Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Oncoimmunology ; 13(1): 2300882, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38192443

RESUMO

Myeloid cells are known to play a crucial role in creating a tumor-promoting and immune suppressive microenvironment. Our previous study demonstrated that primary human monocytes can be polarized into immunosuppressive myeloid-derived suppressor cells (MDSCs) by cancer-associated fibroblasts (CAFs) in a 3D co-culture system. However, the molecular mechanisms underlying the immunosuppressive function of MDSCs, especially CAF-induced MDSCs, remain poorly understood. Using mass spectrometry-based proteomics, we compared cell surface protein changes among monocytes, in vitro differentiated CAF-induced MDSCs, M1/M2 macrophages, and dendritic cells, and identified an extracellular vesicle (EV)-mediated secretory phenotype of MDSCs. Functional assays using an MDSC/T-cell co-culture system revealed that blocking EV generation in CAF-induced MDSCs reversed their ability to suppress T-cell proliferation, while EVs isolated from CAF-induced MDSCs directly inhibited T-cell function. Furthermore, we identified fructose bisphosphatase 1 (FBP1) as a cargo protein that is highly enriched in EVs isolated from CAF-induced MDSCs, and pharmacological inhibition of FBP1 partially reversed the suppressive phenotype of MDSCs. Our findings provide valuable insights into the cell surface proteome of different monocyte-derived myeloid subsets and uncover a novel mechanism underlying the interplay between CAFs and myeloid cells in shaping a tumor-permissive microenvironment.


Assuntos
Fibroblastos Associados a Câncer , Vesículas Extracelulares , Células Supressoras Mieloides , Neoplasias , Humanos , Linfócitos T , Microambiente Tumoral
2.
Science ; 380(6640): 93-101, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36926954

RESUMO

Although most cancer drugs modulate the activities of cellular pathways by changing posttranslational modifications (PTMs), little is known regarding the extent and the time- and dose-response characteristics of drug-regulated PTMs. In this work, we introduce a proteomic assay called decryptM that quantifies drug-PTM modulation for thousands of PTMs in cells to shed light on target engagement and drug mechanism of action. Examples range from detecting DNA damage by chemotherapeutics, to identifying drug-specific PTM signatures of kinase inhibitors, to demonstrating that rituximab kills CD20-positive B cells by overactivating B cell receptor signaling. DecryptM profiling of 31 cancer drugs in 13 cell lines demonstrates the broad applicability of the approach. The resulting 1.8 million dose-response curves are provided as an interactive molecular resource in ProteomicsDB.


Assuntos
Antineoplásicos , Apoptose , Processamento de Proteína Pós-Traducional , Proteômica , Antígenos CD20/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteômica/métodos , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Humanos
3.
Cell Chem Biol ; 29(11): 1639-1648.e4, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36356585

RESUMO

DNA-binding proteins are promising therapeutic targets but are notoriously difficult to drug. Here, we evaluate a chemoproteomic DNA interaction platform as a complementary strategy for parallelized compound profiling. To enable this approach, we determined the proteomic binding landscape of 92 immobilized DNA sequences. Perturbation-induced activity changes of captured transcription factors in disease-relevant settings demonstrated functional relevance of the enriched subproteome. Chemoproteomic profiling of >300 cysteine-directed compounds against a coverage optimized bead mixture, which specifically captures >150 DNA binders, revealed competition of several DNA-binding proteins, including the transcription factors ELF1 and ELF2. We also discovered the first compound that displaces the DNA-repair complex MSH2-MSH3 from DNA. Compound binding to cysteine 252 on MSH3 was confirmed using chemoproteomic reactive cysteine profiling. Overall, these results suggested that chemoproteomic DNA bead pull-downs enable the specific readout of transcription factor activity and can identify functional "hotspots" on DNA binders toward expanding the druggable proteome.


Assuntos
Cisteína , Proteínas de Ligação a DNA , Proteômica , Fatores de Transcrição , Proteoma
4.
ACS Chem Biol ; 16(4): 631-641, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33755436

RESUMO

Due to its important roles in oncogenic signaling, AKT has been subjected to extensive drug discovery efforts leading to small molecule inhibitors investigated in advanced clinical trials. To better understand how these drugs exert their therapeutic effects at the molecular level, we combined chemoproteomic target affinity profiling using kinobeads and phosphoproteomics to analyze the five clinical AKT inhibitors AZD5363 (Capivasertib), GSK2110183 (Afuresertib), GSK690693, Ipatasertib, and MK-2206 in BT-474 breast cancer cells. Kinobead profiling identified between four and 29 nM targets for these compounds and showed that AKT1 and AKT2 were the only common targets. Similarly, measuring the response of the phosphoproteome to the same inhibitors identified ∼1700 regulated phosphorylation sites, 276 of which were perturbed by all five compounds. This analysis expanded the known AKT signaling network by 119 phosphoproteins that may represent direct or indirect targets of AKT. Within this new network, 41 regulated phosphorylation sites harbor the AKT substrate motif, and recombinant kinase assays validated 16 as novel AKT substrates. These included CEP170 and FAM83H, suggesting a regulatory function of AKT in mitosis and cytoskeleton organization. In addition, a specific phosphorylation pattern on the ULK1-FIP200-ATG13-VAPB complex was found to determine the active state of ULK1, leading to elevated autophagy in response to AKT inhibition.


Assuntos
Fosfoproteínas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteômica/métodos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Autofagia/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
6.
Nat Commun ; 11(1): 3639, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686665

RESUMO

Integrated analysis of genomes, transcriptomes, proteomes and drug responses of cancer cell lines (CCLs) is an emerging approach to uncover molecular mechanisms of drug action. We extend this paradigm to measuring proteome activity landscapes by acquiring and integrating quantitative data for 10,000 proteins and 55,000 phosphorylation sites (p-sites) from 125 CCLs. These data are used to contextualize proteins and p-sites and predict drug sensitivity. For example, we find that Progesterone Receptor (PGR) phosphorylation is associated with sensitivity to drugs modulating estrogen signaling such as Raloxifene. We also demonstrate that Adenylate kinase isoenzyme 1 (AK1) inactivates antimetabolites like Cytarabine. Consequently, high AK1 levels correlate with poor survival of Cytarabine-treated acute myeloid leukemia patients, qualifying AK1 as a patient stratification marker and possibly as a drug target. We provide an interactive web application termed ATLANTiC (http://atlantic.proteomics.wzw.tum.de), which enables the community to explore the thousands of novel functional associations generated by this work.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Proteoma/metabolismo , Adenilato Quinase/metabolismo , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Biologia Computacional , Simulação por Computador , Citarabina/metabolismo , Citarabina/farmacologia , Desenvolvimento de Medicamentos , Genômica , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Neoplasias/metabolismo , Proteoma/genética , Proteômica , Cloridrato de Raloxifeno/metabolismo , Cloridrato de Raloxifeno/farmacologia , Receptores de Progesterona/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
7.
Nat Chem Biol ; 16(10): 1111-1119, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32690943

RESUMO

Mass spectrometry-based discovery proteomics is an essential tool for the proximal readout of cellular drug action. Here, we apply a robust proteomic workflow to rapidly profile the proteomes of five lung cancer cell lines in response to more than 50 drugs. Integration of millions of quantitative protein-drug associations substantially improved the mechanism of action (MoA) deconvolution of single compounds. For example, MoA specificity increased after removal of proteins that frequently responded to drugs and the aggregation of proteome changes across cell lines resolved compound effects on proteostasis. We leveraged these findings to demonstrate efficient target identification of chemical protein degraders. Aggregating drug response across cell lines also revealed that one-quarter of compounds modulated the abundance of one of their known protein targets. Finally, the proteomic data led us to discover that inhibition of mitochondrial function is an off-target mechanism of the MAP2K1/2 inhibitor PD184352 and that the ALK inhibitor ceritinib modulates autophagy.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Proteômica/métodos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Espectrometria de Massas , Proteoma
8.
Mol Cell Biol ; 39(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31501275

RESUMO

The MYC oncogene is upregulated in human cancers by translocation, amplification, and mutation of cellular pathways that regulate Myc. Myc/Max heterodimers bind to E box sequences in the promoter regions of genes and activate transcription. The MYC inhibitor Omomyc can reduce the ability of MYC to bind specific box sequences in promoters of MYC target genes by binding directly to E box sequences as demonstrated by chromatin immunoprecipitation (CHIP). Here, we demonstrate by both a proximity ligation assay (PLA) and double chromatin immunoprecipitation (ReCHIP) that Omomyc preferentially binds to Max, not Myc, to mediate inhibition of MYC-mediated transcription by replacing MYC/MAX heterodimers with Omomyc/MAX heterodimers. The formation of Myc/Max and Omomyc/Max heterodimers occurs cotranslationally; Myc, Max, and Omomyc can interact with ribosomes and Max RNA under conditions in which ribosomes are intact. Taken together, our data suggest that the mechanism of action of Omomyc is to bind DNA as either a homodimer or a heterodimer with Max that is formed cotranslationally, revealing a novel mechanism to inhibit the MYC oncogene. We find that in vivo, Omomyc distributes quickly to kidneys and liver and has a short effective half-life in plasma, which could limit its use in vivo.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Genes myc , Fragmentos de Peptídeos/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sequência de Aminoácidos , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Linhagem Celular , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina/métodos , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Feminino , Células HCT116 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/farmacologia , Proteínas Recombinantes/farmacologia , Transcrição Gênica , Ativação Transcricional
9.
ACS Chem Biol ; 14(4): 655-664, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30901187

RESUMO

Chemical proteomic approaches utilizing immobilized, broad-selective kinase inhibitors (Kinobeads) have proven valuable for the elucidation of a compound's target profile under close-to-physiological conditions and often revealed potentially synergistic or toxic off-targets. Current Kinobeads enrich more than 300 native protein kinases from cell line or tissue lysates but do not systematically cover phosphatidylinositol 3-kinases (PI3Ks) and phosphatidylinositol 3-kinase-related kinases (PIKKs). Some PIKKs and PI3Ks show aberrant activation in many human diseases and are indeed validated drug targets. Here, we report the development of a novel version of Kinobeads that extends kinome coverage to these proteins. This is achieved by inclusion of two affinity probes derived from the clinical PI3K/MTOR inhibitors Omipalisib and BGT226. We demonstrate the utility of the new affinity matrix by the profiling of 13 clinical and preclinical PIKK/PI3K inhibitors. The large discrepancies between the PI3K affinity values obtained and reported results from recombinant assays led us to perform a phosphoproteomic experiment showing that the chemoproteomic assay is the better approximation of PI3K inhibitor action in cellulo. The results further show that NVP-BEZ235 is not a PI3K inhibitor. Surprisingly, the designated ATM inhibitor CP466722 was found to bind strongly to ALK2, identifying a new chemotype for drug discovery to treat fibrodysplasia ossificans progressiva.


Assuntos
Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteômica/métodos , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Transdução de Sinais/efeitos dos fármacos
10.
Science ; 358(6367)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191878

RESUMO

Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas/métodos , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/farmacologia , Proteômica/métodos , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Citocinas/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/enzimologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Camundongos , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores
11.
Mol Syst Biol ; 13(11): 951, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29101300

RESUMO

Most molecular cancer therapies act on protein targets but data on the proteome status of patients and cellular models for proteome-guided pre-clinical drug sensitivity studies are only beginning to emerge. Here, we profiled the proteomes of 65 colorectal cancer (CRC) cell lines to a depth of > 10,000 proteins using mass spectrometry. Integration with proteomes of 90 CRC patients and matched transcriptomics data defined integrated CRC subtypes, highlighting cell lines representative of each tumour subtype. Modelling the responses of 52 CRC cell lines to 577 drugs as a function of proteome profiles enabled predicting drug sensitivity for cell lines and patients. Among many novel associations, MERTK was identified as a predictive marker for resistance towards MEK1/2 inhibitors and immunohistochemistry of 1,074 CRC tumours confirmed MERTK as a prognostic survival marker. We provide the proteomic and pharmacological data as a resource to the community to, for example, facilitate the design of innovative prospective clinical trials.


Assuntos
Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , c-Mer Tirosina Quinase/genética , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Redes Reguladoras de Genes , Humanos , Imuno-Histoquímica , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/antagonistas & inibidores , MAP Quinase Quinase 2/genética , MAP Quinase Quinase 2/metabolismo , Farmacogenética/métodos , Prognóstico , Inibidores de Proteínas Quinases/uso terapêutico , Proteômica/métodos , Transdução de Sinais , Análise de Sobrevida , c-Mer Tirosina Quinase/antagonistas & inibidores , c-Mer Tirosina Quinase/metabolismo
12.
Cancer Res ; 77(8): 1842-1853, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28209619

RESUMO

HER2/ERBB2-overexpressing breast cancers targeted effectively by the small-molecule kinase inhibitor lapatinib frequently acquire resistance to this drug. In this study, we employed explorative mass spectrometry to profile proteome, kinome, and phosphoproteome changes in an established model of lapatinib resistance to systematically investigate initial inhibitor response and subsequent reprogramming in resistance. The resulting dataset, which collectively contains quantitative data for >7,800 proteins, >300 protein kinases, and >15,000 phosphopeptides, enabled deep insight into signaling recovery and molecular reprogramming upon resistance. Our data-driven approach confirmed previously described mechanisms of resistance (e.g., AXL overexpression and PIK3 reactivation), revealed novel pharmacologically actionable targets, and confirmed the expectation of significant heterogeneity in molecular resistance drivers inducing distinct phenotypic changes. Furthermore, our approach identified an extensive and exclusively phosphorylation-mediated reprogramming of glycolytic activity, supported additionally by widespread changes of corresponding metabolites and an increased sensitivity towards glycolysis inhibition. Collectively, our multi-omic analysis offers deeper perspectives on cancer drug resistance and suggests new biomarkers and treatment options for lapatinib-resistant cancers. Cancer Res; 77(8); 1842-53. ©2017 AACR.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Quinazolinas/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Reprogramação Celular/fisiologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Glicólise , Humanos , Lapatinib , Fosforilação , Proteômica/métodos , Receptor ErbB-2/metabolismo , Transdução de Sinais
13.
J Proteome Res ; 15(12): 4490-4504, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27794612

RESUMO

Although substantial progress has been made regarding the use of molecularly targeted cancer therapies, resistance almost invariably develops and presents a major clinical challenge. The tumor microenvironment can rescue cancer cells from kinase inhibitors by growth-factor-mediated induction of pro-survival pathways. Here we show that epidermal growth factor receptor (EGFR) inhibition by Gefitinib is counteracted by growth factors, notably FGF2, and we assessed the global molecular consequences of this resistance at the proteome and phosphoproteome level in A431 cells. Tandem mass tag peptide labeling and quantitative mass spectrometry allowed the identification and quantification of 22 000 phosphopeptides and 8800 proteins in biological triplicates without missing values. The data show that FGF2 protects the cells from the antiproliferative effect of Gefitinib and largely prevents reprogramming of the proteome and phosphoproteome. Simultaneous EGFR/FGFR or EGFR/GSG2 (Haspin) inhibition overcomes this resistance, and the phosphoproteomic experiments further prioritized the RAS/MEK/ERK as well as the PI3K/mTOR axis for combination treatment. Consequently, the MEK inhibitor Trametinib prevented FGF2-mediated survival of EGFR inhibitor-resistant cells when used in combination with Gefitinib. Surprisingly, the PI3K/mTOR inhibitor Omipalisib reversed resistance mediated by all four growth factors tested, making it an interesting candidate for mitigating the effects of the tumor microenvironment.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/genética , Fator 2 de Crescimento de Fibroblastos/farmacologia , Neoplasias/metabolismo , Fosfopeptídeos/análise , Proteoma/análise , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Receptores ErbB/antagonistas & inibidores , Gefitinibe , Humanos , Neoplasias/patologia , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteômica , Piridonas/farmacologia , Piridonas/uso terapêutico , Pirimidinonas/farmacologia , Pirimidinonas/uso terapêutico , Quinazolinas/farmacologia
14.
ACS Chem Biol ; 11(12): 3400-3411, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27768280

RESUMO

The receptor tyrosine kinase EPHA2 (Ephrin type-A receptor 2) plays important roles in oncogenesis, metastasis, and treatment resistance, yet therapeutic targeting, drug discovery, or investigation of EPHA2 biology is hampered by the lack of appropriate inhibitors and structural information. Here, we used chemical proteomics to survey 235 clinical kinase inhibitors for their kinase selectivity and identified 24 drugs with submicromolar affinities for EPHA2. NMR-based conformational dynamics together with nine new cocrystal structures delineated drug-EPHA2 interactions in full detail. The combination of selectivity profiling, structure determination, and kinome wide sequence alignment allowed the development of a classification system in which amino acids in the drug binding site of EPHA2 are categorized into key, scaffold, potency, and selectivity residues. This scheme should be generally applicable in kinase drug discovery, and we anticipate that the provided information will greatly facilitate the development of selective EPHA2 inhibitors in particular and the repurposing of clinical kinase inhibitors in general.


Assuntos
Descoberta de Drogas/métodos , Inibidores de Proteínas Quinases/farmacologia , Proteômica/métodos , Receptor EphA2/antagonistas & inibidores , Receptor EphA2/metabolismo , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Inibidores de Proteínas Quinases/química , Receptor EphA2/química
15.
Proteomics ; 16(10): 1447-56, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26990019

RESUMO

Phosphorylation is a reversible posttranslational protein modification which plays a pivotal role in intracellular signaling. Despite extensive efforts, phosphorylation site mapping of proteomes is still incomplete motivating the exploration of alternative methods that complement existing workflows. In this study, we compared tandem mass spectrometry (MS/MS) on matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) and nano-electrospray ionization (nESI) Orbitrap instruments with respect to their ability to identify phosphopeptides from complex proteome digests. Phosphopeptides were enriched from tryptic digests of cell lines using Fe-IMAC column chromatography and subjected to LC-MS/MS analysis. We found that the two analytical workflows exhibited considerable orthogonality. For instance, MALDI-TOF MS/MS favored the identification of phosphopeptides encompassing clear motif signatures for acidic residue directed kinases. The extent of orthogonality of the two LC-MS/MS systems was comparable to that of using alternative proteases such as Asp-N, Arg-C, chymotrypsin, Glu-C and Lys-C on just one LC-MS/MS instrument. Notably, MALDI-TOF MS/MS identified an unexpectedly high number and percentage of phosphotyrosine sites (∼20% of all sites), possibly as a direct consequence of more efficient ionization. The data clearly show that LC-MALDI MS/MS can be a useful complement to LC-nESI MS/MS for phosphoproteome mapping and particularly so for acidic and phosphotyrosine containing peptides.


Assuntos
Fosfoproteínas/química , Proteoma/química , Sítios de Ligação , Linhagem Celular Tumoral , Quimotripsina/química , Humanos , Fosfopeptídeos/química , Fosfopeptídeos/isolamento & purificação , Fosfoproteínas/isolamento & purificação , Fosfoproteínas/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteólise , Proteoma/isolamento & purificação , Proteoma/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
16.
ACS Chem Biol ; 10(12): 2743-52, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26378887

RESUMO

Protein kinases are important mediators of intracellular signaling and are reversibly activated by phosphorylation. Immobilized kinase inhibitors can be used to enrich these often low-abundance proteins, to identify targets of kinase inhibitors, or to probe their selectivity. It has been suggested that the binding of kinases to affinity beads reflects a kinase's activation status, a concept that is under considerable debate. To assess the merits of the idea, we performed a series of experiments including quantitative phosphoproteomics and purification of kinases by single or mixed affinity matrices from signaling activated or resting cancer cells. The data show that mixed affinity beads largely bind kinases independent of their activation status, and experiments using individual immobilized kinase inhibitors show mixed results in terms of preference for binding the active or inactive conformation. Taken together, activity- or conformation-dependent binding to such affinity resins depends (i) on the kinase, (ii) on the affinity probe, and (iii) on the activation status of the lysate or cell. As a result, great caution should be exercised when inferring kinase activity from such binding data. The results also suggest that assaying kinase activity using binding data is restricted to a limited number of well-chosen cases.


Assuntos
Proteínas Quinases/metabolismo , Proteômica , Vanadatos/farmacologia , Western Blotting , Linhagem Celular Tumoral , Cromatografia Líquida , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Enzimas Imobilizadas/química , Enzimas Imobilizadas/farmacologia , Humanos , Espectrometria de Massas , Proteínas Quinases/química , Vanadatos/química
17.
Mol Cell Proteomics ; 14(1): 205-15, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25394399

RESUMO

Advances in phosphopeptide enrichment methods enable the identification of thousands of phosphopeptides from complex samples. Current offline enrichment approaches using TiO(2), Ti, and Fe immobilized metal ion affinity chromatography (IMAC) material in batch or microtip format are widely used, but they suffer from irreproducibility and compromised selectivity. To address these shortcomings, we revisited the merits of performing phosphopeptide enrichment in an HPLC column format. We found that Fe-IMAC columns enabled the selective, comprehensive, and reproducible enrichment of phosphopeptides out of complex lysates. Column enrichment did not suffer from bead-to-sample ratio issues and scaled linearly from 100 µg to 5 mg of digest. Direct measurements on an Orbitrap Velos mass spectrometer identified >7500 unique phosphopeptides with 90% selectivity and good quantitative reproducibility (median cv of 15%). The number of unique phosphopeptides could be increased to more than 14,000 when the IMAC eluate was subjected to a subsequent hydrophilic strong anion exchange separation. Fe-IMAC columns outperformed Ti-IMAC and TiO(2) in batch or tip mode in terms of phosphopeptide identification and intensity. Permutation enrichments of flow-throughs showed that all materials largely bound the same phosphopeptide species, independent of physicochemical characteristics. However, binding capacity and elution efficiency did profoundly differ among the enrichment materials and formats. As a result, the often quoted orthogonality of the materials has to be called into question. Our results strongly suggest that insufficient capacity, inefficient elution, and the stochastic nature of data-dependent acquisition in mass spectrometry are the causes of the experimentally observed complementarity. The Fe-IMAC enrichment workflow using an HPLC format developed here enables rapid and comprehensive phosphoproteome analysis that can be applied to a wide range of biological systems.


Assuntos
Fosfopeptídeos/química , Linhagem Celular Tumoral , Cromatografia de Afinidade , Humanos , Ferro
18.
Expert Rev Proteomics ; 11(3): 259-67, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24666026

RESUMO

Constitutive activity of kinases is known to be crucial for a tumor to maintain its malignant phenotype, a phenomenon which is often referred to as oncogene addiction. The in-depth analysis of aberrant signaling pathways by the analysis of protein phosphorylation has become feasible through recent advances in proteomics technology. In this article we will review developments in the field of phosphoproteomics and its application in cancer research. The most widely used technologies for the generic enrichment of phosphopeptides are discussed as well as targeted approaches for the analysis of a specific subset of phosphopeptides. Validation experiments of phosphorylation sites using targeted mass spectrometry are also explained. Finally, we will highlight applications of phosphoproteomic technology in cancer research using cell lines and tissue.


Assuntos
Neoplasias/metabolismo , Proteoma/metabolismo , Humanos , Fosfopeptídeos/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Transdução de Sinais
19.
Nat Methods ; 10(10): 989-91, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23975139

RESUMO

We report that low percentages of dimethylsulfoxide (DMSO) in liquid chromatography solvents lead to a strong enhancement of electrospray ionization of peptides, improving the sensitivity of protein identification in bottom-up proteomics by up to tenfold. The method can be easily implemented on any LC-MS/MS system without modification to hardware or software and at no additional cost.


Assuntos
Dimetil Sulfóxido/química , Peptídeos/análise , Proteômica/métodos , Solventes/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Peptídeos/química , Proteômica/normas , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização por Electrospray/normas , Espectrometria de Massas em Tandem/normas
20.
J Proteome Res ; 12(8): 3792-800, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23795919

RESUMO

Protein kinases are key regulators of cellular processes, and aberrant function is often associated with human disease. Consequently, kinases represent an important class of therapeutic targets and about 20 kinase inhibitors (KIs) are in clinical use today. Detailed knowledge about the selectivity of KIs is important for the correct interpretation of their pharmacological and systems biological effects. Chemical proteomic approaches for systematic kinase inhibitor selectivity profiling have emerged as important molecular tools in this regard, but the coverage of the human kinome is still incomplete. Here, we describe a new affinity probe targeting Akt and many other members of the AGC kinase family that considerably extends the scope of KI profiling by chemical proteomics. In combination with the previously published kinobeads, the synthesized probe was applied to selectivity profiling of the Akt inhibitors GSK690693 and GSK2141795 in human cancer cells. The results confirmed the inhibition of all Akt isoforms and of a number of known as well as CDC42BPB as a novel putative target for GSK690693. This work also established, for the first time, the kinase selectivity profile of the clinical phase I drug GSK2141795 and identified PRKG1 as a low nanomolar kinase target as well as the ATP-dependent 5'-3' DNA helicase ERCC2 as a potential new non-kinase off-target.


Assuntos
Antineoplásicos/química , Proteína Quinase Dependente de GMP Cíclico Tipo I/genética , Sondas Moleculares/química , Inibidores de Proteínas Quinases/química , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proteína Quinase Dependente de GMP Cíclico Tipo I/antagonistas & inibidores , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Sondas Moleculares/síntese química , Miotonina Proteína Quinase , Oxidiazóis/química , Oxidiazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Proteômica/métodos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sefarose/química , Proteína Grupo D do Xeroderma Pigmentoso/antagonistas & inibidores , Proteína Grupo D do Xeroderma Pigmentoso/genética , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA