in late S/G2 following AFB1 exposure. These Rev3L-/- cells showed an increase in replication-dependent formation of γ-H2AX foci, micronuclei, and chromosomal aberrations (chromatid breaks and radials) relative to Rev3L+/- cells. These data suggest that pol ζ is essential for processing AFB1-induced DNA adducts and that, in its absence, cells do not have an efficient backup polymerase or a repair/tolerance mechanism facilitating survival.


Assuntos
Carcinoma Hepatocelular/genética , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Neoplasias Hepáticas/genética , Aflatoxina B1/análogos & derivados , Aflatoxina B1/genética , Aflatoxina B1/toxicidade , Aflatoxinas/toxicidade , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/patologia , Sobrevivência Celular/efeitos dos fármacos , Aberrações Cromossômicas/efeitos dos fármacos , Citidina/análogos & derivados , Citidina/genética , Citidina/toxicidade , Adutos de DNA/efeitos dos fármacos , Adutos de DNA/genética , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/genética , DNA Polimerase Dirigida por DNA/química , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Camundongos , Mutagênese/efeitos dos fármacos , Mutagênese/genética , Mutação
6.
DNA Repair (Amst) ; 48: 43-50, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27818081

RESUMO

Oxidative stress and reactive oxygen species (ROS)-induced DNA base damage are thought to be central mediators of UV-induced carcinogenesis and skin aging. However, increased steady-state levels of ROS-induced DNA base damage have not been reported after chronic UV exposure. Accumulation of ROS-induced DNA base damage is governed by rates of lesion formation and repair. Repair is generally performed by Base Excision Repair (BER), which is initiated by DNA glycosylases, such as 8-oxoguanine glycosylase and Nei-Endonuclease VIII-Like 1 (NEIL1). In the current study, UV light (UVB) was used to elicit protracted low-level ROS challenge in wild-type (WT) and Neil1-/- mouse skin. Relative to WT controls, Neil1-/- mice showed an increased sensitivity to tissue destruction from the chronic UVB exposure, and corresponding enhanced chronic inflammatory responses as measured by cytokine message levels and profiling, as well as neutrophil infiltration. Additionally, levels of several ROS-induced DNA lesions were measured including 4,6-diamino-5-formamidopyrimidine (FapyGua), 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyAde), 8-hydroxyguanine (8-OH-Gua), 5,6-dihydroxyuracil (5,6-diOH-Ura) and thymine glycol (ThyGly). In WT mice, chronic UVB exposure led to increased steady-state levels of FapyGua, FapyAde, and ThyGly with no significant increases in 8-OH-Gua or 5,6-diOH-Ura. Interestingly, the lesions that accumulated were all substrates of NEIL1. Collectively, these data suggest that NEIL1-initiated repair of a subset of ROS-induced DNA base lesions may be insufficient to prevent the initiation of inflammatory pathways during chronic UV exposure in mouse skin.


Assuntos
DNA Glicosilases/genética , Reparo do DNA , Espécies Reativas de Oxigênio/metabolismo , Pele/efeitos da radiação , Animais , Citocinas/biossíntese , Citocinas/genética , Dano ao DNA , DNA Glicosilases/deficiência , DNA Glicosilases/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Guanina/análogos & derivados , Guanina/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos/efeitos da radiação , Estresse Oxidativo , Pirimidinas/metabolismo , Espécies Reativas de Oxigênio/agonistas , Pele/metabolismo , Pele/patologia , Timina/análogos & derivados , Timina/metabolismo , Raios Ultravioleta , Uracila/análogos & derivados , Uracila/metabolismo
7.
Mol Cell ; 64(2): 388-404, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27768874

RESUMO

Common fragile sites (CFSs) are genomic regions that are unstable under conditions of replicative stress. Although the characteristics of CFSs that render them vulnerable to stress are associated mainly with replication, the cellular pathways that protect CFSs during replication remain unclear. Here, we identify and describe a role for FANCD2 as a trans-acting facilitator of CFS replication, in the absence of exogenous replicative stress. In the absence of FANCD2, replication forks stall within the AT-rich fragility core of CFS, leading to dormant origin activation. Furthermore, FANCD2 deficiency is associated with DNA:RNA hybrid formation at CFS-FRA16D, and inhibition of DNA:RNA hybrid formation suppresses replication perturbation. In addition, we also found that FANCD2 reduces the number of potential sites of replication initiation. Our data demonstrate that FANCD2 protein is required to ensure efficient CFS replication and provide mechanistic insight into how FANCD2 regulates CFS stability.


Assuntos
Sítios Frágeis do Cromossomo , Replicação do DNA , DNA/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , RNA/genética , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Linhagem Celular Transformada , DNA/metabolismo , Anemia de Fanconi , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Proteína do Grupo de Complementação A da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Expressão Gênica , Instabilidade Genômica , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Humanos , Linfócitos/citologia , Linfócitos/metabolismo , RNA/metabolismo
8.
DNA Repair (Amst) ; 28: 73-82, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25770783

RESUMO

Formaldehyde is a reactive aldehyde that has been classified as a class I human carcinogen by the International Agency for Cancer Research. There are growing concerns over the possible adverse health effects related to the occupational and environmental human exposures to formaldehyde. Although formaldehyde-induced DNA and protein adducts have been identified, the genomic instability mechanisms and the cellular tolerance pathways associated with formaldehyde exposure are not fully characterized. This study specifically examines the role of a genome stability protein, Bloom (BLM) in limiting formaldehyde-induced cellular and genetic abnormalities. Here, we show that in the absence of BLM protein, formaldehyde-treated cells exhibited increased cellular sensitivity, an immediate cell cycle arrest, and an accumulation of chromosome radial structures. In addition, live-cell imaging experiments demonstrated that formaldehyde-treated cells are dependent on BLM for timely segregation of daughter cells. Both wild-type and BLM-deficient formaldehyde-treated cells showed an accumulation of 53BP1 and γH2AX foci indicative of DNA double-strand breaks (DSBs); however, relative to wild-type cells, the BLM-deficient cells exhibited delayed repair of formaldehyde-induced DSBs. In response to formaldehyde exposure, we observed co-localization of 53BP1 and BLM foci at the DSB repair site, where ATM-dependent accumulation of formaldehyde-induced BLM foci occurred after the recruitment of 53BP1. Together, these findings highlight the significance of functional interactions among ATM, 53BP1, and BLM proteins as responders associated with the repair and tolerance mechanisms induced by formaldehyde.


Assuntos
Reparo do DNA , Formaldeído/toxicidade , Instabilidade Genômica/efeitos dos fármacos , RecQ Helicases/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Pontos de Checagem do Ciclo Celular , DNA/efeitos dos fármacos , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , RecQ Helicases/deficiência , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
9.
Cytogenet Genome Res ; 144(4): 255-263, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25766002

RESUMO

Biallelic mutations in BLM cause Bloom syndrome (BS), a genome instability disorder characterized by growth retardation, sun sensitivity and a predisposition to cancer. As evidence of decreased genome stability, BS cells demonstrate not only elevated levels of spontaneous sister chromatid exchanges (SCEs), but also exhibit chromosomal radial formation. The molecular nature and mechanism of radial formation is not known, but radials have been thought to be DNA recombination intermediates between homologs that failed to resolve. However, we find that radials in BS cells occur over 95% between non-homologous chromosomes, and occur non-randomly throughout the genome. BLM must be phosphorylated at T99 and T122 for certain cell cycle checkpoints, but it is not known whether these modifications are necessary to suppress radial formation. We find that exogenous BLM constructs preventing phosphorylation at T99 and T122 are not able to suppress radial formation in BS cells, but are able to inhibit SCE formation. These findings indicate that BLM functions in 2 distinct pathways requiring different modifications. In one pathway, for which the phosphorylation marks appear dispensable, BLM functions to suppress SCE formation. In a second pathway, T99 and T122 phosphorylations are essential for suppression of chromosomal radial formation, both those formed spontaneously and those formed following interstrand crosslink damage.


Assuntos
Síndrome de Bloom/genética , Instabilidade Cromossômica , RecQ Helicases/metabolismo , Troca de Cromátide Irmã , Síndrome de Bloom/metabolismo , Células Cultivadas , Cromossomos Humanos/genética , Humanos , Método de Monte Carlo , Mutação , Fosforilação , RecQ Helicases/genética
10.
Mamm Genome ; 21(11-12): 550-5, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21113599

RESUMO

Recent linkage-based studies in humans suggest the presence of loci that affect either genome-wide recombination rates, utilization of recombination hotspots, or both. We have been interested in utilizing cytological methodology to directly assess recombination in mammalian meiocytes and to identify recombination-associated loci. In the present report we summarize studies in which we combined a cytological assay of recombination in mouse pachytene spermatocytes with QTL analyses to identify loci that contribute to genome-wide levels of recombination in male meiosis. Specifically, we analyzed MLH1 foci, a marker of crossovers, in 194 F2 male mice derived from a subspecific cross between CAST/EiJ and C57BL/6J parental strains. We then used these data to uncover loci associated with individual variation in mean MLH1 values. We identified seven recombination-associated loci across the genome (on chromosomes 2, 3, 4, 14, 15, 17, and X), indicating that there are multiple recombination "setting" loci in mammalian male meiosis.


Assuntos
Cromossomos de Mamíferos , Estudos de Associação Genética/métodos , Meiose , Locos de Características Quantitativas , Recombinação Genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Alelos , Animais , Cruzamentos Genéticos , Feminino , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 1 Homóloga a MutL , Proteínas Nucleares/genética , Espermatócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA