Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36904106

RESUMO

Stroke is one of the main causes of mortality and disability, and it is due to be included in monetary implications on wellbeing frameworks around the world. Ischemic stroke is caused by interference in cerebral blood flow, leading to a deficit in the supply of oxygen to the affected region. It accounts for nearly 80-85% of all cases of stroke. Oxidative stress has a significant impact on the pathophysiologic cascade in brain damage leading to stroke. In the acute phase, oxidative stress mediates severe toxicity, and it initiates and contributes to late-stage apoptosis and inflammation. Oxidative stress conditions occur when the antioxidant defense in the body is unable to counteract the production and aggregation of reactive oxygen species (ROS). The previous literature has shown that phytochemicals and other natural products not only scavenge oxygen free radicals but also improve the expressions of cellular antioxidant enzymes and molecules. Consequently, these products protect against ROS-mediated cellular injury. This review aims to give an overview of the most relevant data reported in the literature on polyphenolic compounds, namely, gallic acid, resveratrol, quercetin, kaempferol, mangiferin, epigallocatechin, and pinocembrin, in terms of their antioxidant effects and potential protective activity against ischemic stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Polifenóis/farmacologia , Neuroproteção , Acidente Vascular Cerebral/metabolismo , Estresse Oxidativo , Isquemia
2.
Immunity ; 54(2): 235-246.e5, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33357409

RESUMO

The interleukin-6 (IL-6) membrane receptor and its circulating soluble form, sIL-6R, can be targeted by antibody therapy to reduce deleterious immune signaling caused by chronic overexpression of the pro-inflammatory cytokine IL-6. This strategy may also hold promise for treating acute hyperinflammation, such as observed in coronavirus disease 2019 (COVID-19), highlighting a need to define regulators of IL-6 homeostasis. We found that conventional dendritic cells (cDCs), defined in mice via expression of the transcription factor Zbtb46, were a major source of circulating sIL-6R and, thus, systemically regulated IL-6 signaling. This was uncovered through identification of a cDC-dependent but T cell-independent modality that naturally adjuvants plasma cell differentiation and antibody responses to protein antigens. This pathway was then revealed as part of a broader biological buffer system in which cDC-derived sIL-6R set the in-solution persistence of IL-6. This control axis may further inform the development of therapeutic agents to modulate pro-inflammatory immune reactions.


Assuntos
Células Dendríticas/imunologia , Interleucina-6/sangue , Interleucina-6/imunologia , Proteína ADAM17 , Animais , Diferenciação Celular , Imunidade Humoral , Imunoglobulina M/imunologia , Inflamação , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/imunologia , Interleucina-6/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasmócitos/imunologia , Receptores de Interleucina-6/sangue , Receptores de Interleucina-6/imunologia , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/imunologia , Receptor 7 Toll-Like/imunologia
3.
J Proteome Res ; 19(2): 733-743, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31913636

RESUMO

In cells, asparagine/N-linked glycans are added to glycoproteins cotranslationally, in an attachment process that supports proper folding of the nascent polypeptide. We found that following pruning of N-glycan by the amidase PNGase F, the principal influenza vaccine antigen and major viral spike protein hemagglutinin (HA) spontaneously reattached N-glycan to its de-N-glycosylated positions when the amidase was removed from solution. This reaction, which we term N-glycanation, was confirmed by site-specific analysis of HA glycoforms by mass spectrometry prior to PNGase F exposure, during exposure to PNGase F, and after amidase removal. Iterative rounds of de-N-glycosylation followed by N-glycanation could be repeated at least three times and were observed for other viral glycoproteins/vaccine antigens, including the envelope glycoprotein (Env) from HIV. Covalent N-glycan reattachment was nonenzymatic as it occurred in the presence of metal ions that inhibit PNGase F activity. Rather, N-glycanation relied on a noncovalent assembly between protein and glycan, formed in the presence of the amidase, where linearization of the glycoprotein prevented this retention and subsequent N-glycanation. This reaction suggests that under certain experimental conditions, some glycoproteins can organize self-glycan addition, highlighting a remarkable self-assembly principle that may prove useful for re-engineering therapeutic glycoproteins such as influenza HA or HIV Env, where glycan sequence and structure can markedly affect bioactivity and vaccine efficacy.


Assuntos
Vacinas contra a AIDS , Vacinas contra Influenza , Influenza Humana , Antígenos HIV , Humanos , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase , Polissacarídeos
4.
Diseases ; 7(1)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717078

RESUMO

Autophagy is a regular and substantial "clear-out process" that occurs within the cell and that gets rid of debris that accumulates in membrane-enclosed vacuoles by using enzyme-rich lysosomes, which are filled with acids that degrade the contents of the vacuoles. This machinery is well-connected with many prevalent diseases, including cancer, HIV, and Parkinson's disease. Considering that autophagy is well-known for its significant connections with a number of well-known fatal diseases, a thorough knowledge of the current findings in the field is essential in developing therapies to control the progression rate of diseases. Thus, this review summarizes the critical events comprising autophagy in the cellular system and the significance of its key molecules in manifesting this pathway in various diseases for down- or upregulation. We collectively reviewed the role of autophagy in various diseases, mainly neurodegenerative diseases, cancer, inflammatory diseases, and renal disorders. Here, some collective reports on autophagy showed that this process might serve as a dual performer: either protector or contributor to certain diseases. The aim of this review is to help researchers to understand the role of autophagy-regulating genes encoding functional open reading frames (ORFs) and its connection with diseases, which will eventually drive better understanding of both the progression and suppression of different diseases at various stages. This review also focuses on certain novel therapeutic strategies which have been published in the recent years based on targeting autophagy key proteins and its interconnecting signaling cascades.

5.
J Cell Physiol ; 233(2): 759-770, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28608562

RESUMO

Malignant glioma is the most fatal of astrocytic lineage tumors despite therapeutic advances. Onset and progression of gliomas is accompanied by severe debilitation of T-cell defense and T-cell survival. One of the chief contributors to T-cell survival downstream of activation is the PI3K-AKT pathway. Our prior studies showed that the novel immunotherapeutic molecule T11-target structure (T11TS) blocks T-cell apoptosis in glioma. We also showed activation of immunological synapse components and calcineurin-NFAT pathway following T11TS immunotherapy of glioma-bearing rats. This lead to investigations whether such T-cell activation upon T11TS therapy translates into activation of downstream PI3K/AKT signals which may be related to observed blockade of T-cell apoptosis. For the purpose, we assessed by flowcytometry and immunoblotting, expressions of PI3K, PDK1, AKT, p-AKT, and PTEN in splenic T-cells of normal, experimentally-induced glioma-bearing rats and glioma-bearing rats receiving first, second and third doses of T11TS. We also determined comparative nuclear translocation of NF-κB across groups. We found significant increases in T-cell expressions of PDK1, PI3K, and p-AKT in T11TS-treated animal groups compared to sharp downregulations in glioma. AKT levels remained unchanged across groups. PTEN levels declined sharply after T11TS immunotherapy. T11TS also caused enhanced NF-κB translocation to the T-cell nucleus compared to glioma group. Results showed heightened activation of the PI3K-AKT pathway in glioma-bearing rats following T11TS immunotherapy. These results illustrate the novel role of T11TS immunotherapy in ameliorating the PI3K pathway in T-cells in glioma-bearing animals to enhance T-cell survival, according greater defense against glioma. The study thus has far-reaching clinical outcomes.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Antígenos CD58/farmacologia , Glioma/tratamento farmacológico , Imunoterapia/métodos , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linfócitos T/efeitos dos fármacos , Evasão Tumoral/efeitos dos fármacos , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Antígenos CD28/imunologia , Antígenos CD28/metabolismo , Sobrevivência Celular , Etilnitrosoureia , Feminino , Glioma/enzimologia , Glioma/imunologia , Glioma/patologia , Masculino , NF-kappa B/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação , Ratos , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/enzimologia , Linfócitos T/imunologia
6.
Biochem J ; 474(14): 2449-2464, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28468838

RESUMO

Murine double minute 2 (Mdm2) is known to enhance the transactivation potential of human immunodeficiency virus (HIV-1) Tat protein by causing its ubiquitination. However, the regulation of Mdm2 during HIV-1 infection and its implications for viral replication have not been well studied. Here, we show that the Mdm2 protein level increases during HIV-1 infection and this effect is mediated by HIV-1 Tat protein. Tat appears to stabilise Mdm2 at the post-translational level by inducing its phosphorylation at serine-166 position through AKT. Although p53 is one of the key players for Mdm2 induction, Tat-mediated stabilisation of Mdm2 appears to be independent of p53. Moreover, the non-phosphorylatable mutant of Mdm2 (S166A) fails to interact with Tat and shows decreased half-life in the presence of Tat compared with wild-type Mdm2. Furthermore, the non-phosphorylatable mutant of Mdm2 (S166A) is unable to support HIV-1 replication. Thus, HIV-1 Tat appears to stabilise Mdm2, which in turn enhances Tat-mediated viral replication. This study highlights the importance of post-translational modifications of host cellular factors in HIV-1 replication and pathogenesis.


Assuntos
HIV-1/fisiologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Mutação , Fosforilação , Proteínas Proto-Oncogênicas c-mdm2/genética , RNA Interferente Pequeno/genética , Proteína Supressora de Tumor p53/metabolismo , Replicação Viral
7.
Pharmacogn Mag ; 13(Suppl 1): S16-S21, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28479720

RESUMO

BACKGROUND: Tephrosia purpurea is an Indian herb used in traditional medicine to treat various diseases such as jaundice, asthma, liver and urinary disorders. However, the anti-cancer potential of T. purpurea on hepatocellular carcinoma (HCC) is poorly understood. Therefore, this study aims to investigate the anti-cancer activity of T. purpurea in HepG2 hepatocellular carcinoma cells. METHODS: The leaves and root of T. purpurea were extracted with methanol using soxhlet apparatus. The cytotoxicity of the T. purpurea extracts in HepG2 cells was evaluated using MTT assay whereas the mode of cell death was examined by AOEB, Hoechst and JC1 staining under a fluorescence microscope. T. purpurea extracts-induced caspase-3 expression was investigated using colorimetric assay. RESULTS: The leaves and root extracts inhibited HepG2 cell growth at the IC50 of 102.33 ± 10.26 µg/mL and 276.67 ± 20.43 µg/mL respectively at 24 h. Chromatin condensation, nuclear fragmentation, apoptotic bodies formation and mitochondrial membrane depolarization were observed in HepG2 cells treated with both extracts. The caspase-3 expression was significantly (p < 0.05) increased in extracts treated cells when compared to control. CONCLUSION: The leaves and root extracts of T. purpurea induce apoptosis mediated cell death in HepG2 cells. SUMMARY: The leaves and root extracts of T. purpurea exhibited anticancer activity in HepG2 hepatocellular carcinoma cells. These extracts induced cell shrinkage, DNA condensation and fragmentation, mitochondrial membrane depolarization and upregulated caspase-3 expression indicating T. purpurea extracts induce apoptosis in HepG2 cells. Abbreviation used: AO: acridine orange, DMSO: dimethyl sulfoxide, EB: ethidium bromide, IC50: the concentration at which 50% of cancer cells are dead, JC-1: 5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethyl-imidacarbocyanine iodide, MTT: 3-4, 5-dimethylthiazole-2-yl, 2,5-diphenyl tetrazolium bromide, PBS: phosphate-buffered saline, ΔΨm: mitochondrial trans-membrane potential.

8.
Biomed Pharmacother ; 74: 178-86, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26349982

RESUMO

Breast cancer chemoprevention has become increasingly important in India as it faces a potential breast cancer epidemic over the next decade. Curcumin, the active ingredient in turmeric is a well known chemopreventive agent that possesses various therapeutic properties including antioxidants and anti-inflammatory effects. In the present study, we have investigated the inhibitory effects of BDMC-A, an analog of curcumin, on invasion, angiogenesis and metastasis markers using in vitro with MCF-7 cells and in silico studies, hence proved that BDMC-A has more potential than curcumin. Mechanistic studies revealed that BDMC-A might have exerted its activity by inhibiting metastatic and angiogenic pathways by modulating the expression of proteins upstream to NF-κB (TGF-ß, TNF-α, IL-1ß and c-Src), and NF-κB signaling cascade (c-Rel, COX-2, MMP-9, VEGF, IL-8) and by upregulating TIMP-2 levels. An in silico molecular docking study with NF-κB revealed that the docking score and interaction of BDMC-A with NF-κB-DNA binding was more efficient when compared to curcumin. Our overall results showed that BDMC-A more effectively inhibited invasion, angiogenesis and metastasis markers compared to curcumin. The activity can be attributed to the presence of hydroxyl group in the ortho position in its structure. Further research are going on to prove its potential as a therapeutic agent for breast cancer.


Assuntos
Anticarcinógenos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Curcumina/análogos & derivados , Neovascularização Patológica/tratamento farmacológico , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/patologia , Simulação por Computador , Curcumina/farmacologia , Feminino , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Invasividade Neoplásica/prevenção & controle , Metástase Neoplásica/prevenção & controle , Neovascularização Patológica/patologia , Transdução de Sinais/efeitos dos fármacos
9.
Mol Immunol ; 67(2 Pt B): 256-64, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26105805

RESUMO

Malignant glioma is the most lethal of a wide array of CNS neoplasms. Its onset and progression are markedly associated with profound immunosupression and paralysis of T-cell survival and proliferation. Myriad immunotherapeutic strategies are presently used to target such T-cell anomalies in glioma. Our recent work has highlighted use of the novel glycopeptide, the CD2 ligand, T11 target structure (T11TS) as an immunotherapeutic agent against experimentally induced glioma in rats. We have shown that T11TS causes multi-target modulation of key components of the T-cell - antigen presenting cell (APC) immunological synapse. This consequently triggers T-cell activation so as to reverse glioma-induced changes to physiological levels. T11TS administration also causes CD2 upregulation. Earlier we also found T11TS to cause enhanced proliferation of both CD4+ and CD8+ T-cells in glioma conditions. These findings led us to believe that downstream CD2-stimulated "alternative pathway" of calcineurin-NFAT could be a possible target for modulation by T11TS. In the present paper we thus show that immunotherapy with T11TS induces a multi-targeted approach towards activation of this "alternative pathway" of T-cell signaling providing an immunotherapeutic advantage against glioma. We show here that T11TS immunotherapy causes positive modulations of the CD2 pathway-associated proteins, viz., p59fyn, protein kinase C-θ (PKC-θ), calcineurin and nuclear factor for activation of T-cells (NFAT) and hint that this may accord greater survival and proliferation advantage to T-cells of the glioma-bearing animals for augmented defence against glioma. These findings help open a molecular immunotherapeutic door - one which is directed towards clinical studies for glioma-immunotherapy using T11TS.


Assuntos
Antígenos CD2/metabolismo , Calcineurina/metabolismo , Glioma/terapia , Imunoterapia , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Animais , Animais Recém-Nascidos , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Núcleo Celular/metabolismo , Citometria de Fluxo , Imunofluorescência , Glioma/imunologia , Isoenzimas/metabolismo , Proteína Quinase C/metabolismo , Proteína Quinase C-theta , Ratos , Ovinos , Baço/citologia
10.
Cell Oncol (Dordr) ; 37(6): 439-54, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25433549

RESUMO

BACKGROUND: Head and neck cancer is the sixth most frequently occurring cancer worldwide and accounts for about 2% of all cancer-related deaths annually. Curcumin is a well-known chemopreventive agent, and apoptosis induction by curcumin has been reported in many cancer cell types. We synthesized an ortho-hydroxy substituted analog of curcumin, bisdemethoxycurcumin analog (BDMC-A), and aimed to demarcate the apoptotic effects induced by BDMC-A on human laryngeal cancer Hep-2 cells and to compare these effects with those induced by curcumin. METHODS: We evaluated the apoptotic effects of BDMC-A in comparison to those of curcumin on Hep-2 cells by performing Western blotting, RT-PCR, fluorescent staining and DNA fragmentation assays. In addition, we carried out an in silico molecular docking study on the EGFR kinase domain. RESULTS: We found that BDMC-A can induce apoptosis in Hep-2 cells by regulating the expression of both intrinsic and extrinsic apoptotic proteins, i.e., Bcl-2, Bax, apoptososme complex and death receptors, more efficiently than curcumin. We also observed increased nuclear fragmentation and chromatin condensation after BDMC-A treatment compared to curcumin treatment. Depolarized mitochondria and ROS generation was well pronounced in both BDMC-A and curcumin treated Hep-2 cells. Our in silico molecular docking study on the EGFR kinase domain revealed that BDMC-A may dock more efficiently than curcumin. CONCLUSIONS: From our results we conclude that BDMC-A can induce apoptosis in Hep-2 laryngeal carcinoma cells more effectively than curcumin, and that this activity can be attributed to the presence of a hydroxyl group at the ortho position within this compound.


Assuntos
Curcumina/análogos & derivados , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Curcumina/farmacologia , Diarileptanoides , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
11.
Chem Biol Interact ; 210: 51-63, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24365254

RESUMO

In developing countries, survival rates for breast cancer are poor and it accounts for 22.9% of all cancers in women. Curcumin, a major constituent from turmeric, is one of the well-known chemopreventive agents. Reports have shown that curcumin induces apoptosis in breast cancer cells. We synthesized an ortho-hydroxy substituted analog of curcumin (BDMC-A) and analyzed its cytotoxicity. The BDMC-A inhibited MCF-7 at a dose equivalent to that of curcumin (30 µM). The present study was aimed at delineating the apoptotic mechanism of BDMC-A in comparison to that of curcumin. In our study, BDMC-A exerted more potent effect on the modulation of selective apoptotic markers (intrinsic pathway: p53, Bcl-2, Bax, cyt c, Apaf-1, caspase-9, 3, PARP; extrinsic pathway: FasL, caspase 8) compared to curcumin. mRNA expression studies for Bcl2/Bax also supported the increased efficacy of BDMC-A. An in silico molecular docking study with PI3K revealed that the docking of BDMC-A was more potent compared to curcumin. Increased apoptotic induction by BDMC-A compared to curcumin was also demonstrated by Annexin V, Rh123 (ΔΨm), PI, Hoechst 33258, AO/EB fluorescent staining studies which showed characteristic apoptotic features like nuclear fragmentation and chromatin condensation. Moreover, BDMC-A treated cells effectively induced apoptosis through ROS intermediates compared to curcumin, as measured by 2'-7'-Dichlorodihydrofluorescein diacetate (DCFH-DA). Hence our overall results showed that BDMC-A induced apoptosis more effectively compared to curcumin and the activity can be attributed to the presence of hydroxyl group in the ortho position in its structure. Further researches are going on to delineate its molecular targets to evaluate its effect as a potent anticancer agent.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Curcumina/análogos & derivados , Antineoplásicos/química , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Curcumina/química , Curcumina/farmacologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Estrutura Molecular , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA