Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 67(11): e0084023, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37800975

RESUMO

The unprecedented scale of the COVID-19 pandemic and the rapid evolution of SARS-CoV-2 variants underscore the need for broadly active inhibitors with a high barrier to resistance. The coronavirus main protease (Mpro) is an essential cysteine protease required for viral polyprotein processing and is highly conserved across human coronaviruses. Pomotrelvir is a novel Mpro inhibitor that has recently completed a phase 2 clinical trial. In this report, we demonstrated that pomotrelvir is a potent competitive inhibitor of SARS-CoV-2 Mpro with high selectivity against human proteases. In the enzyme assay, pomotrelvir is also active against Mpro proteins derived from human coronaviruses CoV-229E, CoV-OC43, CoV-HKU1, CoV-NL63, MERS, and SARS-CoV. In cell-based SARS-CoV-2 replicon and SARS-CoV-2 infection assays, pomotrelvir has shown potent inhibitory activity and is broadly active against SARS-CoV-2 clinical isolates including Omicron variants. Many resistance substitutions of the Mpro inhibitor nirmatrelvir confer cross-resistance to pomotrelvir, consistent with the finding from our enzymatic analysis that pomotrelvir and nirmatrelvir compete for the same binding site. In a SARS-CoV-2 infection assay, pomotrelvir is additive when combined with remdesivir or molnupiravir, two nucleoside analogs targeting viral RNA synthesis. In conclusion, our results from the in vitro characterization of pomotrelvir antiviral activity support its further clinical development as an alternative COVID-19 therapeutic option.


Assuntos
COVID-19 , Coronavirus Humano 229E , Humanos , SARS-CoV-2 , Pandemias , Antivirais/farmacologia , Inibidores de Proteases
2.
mBio ; 14(4): e0106023, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37338298

RESUMO

Coronaviruses (CoVs) encode nonstructural proteins 1-16 (nsps 1-16) which form replicase complexes that mediate viral RNA synthesis. Remdesivir (RDV) is an adenosine nucleoside analog antiviral that inhibits CoV RNA synthesis. RDV resistance mutations have been reported only in the nonstructural protein 12 RNA-dependent RNA polymerase (nsp12-RdRp). We here show that a substitution mutation in the nsp13-helicase (nsp13-HEL A335V) of the betacoronavirus murine hepatitis virus (MHV) that was selected during passage with the RDV parent compound confers partial RDV resistance independently and additively when expressed with co-selected RDV resistance mutations in the nsp12-RdRp. The MHV A335V substitution did not enhance replication or competitive fitness compared to WT MHV and remained sensitive to the active form of the cytidine nucleoside analog antiviral molnupiravir (MOV). Biochemical analysis of the SARS-CoV-2 helicase encoding the homologous substitution (A336V) demonstrates that the mutant protein retained the ability to associate with the core replication proteins nsps 7, 8, and 12 but had impaired helicase unwinding and ATPase activity. Together, these data identify a novel determinant of nsp13-HEL enzymatic activity, define a new genetic pathway for RDV resistance, and demonstrate the importance of surveillance for and testing of helicase mutations that arise in SARS-CoV-2 genomes. IMPORTANCE Despite the development of effective vaccines against COVID-19, the continued circulation and emergence of new variants support the need for antivirals such as RDV. Understanding pathways of antiviral resistance is essential for surveillance of emerging variants, development of combination therapies, and for identifying potential new targets for viral inhibition. We here show a novel RDV resistance mutation in the CoV helicase also impairs helicase functions, supporting the importance of studying the individual and cooperative functions of the replicase nonstructural proteins 7-16 during CoV RNA synthesis. The homologous nsp13-HEL mutation (A336V) has been reported in the GISAID database of SARS-CoV-2 genomes, highlighting the importance of surveillance of and genetic testing for nucleoside analog resistance in the helicase.


Assuntos
COVID-19 , Vírus da Hepatite Murina , Animais , Camundongos , Humanos , Nucleosídeos/farmacologia , Vacinas contra COVID-19 , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Replicação Viral/genética , Tratamento Farmacológico da COVID-19 , Mutação , Vírus da Hepatite Murina/genética , Antivirais/farmacologia , Antivirais/química , RNA Polimerase Dependente de RNA/metabolismo , RNA , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
3.
Sci Transl Med ; 14(656): eabo0718, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35482820

RESUMO

The nucleoside analog remdesivir (RDV) is a Food and Drug Administration-approved antiviral for treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Thus, it is critical to understand factors that promote or prevent RDV resistance. We passaged SARS-CoV-2 in the presence of increasing concentrations of GS-441524, the parent nucleoside of RDV. After 13 passages, we isolated three viral lineages with phenotypic resistance as defined by increases in half-maximal effective concentration from 2.7- to 10.4-fold. Sequence analysis identified nonsynonymous mutations in nonstructural protein 12 RNA-dependent RNA polymerase (nsp12-RdRp): V166A, N198S, S759A, V792I, and C799F/R. Two lineages encoded the S759A substitution at the RdRp Ser759-Asp-Asp active motif. In one lineage, the V792I substitution emerged first and then combined with S759A. Introduction of S759A and V792I substitutions at homologous nsp12 positions in murine hepatitis virus demonstrated transferability across betacoronaviruses; introduction of these substitutions resulted in up to 38-fold RDV resistance and a replication defect. Biochemical analysis of SARS-CoV-2 RdRp encoding S759A demonstrated a roughly 10-fold decreased preference for RDV-triphosphate (RDV-TP) as a substrate, whereas nsp12-V792I diminished the uridine triphosphate concentration needed to overcome template-dependent inhibition associated with RDV. The in vitro-selected substitutions identified in this study were rare or not detected in the greater than 6 million publicly available nsp12-RdRp consensus sequences in the absence of RDV selection. The results define genetic and biochemical pathways to RDV resistance and emphasize the need for additional studies to define the potential for emergence of these or other RDV resistance mutations in clinical settings.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Farmacorresistência Viral , RNA Polimerase Dependente de RNA , SARS-CoV-2 , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Animais , Antivirais/farmacologia , Farmacorresistência Viral/genética , Humanos , Camundongos , Mutação/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética
4.
bioRxiv ; 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32511392

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 as the causative agent of the novel pandemic viral disease COVID-19. With no approved therapies, this pandemic illustrates the urgent need for safe, broad-spectrum antiviral countermeasures against SARS-CoV-2 and future emerging CoVs. We report that remdesivir (RDV), a monophosphoramidate prodrug of an adenosine analog, potently inhibits SARS-CoV-2 replication in human lung cells and primary human airway epithelial cultures (EC 50 = 0.01 µM). Weaker activity was observed in Vero E6 cells (EC 50 = 1.65 µM) due to their low capacity to metabolize RDV. To rapidly evaluate in vivo efficacy, we engineered a chimeric SARS-CoV encoding the viral target of RDV, the RNA-dependent RNA polymerase, of SARS-CoV-2. In mice infected with chimeric virus, therapeutic RDV administration diminished lung viral load and improved pulmonary function as compared to vehicle treated animals. These data provide evidence that RDV is potently active against SARS-CoV-2 in vitro and in vivo , supporting its further clinical testing for treatment of COVID-19.

5.
Sci Transl Med ; 12(541)2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32253226

RESUMO

Coronaviruses (CoVs) traffic frequently between species resulting in novel disease outbreaks, most recently exemplified by the newly emerged SARS-CoV-2, the causative agent of COVID-19. Here, we show that the ribonucleoside analog ß-d-N4-hydroxycytidine (NHC; EIDD-1931) has broad-spectrum antiviral activity against SARS-CoV-2, MERS-CoV, SARS-CoV, and related zoonotic group 2b or 2c bat-CoVs, as well as increased potency against a CoV bearing resistance mutations to the nucleoside analog inhibitor remdesivir. In mice infected with SARS-CoV or MERS-CoV, both prophylactic and therapeutic administration of EIDD-2801, an orally bioavailable NHC prodrug (ß-d-N4-hydroxycytidine-5'-isopropyl ester), improved pulmonary function and reduced virus titer and body weight loss. Decreased MERS-CoV yields in vitro and in vivo were associated with increased transition mutation frequency in viral, but not host cell RNA, supporting a mechanism of lethal mutagenesis in CoV. The potency of NHC/EIDD-2801 against multiple CoVs and oral bioavailability highlights its potential utility as an effective antiviral against SARS-CoV-2 and other future zoonotic CoVs.


Assuntos
Antivirais/administração & dosagem , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Ribonucleosídeos/administração & dosagem , Replicação Viral/efeitos dos fármacos , Monofosfato de Adenosina/administração & dosagem , Monofosfato de Adenosina/análogos & derivados , Alanina/administração & dosagem , Alanina/análogos & derivados , Animais , Antibioticoprofilaxia , Betacoronavirus/fisiologia , COVID-19 , Linhagem Celular , Infecções por Coronavirus/patologia , Citidina/administração & dosagem , Citidina/análogos & derivados , Modelos Animais de Doenças , Farmacorresistência Viral , Humanos , Hidroxilaminas , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Modelos Moleculares , Mutação/efeitos dos fármacos , Pandemias , Pneumonia Viral/patologia , Cultura Primária de Células , RNA Viral , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , Distribuição Aleatória , Sistema Respiratório/citologia , SARS-CoV-2
6.
J Virol ; 93(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31578288

RESUMO

Coronaviruses (CoVs) have emerged from animal reservoirs to cause severe and lethal disease in humans, but there are currently no FDA-approved antivirals to treat the infections. One class of antiviral compounds, nucleoside analogues, mimics naturally occurring nucleosides to inhibit viral replication. While these compounds have been successful therapeutics for several viral infections, mutagenic nucleoside analogues, such as ribavirin and 5-fluorouracil, have been ineffective at inhibiting CoVs. This has been attributed to the proofreading activity of the viral 3'-5' exoribonuclease (ExoN). ß-d-N4-Hydroxycytidine (NHC) (EIDD-1931; Emory Institute for Drug Development) has recently been reported to inhibit multiple viruses. Here, we demonstrate that NHC inhibits both murine hepatitis virus (MHV) (50% effective concentration [EC50] = 0.17 µM) and Middle East respiratory syndrome CoV (MERS-CoV) (EC50 = 0.56 µM) with minimal cytotoxicity. NHC inhibited MHV lacking ExoN proofreading activity similarly to wild-type (WT) MHV, suggesting an ability to evade or overcome ExoN activity. NHC inhibited MHV only when added early during infection, decreased viral specific infectivity, and increased the number and proportion of G:A and C:U transition mutations present after a single infection. Low-level NHC resistance was difficult to achieve and was associated with multiple transition mutations across the genome in both MHV and MERS-CoV. These results point to a virus-mutagenic mechanism of NHC inhibition in CoVs and indicate a high genetic barrier to NHC resistance. Together, the data support further development of NHC for treatment of CoVs and suggest a novel mechanism of NHC interaction with the CoV replication complex that may shed light on critical aspects of replication.IMPORTANCE The emergence of coronaviruses (CoVs) into human populations from animal reservoirs has demonstrated their epidemic capability, pandemic potential, and ability to cause severe disease. However, no antivirals have been approved to treat these infections. Here, we demonstrate the potent antiviral activity of a broad-spectrum ribonucleoside analogue, ß-d-N4-hydroxycytidine (NHC), against two divergent CoVs. Viral proofreading activity does not markedly impact sensitivity to NHC inhibition, suggesting a novel interaction between a nucleoside analogue inhibitor and the CoV replicase. Further, passage in the presence of NHC generates only low-level resistance, likely due to the accumulation of multiple potentially deleterious transition mutations. Together, these data support a mutagenic mechanism of inhibition by NHC and further support the development of NHC for treatment of CoV infections.


Assuntos
Antivirais/farmacologia , Citidina/análogos & derivados , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Vírus da Hepatite Murina/efeitos dos fármacos , Vírus da Hepatite Murina/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Infecções por Coronaviridae/tratamento farmacológico , Infecções por Coronaviridae/virologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Citidina/farmacologia , Farmacorresistência Viral , Exorribonucleases/metabolismo , Camundongos , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Vírus da Hepatite Murina/metabolismo , Mutagênese , RNA Polimerase Dependente de RNA/metabolismo , Células Vero , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
7.
J Virol ; 92(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29514905

RESUMO

Several viruses induce intestinal epithelial cell death during enteric infection. However, it is unclear whether proapoptotic capacity promotes or inhibits replication in this tissue. We infected mice with two reovirus strains that infect the intestine but differ in the capacity to alter immunological tolerance to new food antigen. Infection with reovirus strain T1L, which induces an inflammatory immune response to fed antigen, is prolonged in the intestine, whereas T3D-RV, which does not induce this response, is rapidly cleared from the intestine. Compared with T1L, T3D-RV infection triggered apoptosis of intestinal epithelial cells and subsequent sloughing of dead cells into the intestinal lumen. We conclude that the infection advantage of T1L derives from its capacity to subvert host restriction by epithelial cell apoptosis, providing a possible mechanism by which T1L enhances inflammatory signals during antigen feeding. Using a panel of T1L × T3D-RV reassortant viruses, we identified the viral M1 and M2 gene segments as determinants of reovirus-induced apoptosis in the intestine. Expression of the T1L M1 and M2 genes in a T3D-RV background was sufficient to limit epithelial cell apoptosis and enhance viral infection to levels displayed by T1L. These findings define additional reovirus gene segments required for enteric infection of mice and illuminate the antiviral effect of intestinal epithelial cell apoptosis in limiting enteric viral infection. Viral strain-specific differences in the capacity to infect the intestine may be useful in identifying viruses capable of ameliorating tolerance to fed antigen in autoimmune conditions like celiac disease.IMPORTANCE Acute viral infections are thought to be cleared by the host with few lasting consequences. However, there may be much broader and long-lasting effects of viruses on immune homeostasis. Infection with reovirus, a common, nonpathogenic virus, triggers inflammation against innocuous food antigens, implicating this virus in the development of celiac disease, an autoimmune intestinal disorder triggered by exposure to dietary gluten. Using two reovirus strains that differ in the capacity to abrogate oral tolerance, we found that strain-specific differences in the capacity to replicate in the intestine inversely correlate with the capacity to induce apoptotic death of intestinal epithelial cells, providing a host-mediated process to restrict intestinal infection. This work contributes new knowledge about virus-host interactions in the intestine and establishes a foundation for future studies to define mechanisms by which viruses break oral tolerance in celiac disease.


Assuntos
Apoptose/imunologia , Células Epiteliais/imunologia , Mucosa Intestinal/imunologia , Orthoreovirus Mamífero 3/imunologia , Orthoreovirus de Mamíferos/imunologia , Infecções por Reoviridae/imunologia , Animais , Antígenos Virais/imunologia , Linhagem Celular , Cricetinae , Células Epiteliais/patologia , Células Epiteliais/virologia , Mucosa Intestinal/patologia , Mucosa Intestinal/virologia , Camundongos , Infecções por Reoviridae/patologia
8.
J Infect Dis ; 211(3): 383-93, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25149763

RESUMO

Viruses that cause systemic disease often spread through the bloodstream to infect target tissues. Although viremia is an important step in the pathogenesis of many viruses, how viremia is established is not well understood. Reovirus has been used to dissect mechanisms of viral pathogenesis and is being evaluated in clinical trials as an oncolytic agent. After peroral entry into mice, reovirus replicates within the gastrointestinal tract and disseminates systemically via hematogenous or neural routes. Junctional adhesion molecule-A (JAM-A) is a tight junction protein that serves as a receptor for reovirus. JAM-A is required for establishment of viremia and viral spread to sites of secondary replication. JAM-A also is expressed on the surface of circulating hematopoietic cells. To determine contributions of endothelial and hematopoietic JAM-A to reovirus dissemination and pathogenesis, we generated strains of mice with altered JAM-A expression in these cell types and assessed bloodstream spread of reovirus strain type 1 Lang (T1L), which disseminates solely by hematogenous routes. We found that endothelial JAM-A but not hematopoietic JAM-A facilitates reovirus T1L bloodstream entry and egress. Understanding how viruses establish viremia may aid in development of inhibitors of this critical step in viral pathogenesis and foster engineering of improved oncolytic viral vectors.


Assuntos
Moléculas de Adesão Celular/metabolismo , Células Endoteliais/metabolismo , Receptores de Superfície Celular/metabolismo , Reoviridae/metabolismo , Junções Íntimas/metabolismo , Viremia/metabolismo , Animais , Células Cultivadas , Células Endoteliais/virologia , Fibroblastos/metabolismo , Fibroblastos/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Virais/metabolismo , Junções Íntimas/virologia , Viremia/virologia
9.
Nature ; 514(7522): 372-375, 2014 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-25119032

RESUMO

Mammalian cells possess mechanisms to detect and defend themselves from invading viruses. In the cytosol, the RIG-I-like receptors (RLRs), RIG-I (retinoic acid-inducible gene I; encoded by DDX58) and MDA5 (melanoma differentiation-associated gene 5; encoded by IFIH1) sense atypical RNAs associated with virus infection. Detection triggers a signalling cascade via the adaptor MAVS that culminates in the production of type I interferons (IFN-α and ß; hereafter IFN), which are key antiviral cytokines. RIG-I and MDA5 are activated by distinct viral RNA structures and much evidence indicates that RIG-I responds to RNAs bearing a triphosphate (ppp) moiety in conjunction with a blunt-ended, base-paired region at the 5'-end (reviewed in refs 1, 2, 3). Here we show that RIG-I also mediates antiviral responses to RNAs bearing 5'-diphosphates (5'pp). Genomes from mammalian reoviruses with 5'pp termini, 5'pp-RNA isolated from yeast L-A virus, and base-paired 5'pp-RNAs made by in vitro transcription or chemical synthesis, all bind to RIG-I and serve as RIG-I agonists. Furthermore, a RIG-I-dependent response to 5'pp-RNA is essential for controlling reovirus infection in cultured cells and in mice. Thus, the minimal determinant for RIG-I recognition is a base-paired RNA with 5'pp. Such RNAs are found in some viruses but not in uninfected cells, indicating that recognition of 5'pp-RNA, like that of 5'ppp-RNA, acts as a powerful means of self/non-self discrimination by the innate immune system.


Assuntos
RNA Helicases DEAD-box/metabolismo , Difosfatos/metabolismo , Imunidade Inata , RNA Viral/química , RNA Viral/metabolismo , Reoviridae/genética , Reoviridae/imunologia , Animais , Pareamento de Bases , Sequência de Bases , Proteína DEAD-box 58 , Feminino , Genoma Viral/genética , Masculino , Camundongos , RNA Viral/genética , Reoviridae/fisiologia
10.
J Virol ; 85(8): 3717-32, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21307186

RESUMO

In mouse embryonic fibroblasts (MEFs), the bovine rotavirus (UK strain) but not the simian rhesus rotavirus (RRV) robustly triggers beta interferon (IFN-ß) secretion, resulting in an IFN-dependent restriction of replication. We now find that both rotavirus strains trigger antiviral transcriptional responses early during infection and that both transcriptional responses and IFN-ß secretion are completely abrogated in MAVS/IPS-1(-/-) MEFs. Replication of UK virus could be rescued in MAVS/IPS-1(-/-) MEFs, and synthesis of viral RNA significantly increased early during virus infection. UK virus induced IFN-ß secretion and transcription of IFN-stimulated genes (ISGs) in both RIG-I(-/-) and MDA-5(-/-) MEFs, and neither receptor was essential by itself for the antiviral response to UK rotavirus. However, when receptors RIG-I and MDA-5 were depleted using RNA interference, we found that both contribute to the magnitude of the IFN response. IRF3 was found to be essential for MAVS/IPS-1-directed ISG transcription and IFN-ß secretion during rotavirus infection. Interestingly, absence of the double-stranded RNA-dependent protein kinase PKR led to a profound defect in the capacity of host cells to secrete IFN-ß in response to virus. Both PKR and IRF3 restricted the early replication of UK as indicated by significant increases in viral RNA in fibroblasts lacking either gene. Despite the loss in IFN-ß secretion in PKR(-/-) MEFs, we did not observe decreased IRF3- or NF-κB-dependent early ISG transcription in these cells. Levels of transcripts encoding IFN-α4, IFN-α5, and IFN-ß were high in infected PKR(-/-) MEFs, indicating that during rotavirus infection, PKR functions at a stage between IFN gene transcription and subsequent IFN-ß secretion. These findings reveal that activation of the antiviral response by rotavirus is dependent on MAVS/IPS-1 and IRF3 and involves both RIG-I and MDA-5 and that IFN-ß secretion during rotavirus infection is regulated by PKR.


Assuntos
Regulação da Expressão Gênica , Interferon beta/imunologia , Rotavirus/imunologia , eIF-2 Quinase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Deleção de Genes , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Helicase IFIH1 Induzida por Interferon , Interferon beta/biossíntese , Camundongos , Camundongos Knockout , eIF-2 Quinase/genética
11.
PLoS Pathog ; 6: e1000980, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20617182

RESUMO

Reovirus infection leads to apoptosis in both cultured cells and the murine central nervous system (CNS). NF-kappaB-driven transcription of proapoptotic cellular genes is required for the effector phase of the apoptotic response. Although both extrinsic death-receptor signaling pathways and intrinsic pathways involving mitochondrial injury are implicated in reovirus-induced apoptosis, mechanisms by which either of these pathways are activated and their relationship to NF-kappaB signaling following reovirus infection are unknown. The proapoptotic Bcl-2 family member, Bid, is activated by proteolytic cleavage following reovirus infection. To understand how reovirus integrates host signaling circuits to induce apoptosis, we examined proapoptotic signaling following infection of Bid-deficient cells. Although reovirus growth was not affected by the absence of Bid, cells lacking Bid failed to undergo apoptosis. Furthermore, we found that NF-kappaB activation is required for Bid cleavage and subsequent proapoptotic signaling. To examine the functional significance of Bid-dependent apoptosis in reovirus disease, we monitored fatal encephalitis caused by reovirus in the presence and absence of Bid. Survival of Bid-deficient mice was significantly enhanced in comparison to wild-type mice following either peroral or intracranial inoculation of reovirus. Decreased reovirus virulence in Bid-null mice was accompanied by a reduction in viral yield. These findings define a role for NF-kappaB-dependent cleavage of Bid in the cell death program initiated by viral infection and link Bid to viral virulence.


Assuntos
Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/fisiologia , Encefalite Viral/etiologia , Infecções por Reoviridae/virologia , Reoviridae/patogenicidade , Animais , Apoptose/fisiologia , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/deficiência , Proteína de Domínio de Morte Associada a Fas/fisiologia , Fibroblastos/virologia , Humanos , Células L , Camundongos , NF-kappa B/fisiologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/fisiologia , Transdução de Sinais/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
12.
J Gen Virol ; 89(Pt 6): 1411-1420, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18474557

RESUMO

The family Polydnaviridae is a large group of immunosuppressive insect viruses that are symbiotically associated with parasitoid wasps. The polydnavirus Microplitis demolitor bracovirus (MdBV) causes several alterations that disable the cellular and humoral immune defences of host insects, including apoptosis of the primary phagocytic population of circulating immune cells (haemocytes), called granulocytes. Here, we show that MdBV infection causes granulocytes in the lepidopteran Spodoptera frugiperda to apoptose. An expression screen conducted in the S. frugiperda 21 cell line identified the MdBV gene ptp-H2 as an apoptosis inducer, as indicated by cell fragmentation, annexin V binding, mitochondrial membrane depolarization and caspase activation. PTP-H2 is a classical protein tyrosine phosphatase that has been shown previously to function as an inhibitor of phagocytosis. PTP-H2-mediated death of Sf-21 cells was blocked by the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-(O-methyl) Asp-fluoromethylketone (Z-VAD-FMK), but cells maintained in this inhibitor still exhibited a suppressed phagocytic response. Mutagenesis experiments indicated that the essential catalytic cysteine residue required for the phosphatase activity of PTP-H2 was required for apoptotic activity in Sf-21 cells. Loss of adhesion was insufficient to stimulate apoptosis of Sf-21 cells. PTP-H2 expression, however, did significantly reduce proliferation of Sf-21 cells, which could contribute to the apoptotic activity of this viral gene. Overall, our results indicate that specific genes expressed by MdBV induce apoptosis of certain insect cells and that this activity contributes to immunosuppression of hosts.


Assuntos
Apoptose , Polydnaviridae/enzimologia , Proteínas Tirosina Fosfatases/fisiologia , Spodoptera/virologia , Animais , Linhagem Celular , Hemócitos/patologia , Terapia de Imunossupressão , Membranas Mitocondriais/metabolismo , Transdução de Sinais , Spodoptera/fisiologia
13.
Proc Natl Acad Sci U S A ; 101(9): 3154-9, 2004 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-14973196

RESUMO

Nucleotide metabolic pathways provide numerous successful targets for antiparasitic chemotherapy, but the human pathogen Cryptosporidium parvum thus far has proved extraordinarily refractory to classical treatments. Given the importance of this protist as an opportunistic pathogen afflicting immunosuppressed individuals, effective treatments are urgently needed. The genome sequence of C. parvum is approaching completion, and we have used this resource to critically assess nucleotide biosynthesis as a target in C. parvum. Genomic analysis indicates that this parasite is entirely dependent on salvage from the host for its purines and pyrimidines. Metabolic pathway reconstruction and experimental validation in the laboratory further suggest that the loss of pyrimidine de novo synthesis is compensated for by possession of three salvage enzymes. Two of these, uridine kinase-uracil phosphoribosyltransferase and thymidine kinase, are unique to C. parvum within the phylum Apicomplexa. Phylogenetic analysis suggests horizontal gene transfer of thymidine kinase from a proteobacterium. We further show that the purine metabolism in C. parvum follows a highly streamlined pathway. Salvage of adenosine provides C. parvum's sole source of purines. This renders the parasite susceptible to inhibition of inosine monophosphate dehydrogenase, the rate-limiting enzyme in the multistep conversion of AMP to GMP. The inosine 5' monophosphate dehydrogenase inhibitors ribavirin and mycophenolic acid, which are already in clinical use, show pronounced anticryptosporidial activity. Taken together, these data help to explain why widely used drugs fail in the treatment of cryptosporidiosis and suggest more promising targets.


Assuntos
Cryptosporidium parvum/genética , Evolução Molecular , Técnicas de Transferência de Genes , Genes de Protozoários/genética , Nucleotídeos/biossíntese , Adenosina/metabolismo , Animais , Sequência de Bases , Cryptosporidium parvum/isolamento & purificação , Primers do DNA , Bases de Dados de Ácidos Nucleicos , Etiquetas de Sequências Expressas , Interações Hospedeiro-Parasita , Modelos Biológicos , Dados de Sequência Molecular , Nucleotídeos/genética , Reação em Cadeia da Polimerase , Purinas/metabolismo , Pirimidinas/metabolismo
14.
J Gen Virol ; 84(Pt 8): 2041-2049, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12867634

RESUMO

Infection of cultured insect cells with Spodoptera exigua multicapsid nucleopolyhedrovirus (SeMNPV) resulted in the generation of mutants with major genomic deletions. Some of the mutants lacked the ability to infect S. exigua larvae per os. The gene(s) responsible for this phenotype in SeMNPV was mapped within a contiguous sequence encoding ORFs 29-35. In this paper we have shown that SeMNPV ORFs 15-35 (including genes encoding cathepsin, chitinase, GP37, PTPT-2, EGT, PKIP-1 and ARIF-1) are not essential for virus replication in cell culture or by in vivo intrahaemocoelic injection. By site-specific deletion mutagenesis of a full-length infectious clone of SeMNPV (bacmid) using ET recombination in E. coli, a series of SeMNPV bacmid mutants with increasing deletions in ORFs 15-35 was generated. Analyses of these mutants indicated that a deletion of SeMNPV ORF35 (Se35) resulted in loss of oral infectivity of polyhedral occlusion bodies. Reinsertion of ORF35 in SeMNPV bacmids lacking Se35 rescued oral infectivity. We propose the name pif-2 for Se35 and its baculovirus homologues (e.g. Autographa californica MNPV ORF22), by analogy to a different gene recently characterized in Spodoptera littoralis NPV, which was designated per os infectivity factor (pif). Similar to the p74 gene, which encodes an essential structural protein of the occlusion-derived virus envelope, pif and pif-2 belong to a group of 30 genes that are conserved among the Baculoviradae.


Assuntos
Nucleopoliedrovírus/patogenicidade , Spodoptera/virologia , Proteínas Estruturais Virais/genética , Administração Oral , Sequência de Aminoácidos , Animais , Células Cultivadas , Larva/virologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Nucleopoliedrovírus/genética , Fases de Leitura Aberta , Análise de Sequência de DNA , Deleção de Sequência , Proteínas Estruturais Virais/metabolismo , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA