Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
2.
Oncotarget ; 7(41): 67166-67174, 2016 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-27564103

RESUMO

Fc gamma receptor I (FcγRI, CD64) is a well-known target antigen for passive immunotherapy against acute myeloid leukemia and chronic myelomonocytic leukemia. We recently reported the preclinical immunotherapeutic potential of microtubule associated protein tau (MAP) against a variety of cancer types including breast carcinoma and Hodgkin's lymphoma. Here we demonstrate that the CD64-directed human cytolytic fusion protein H22(scFv)-MAP kills ex vivo 15-50% of CD64+ leukemic blasts derived from seven myeloid leukemia patients. Furthermore, in contrast to the nonspecific cytostatic agent paclitaxel, H22(scFv)-MAP showed no cytotoxicity towards healthy CD64+ PBMC-derived cells and macrophages. The targeted delivery of this microtubule stabilizing agent therefore offers a promising new strategy for specific treatment of CD64+ leukemia.


Assuntos
Antineoplásicos/farmacologia , Leucemia Mieloide Aguda , Proteínas Associadas aos Microtúbulos/farmacologia , Terapia de Alvo Molecular/métodos , Receptores de IgG , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Feminino , Humanos , Imunotoxinas/farmacologia , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes de Fusão/farmacologia
3.
Cancer Immunol Immunother ; 64(12): 1575-86, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26472728

RESUMO

Immunotoxins are fusion proteins that combine a targeting component such as an antibody fragment or ligand with a cytotoxic effector component that induces apoptosis in specific cell populations displaying the corresponding antigen or receptor. Human cytolytic fusion proteins (hCFPs) are less immunogenic than conventional immunotoxins because they contain human pro-apoptotic enzymes as effectors. However, one drawback of hCFPs is that target cells can protect themselves by expressing endogenous inhibitor proteins. Inhibitor-resistant enzyme mutants that maintain their cytotoxic activity are therefore promising effector domain candidates. We recently developed potent variants of the human ribonuclease angiogenin (Ang) that were either more active than the wild-type enzyme or less susceptible to inhibition because of their lower affinity for the ribonuclease inhibitor RNH1. However, combining the mutations was unsuccessful because although the enzyme retained its higher activity, its susceptibility to RNH1 reverted to wild-type levels. We therefore used molecular dynamic simulations to determine, at the atomic level, why the affinity for RNH1 reverted, and we developed strategies based on the introduction of further mutations to once again reduce the affinity of Ang for RNH1 while retaining its enhanced activity. We were able to generate a novel Ang variant with remarkable in vitro cytotoxicity against HL-60 cells and pro-inflammatory macrophages. We also demonstrated the pro-apoptotic potential of Ang-based hCFPs on cells freshly isolated from leukemia patients.


Assuntos
Leucemia/patologia , Macrófagos/efeitos dos fármacos , Ribonuclease Pancreático/genética , Apoptose , Proteínas de Transporte/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citotoxinas/genética , Citotoxinas/toxicidade , Citometria de Fluxo , Células HL-60 , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica/genética , Ribonuclease Pancreático/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA