Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847355

RESUMO

Targeted drug delivery systems based on metal-organic frameworks (MOFs) have progressed tremendously since inception and are now widely applicable in diverse scientific fields. However, translating MOF agents directly to targeted drug delivery systems remains a challenge due to the biomolecular corona phenomenon. Here, we observed that supramolecular conjugation of antibodies to the surface of MOF particles (MOF-808) via electrostatic interactions and coordination bonding can reduce protein adhesion in biological environments and show stealth shields. Once antibodies are stably conjugated to particles, they were neither easily exchanged with nor covered by biomolecule proteins, which is indicative of the stealth effect. Moreover, upon conjugation of the MOF particle with specific targeted antibodies, namely, anti-CD44, human epidermal growth factor receptor 2 (HER2), and epidermal growth factor receptor (EGFR), the resulting hybrid exhibits an augmented targeting efficacy toward cancer cells overexpressing these receptors, such as HeLa, SK-BR-3, and 4T1, as evidenced by flow cytometry. The therapeutic effectiveness of the antibody-conjugated MOF (anti-M808) was further evaluated through in vivo imaging and the assessment of tumor inhibition effects using IR-780-loaded EGFR-M808 in a 4T1 tumor xenograft model employing nude mice. This study therefore provides insight into the use of supramolecular antibody conjugation as a promising method for developing MOF-based drug delivery systems.

2.
Nat Commun ; 15(1): 4025, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740804

RESUMO

Intracellular membranes composing organelles of eukaryotes include membrane proteins playing crucial roles in physiological functions. However, a comprehensive understanding of the cellular responses triggered by intracellular membrane-focused oxidative stress remains elusive. Herein, we report an amphiphilic photocatalyst localised in intracellular membranes to damage membrane proteins oxidatively, resulting in non-canonical pyroptosis. Our developed photocatalysis generates hydroxyl radicals and hydrogen peroxides via water oxidation, which is accelerated under hypoxia. Single-molecule magnetic tweezers reveal that photocatalysis-induced oxidation markedly destabilised membrane protein folding. In cell environment, label-free quantification reveals that oxidative damage occurs primarily in membrane proteins related to protein quality control, thereby aggravating mitochondrial and endoplasmic reticulum stress and inducing lytic cell death. Notably, the photocatalysis activates non-canonical inflammasome caspases, resulting in gasdermin D cleavage to its pore-forming fragment and subsequent pyroptosis. These findings suggest that the oxidation of intracellular membrane proteins triggers non-canonical pyroptosis.


Assuntos
Inflamassomos , Proteínas de Membrana , Oxirredução , Piroptose , Humanos , Inflamassomos/metabolismo , Proteínas de Membrana/metabolismo , Estresse Oxidativo , Catálise , Estresse do Retículo Endoplasmático , Peróxido de Hidrogênio/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Radical Hidroxila/metabolismo , Mitocôndrias/metabolismo , Membranas Intracelulares/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Animais , Processos Fotoquímicos , Dobramento de Proteína , Caspases/metabolismo , Gasderminas
3.
Acta Biomater ; 159: 188-200, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36724863

RESUMO

A growing body of evidence has indicated that white adipose tissue (AT) remodeling is a major trigger for obesity-associated metabolic complications. However, the scarcity of translational models is an obstacle to the development of medicines that act on adipose restoration. Here, we describe a microphysiological system (MPS) that emulates the unique features of reprogrammed AT as a new in vitro tool for studying AT pathophysiology in obesity. The AT MPS contained mature adipocytes embedded in an extracellular matrix (ECM) hydrogel interfaced with AT microvascular endothelium, which was constantly perfused with fresh media. The unique biochemical signals due to the remodeled ECM in obesity were recapitulated using a decellularized AT ECM (AT dECM) hydrogel, which preserves the features of altered ECM composition in obesity. The mature adipocytes embedded in the AT dECM hydrogel maintained their function and morphology for a week without dedifferentiation. Using the AT MPS, we successfully modeled inflammation-induced AT microvascular dysfunction, the recruitment of immune cells due to the upregulation of cell adhesion molecules, and higher cancer cell adhesion as an indicator of metastasis, which are observed in obese individuals. The AT MPS may therefore represent a promising platform for understanding the dynamic cellular interplay in obesity-induced AT remodeling and validating the efficacy of drugs targeting AT in obesity. STATEMENT OF SIGNIFICANCE: The lack of translational in vitro white adipose tissue (AT) models is one of the main obstacles for understanding the obesity-induced reprogramming and the development of medicines. We report herein the AT microphysiological system (MPS), which recapitulates obesity and normal conditions and yields cell- and AT dECM-derived signals, thereby allowing accurate comparative in vitro analyses. Using the AT MPS, we successfully modeled reprogrammed AT in obesity conditions, including inflammation-induced AT vascular dysfunction, the recruitment of immune cells, and higher cancer cell metastasis, which are observed in obese individuals. Our proposed adipose tissue model providing physiological relevance and complexity may therefore enhance the understanding of obesity-associated disorders and be used to investigate their underlying molecular mechanisms to develop pharmacologic treatment strategies.


Assuntos
Tecido Adiposo , Sistemas Microfisiológicos , Humanos , Obesidade/patologia , Matriz Extracelular/metabolismo , Hidrogéis/metabolismo , Inflamação/patologia
4.
Dev Cell ; 58(4): 320-334.e8, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36800996

RESUMO

Exosomes transport a variety of macromolecules and modulate intercellular communication in physiology and disease. However, the regulation mechanisms that determine exosome contents during exosome biogenesis remain poorly understood. Here, we find that GPR143, an atypical GPCR, controls the endosomal sorting complex required for the transport (ESCRT)-dependent exosome biogenesis pathway. GPR143 interacts with HRS (an ESCRT-0 Subunit) and promotes its association to cargo proteins, such as EGFR, which subsequently enables selective protein sorting into intraluminal vesicles (ILVs) in multivesicular bodies (MVBs). GPR143 is elevated in multiple cancers, and quantitative proteomic and RNA profiling of exosomes in human cancer cell lines showed that the GPR143-ESCRT pathway promotes secretion of exosomes that carry unique cargo, including integrins signaling proteins. Through gain- and loss-of-function studies in mice, we show that GPR143 promotes metastasis by secreting exosomes and increasing cancer cell motility/invasion through the integrin/FAK/Src pathway. These findings provide a mechanism for regulating the exosomal proteome and demonstrate its ability to promote cancer cell motility.


Assuntos
Exossomos , Neoplasias , Humanos , Animais , Camundongos , Exossomos/metabolismo , Proteômica , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Transporte Proteico , Transporte Biológico , Corpos Multivesiculares/metabolismo , Neoplasias/metabolismo , Proteínas do Olho/metabolismo , Glicoproteínas de Membrana/metabolismo
5.
Nat Commun ; 14(1): 439, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707514

RESUMO

Hyperglycemia is a risk factor for breast cancer-related morbidity and mortality. Hyperglycemia induces Neuregulin 1 (Nrg1) overexpression in breast cancer, which subsequently promotes tumor progression. However, molecular mechanisms underlying hyperglycemia-induced Nrg1 overexpression remain poorly understood. Here, we show that hyperglycemia causes active histone modifications at the Nrg1 enhancer, forming enhanceosome complexes where recombination signal binding protein for immunoglobulin kappa J region (RBPJ), E1A binding protein p300 (P300), and SET domain containing 1 A (SETD1A) are recruited to upregulate Nrg1 expression. Deletions in RBPJ-binding sites causes hyperglycemia-controlled Nrg1 levels to be downregulated, resulting in decreased tumor growth in vitro and in vivo. Mice with modest-temporary hyperglycemia, induced by low-dose short-exposure streptozotocin, display accelerated tumor growth and lapatinib resistance, whereas combining lapatinib with N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S42 phenylglycine t-butyl ester (DAPT) ameliorates tumor growth under these modest hyperglycemic conditions by inhibiting NOTCH and EGFR superfamilies. NOTCH activity is correlated with NRG1 levels, and high NRG1 levels predicts poor outcomes, particularly in HER2-positive breast cancer patients. Our findings highlight the hyperglycemia-linked epigenetic modulation of NRG1 as a potential therapeutic strategy for treating breast cancer patients with diabetes.


Assuntos
Hiperglicemia , Neoplasias , Animais , Camundongos , Lapatinib , Epigênese Genética , Neuregulina-1/genética , Neuregulina-1/metabolismo , Linhagem Celular Tumoral , Hiperglicemia/genética
6.
ACS Med Chem Lett ; 13(12): 1911-1915, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36518699

RESUMO

Despite the recent discovery of numerous phosphohistidine (pHis) sites in mammalian proteomes, the functions of this labile post-translational modification (PTM) mostly remain unknown. Phosphohistidine phosphatase 1 (PHPT1), one of the few known protein pHis phosphatases, regulates important cellular processes, and its genetic knockdown attenuated cancer cell proliferation and a liver fibrosis model. Unfortunately, the lack of PHPT1 inhibitors has limited further understanding and the therapeutic potential of this unique enzyme. We report that PHPT1 can be covalently inhibited by targeting Cys73, a residue that is nonessential for the enzyme activity. We also determined the inhibition kinetics of various small molecule electrophiles as potential warheads against PHPT1. Our results lay a foundation for the development of more potent and specific PHPT1 inhibitors.

7.
Cell Chem Biol ; 29(12): 1739-1753.e6, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36272407

RESUMO

Direct identification of the proteins targeted by small molecules can provide clues for disease diagnosis, prevention, and drug development. Despite concentrated attempts, there are still technical limitations associated with the elucidation of direct interactors. Herein, we report a target-ID system called proximity-based compound-binding protein identification (PROCID), which combines our direct analysis workflow of proximity-labeled proteins (Spot-ID) with the HaloTag system to efficiently identify the dynamic proteomic landscape of drug-binding proteins. We successfully identified well-known dasatinib-binding proteins (ABL1, ABL2) and confirmed the unapproved dasatinib-binding kinases (e.g., BTK and CSK) in a live chronic myeloid leukemia cell line. PROCID also identified the DNA helicase protein SMARCA2 as a dasatinib-binding protein, and the ATPase domain was confirmed to be the binding site of dasatinib using a proximity ligation assay (PLA) and in cellulo biotinylation assay. PROCID thus provides a robust method to identify unknown drug-interacting proteins in live cells that expedites the mode of action of the drug.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Proteômica , Humanos , Dasatinibe/farmacologia , Proteínas de Transporte , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Biotinilação
8.
Elife ; 112022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551737

RESUMO

Inositol polyphosphate multikinase (IPMK), a key enzyme in inositol polyphosphate (IP) metabolism, is a pleiotropic signaling factor involved in major biological events, including transcriptional control. In the yeast, IPMK and its IP products promote the activity of the chromatin remodeling complex SWI/SNF, which plays a critical role in gene expression by regulating chromatin accessibility. However, the direct link between IPMK and chromatin remodelers remains unclear, raising the question of how IPMK contributes to transcriptional regulation in mammals. By employing unbiased screening approaches and in vivo/in vitro immunoprecipitation, here we demonstrate that mammalian IPMK physically interacts with the SWI/SNF complex by directly binding to SMARCB1, BRG1, and SMARCC1. Furthermore, we identified the specific domains required for IPMK-SMARCB1 binding. Notably, using CUT&RUN and ATAC-seq assays, we discovered that IPMK co-localizes with BRG1 and regulates BRG1 localization as well as BRG1-mediated chromatin accessibility in a genome-wide manner in mouse embryonic stem cells. Together, these findings show that IPMK regulates the promoter targeting of the SWI/SNF complex, thereby contributing to SWI/SNF-meditated chromatin accessibility, transcription, and differentiation in mouse embryonic stem cells.


Assuntos
Proteínas Cromossômicas não Histona , DNA Helicases , Animais , Cromatina , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/metabolismo , Mamíferos/genética , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas Nucleares/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)
9.
FEBS Lett ; 596(11): 1412-1423, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35445401

RESUMO

Fused in sarcoma (FUS), a DNA/RNA-binding protein, undergoes liquid-liquid phase separation to form granules in cells. Aberrant FUS granulation is associated with neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We found that FUS granules contain a multifunctional AAA ATPase, valosin-containing protein (VCP), which is known as a key regulator of protein degradation. FUS granule stability depends on ATP concentrations in cells. VCP ATPase changes the FUS granule stability time-dependently by consuming ATP to reduce its concentrations in the granules: VCPs in de novo FUS granules stabilize the granules, while long-lasting VCP colocalization destabilizes the granules. The proteolysis-promoting function of VCP may subsequently dissolve the unstabilized granules. We propose that VCP colocalized to the FUS granules acts as a timer to limit the residence time of the granules in cells.


Assuntos
Esclerose Lateral Amiotrófica , Degeneração Lobar Frontotemporal , Sarcoma , Trifosfato de Adenosina , Esclerose Lateral Amiotrófica/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/metabolismo
10.
Commun Chem ; 5(1): 13, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36697817

RESUMO

α,ß-Unsaturated ketones are common feedstocks for the synthesis of fine chemicals, pharmaceuticals, and natural products. Transition metal-catalysed hydroacylation reactions of alkynes using aldehydes have been recognised as an atom-economical route to access α,ß-unsaturated ketones through chemoselective aldehydic C-H activation. However, the previously reported hydroacylation reactions using rhodium, cobalt, or ruthenium catalysts require chelating moiety-bearing aldehydes to prevent decarbonylation of acyl-metal-hydride complexes. Herein, we report a nickel-catalysed anti-Markovnikov selective coupling process to afford non-tethered E-enones from terminal alkynes and S-2-pyridyl thioesters in the presence of zinc metal as a reducing agent. Utilization of a readily available thioester as an acylating agent and water as a proton donor enables the mechanistically distinctive and aldehyde-free hydroacylation of terminal alkynes. This non-chelation-controlled approach features mild reaction conditions, high step economy, and excellent regio- and stereoselectivity.

11.
Oncogenesis ; 10(2): 18, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637676

RESUMO

Mitochondrial proteases are key components in mitochondrial stress responses that maintain proteostasis and mitochondrial integrity in harsh environmental conditions, which leads to the acquisition of aggressive phenotypes, including chemoresistance and metastasis. However, the molecular mechanisms and exact role of mitochondrial proteases in cancer remain largely unexplored. Here, we identified functional crosstalk between LONP1 and ClpP, which are two mitochondrial matrix proteases that cooperate to attenuate proteotoxic stress and protect mitochondrial functions for cancer cell survival. LONP1 and ClpP genes closely localized on chromosome 19 and were co-expressed at high levels in most human cancers. Depletion of both genes synergistically attenuated cancer cell growth and induced cell death due to impaired mitochondrial functions and increased oxidative stress. Using mitochondrial matrix proteomic analysis with an engineered peroxidase (APEX)-mediated proximity biotinylation method, we identified the specific target substrates of these proteases, which were crucial components of mitochondrial functions, including oxidative phosphorylation, the TCA cycle, and amino acid and lipid metabolism. Furthermore, we found that LONP1 and ClpP shared many substrates, including serine hydroxymethyltransferase 2 (SHMT2). Inhibition of both LONP1 and ClpP additively increased the amount of unfolded SHMT2 protein and enhanced sensitivity to SHMT2 inhibitor, resulting in significantly reduced cell growth and increased cell death under metabolic stress. Additionally, prostate cancer patients with higher LONP1 and ClpP expression exhibited poorer survival. These results suggest that interventions targeting the mitochondrial proteostasis network via LONP1 and ClpP could be potential therapeutic strategies for cancer.

12.
Nat Commun ; 12(1): 26, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397915

RESUMO

Mitochondrial oxidation-induced cell death, a physiological process triggered by various cancer therapeutics to induce oxidative stress on tumours, has been challenging to investigate owing to the difficulties in generating mitochondria-specific oxidative stress and monitoring mitochondrial responses simultaneously. Accordingly, to the best of our knowledge, the relationship between mitochondrial protein oxidation via oxidative stress and the subsequent cell death-related biological phenomena has not been defined. Here, we developed a multifunctional iridium(III) photosensitiser, Ir-OA, capable of inducing substantial mitochondrial oxidative stress and monitoring the corresponding change in viscosity, polarity, and morphology. Photoactivation of Ir-OA triggers chemical modifications in mitochondrial protein-crosslinking and oxidation (i.e., oxidative phosphorylation complexes and channel and translocase proteins), leading to microenvironment changes, such as increased microviscosity and depolarisation. These changes are strongly related to cell death by inducing mitochondrial swelling with excessive fission and fusion. We suggest a potential mechanism from mitochondrial oxidative stress to cell death based on proteomic analyses and phenomenological observations.


Assuntos
Irídio/farmacologia , Mitocôndrias/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Morte Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Transferência de Energia , Células HEK293 , Células HeLa , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Oxirredução/efeitos dos fármacos , Proteoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Viscosidade
13.
Int J Mol Sci ; 21(14)2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32708426

RESUMO

Breast cancer is a common malignancy among women worldwide. Gelatinases such as matrix metallopeptidase 2 (MMP2) and MMP9 play crucial roles in cancer cell migration, invasion, and metastasis. To develop a novel platform compound, we synthesized a flavonoid derivative, (E)-5-((4-oxo-4H-chromen-3-yl)methyleneamino)-1-phenyl-1H-pyrazole-4-carbonitrile (named DK4023) and characterized its inhibitory effects on the motility and MMP2 and MMP9 expression of highly metastatic MDA-MB-231 breast cancer cells. We found that DK4023 inhibited tumor necrosis factor alpha (TNFα)-induced motility and F-actin formation of MDA-MB-231 cells. DK4023 also suppressed the TNFα-induced mRNA expression of MMP9 through the downregulation of the TNFα-extracellular signal-regulated kinase (ERK)/early growth response 1 (EGR-1) signaling axis. These results suggest that DK4023 could serve as a potential platform compound for the development of novel chemopreventive/chemotherapeutic agents against invasive breast cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Actinas/metabolismo , Neoplasias da Mama/enzimologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Feminino , Flavonoides/química , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , NF-kappa B/metabolismo , Invasividade Neoplásica , Esferoides Celulares , Fator de Necrose Tumoral alfa/farmacologia
14.
BMB Rep ; 53(12): 628-633, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32635983

RESUMO

WNT11 is a member of the non-canonical Wnt family and plays a crucial role in tumor progression. However, the regulatory mechanisms underlying WNT11 expression are unclear. Tumor necrosis factor-alpha (TNFα) is a major inflammatory cytokine produced in the tumor microenvironment and contributes to processes associated with tumor progression, such as tumor invasion and metastasis. By using site-directed mutagenesis and introducing a serial deletion in the 5'-regulatory region of WNT11, we observed that TNFα activates the early growth response 1 (EGR1)-binding sequence (EBS) in the proximal region of WNT11 and that the transcription factor EGR1 is necessary for the TNFα-induced transcription of WNT11. EGR1 bound directly to the EBSs within the proximal 5'-regulatory region of WNT11 and ectopic expression of EGR1 stimulated WNT11 promoter activity, whereas the knockdown of EGR1 expression by RNA interference reduced TNFα-induced WNT11 expression in T47D breast cancer cells. We also observed that mitogen-activated protein kinases (MAPK), extracellular signalregulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 kinase mediated TNFα-induced transcription of WNT11 via EGR1. Our results suggest that EGR1 directly targets WNT11 in response to TNFα stimulation in breast cancer cells. [BMB Reports 2020; 53(12): 628-633].


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteínas Wnt/metabolismo , Sítios de Ligação/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Feminino , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase 4 , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Transdução de Sinais/genética , Transcrição Gênica/genética , Microambiente Tumoral/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Wnt/genética , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno
15.
JCI Insight ; 5(17)2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32701506

RESUMO

Orphan nuclear receptor estrogen-related receptor γ (ERRγ) stimulates bile acid production; however, the role and the regulatory mechanism of ERRγ in cholestatic liver disease are largely unknown. This study identifies that Sirt6 is a deacetylase of ERRγ and suggests a potentially novel mechanism by which Sirt6 activation alleviates cholestatic liver damage and fibrosis through regulating ERRγ. We observed that hepatic expression of Sirt6 is repressed, whereas hepatic expression of ERRγ is upregulated in murine cholestasis models. Hepatocyte-specific Sirt6-KO mice were more severely injured after a bile duct ligation (BDL) than WT mice, and adenoviral reexpression of Sirt6 reversed liver damage and fibrosis as demonstrated by biochemical and histological analyses. Mechanistically, Sirt6 deacetylated ERRγ, thereby destabilizing ERRγ and inhibiting its transcriptional activity. Elimination of hepatic ERRγ using Ad-shERRγ abolished the deleterious effects of Sirt6 deficiency, whereas ERRγ overexpression aggravated cholestatic liver injury. Administration of a Sirt6 deacetylase activator prevented BDL-induced liver damage and fibrosis. In patients with cholestasis, Sirt6 expression was decreased, whereas total ERRγ and acetylated ERRγ levels were increased, confirming negative regulation of ERRγ by Sirt6. Thus, Sirt6 activation represents a potentially novel therapeutic strategy for treating cholestatic liver injury.


Assuntos
Colestase/metabolismo , Cirrose Hepática/metabolismo , Receptores de Estrogênio/metabolismo , Sirtuínas/metabolismo , Animais , Células Cultivadas , Colestase/complicações , Células HEK293 , Hepatócitos/metabolismo , Humanos , Cirrose Hepática/etiologia , Camundongos , Receptores de Estrogênio/genética , Sirtuínas/genética
16.
Cancer Lett ; 471: 72-87, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31838085

RESUMO

Androgen receptor (AR) signaling plays a central role in metabolic reprogramming for prostate cancer (PCa) growth and progression. Mitochondria are metabolic powerhouses of the cell and support several hallmarks of cancer. However, the molecular links between AR signaling and the mitochondria that support the metabolic demands of PCa cells are poorly understood. Here, we demonstrate increased levels of dynamin-related protein 1 (DRP1), a mitochondrial fission mediator, in androgen-sensitive and castration-resistant AR-driven PCa. AR signaling upregulates DRP1 to form the VDAC-MPC2 complex, increases pyruvate transport into mitochondria, and supports mitochondrial metabolism, including oxidative phosphorylation and lipogenesis. DRP1 inhibition activates the cellular metabolic stress response, which involves AMPK phosphorylation, induction of autophagy, and the ER unfolded protein response, and attenuates androgen-induced proliferation. Additionally, DRP1 expression facilitates PCa cell survival under diverse metabolic stress conditions, including hypoxia and oxidative stress. Moreover, we found that increased DRP1 expression was indicative of poor prognosis in patients with castration-resistant PCa. Collectively, our findings link androgen signaling-mediated mitochondrial dynamics to metabolic reprogramming; moreover, they have important implications for understanding PCa progression.


Assuntos
Androgênios/metabolismo , Dinaminas/biossíntese , Mitocôndrias/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Ciclo do Ácido Cítrico , Di-Hidrotestosterona/farmacologia , Dinaminas/antagonistas & inibidores , Dinaminas/genética , Dinaminas/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Masculino , Dinâmica Mitocondrial , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Fosforilação Oxidativa , Células PC-3 , Neoplasias de Próstata Resistentes à Castração/patologia , Piruvatos/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais , Regulação para Cima , Canais de Ânion Dependentes de Voltagem/metabolismo
17.
Org Lett ; 21(17): 7004-7008, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31403311

RESUMO

Annulative π-extension chemistry provides a concise synthetic route to polycyclic arenes. Herein, we disclose a nondirected annulation approach of unactivated simple arenes. The palladium-catalyzed 2-fold C-H arylation event facilitates tandem C-C linkage relays to furnish fully benzenoid triphenylene frameworks using cyclic diaryliodonium salts. The inseparable regioisomeric mixture of 1- and 2-methyltriphenylenes is identified by the combined analysis of ion mobility-mass spectrometry, gas-phase infrared spectroscopy, and molecular simulation studies.

18.
Chem Commun (Camb) ; 55(52): 7482-7485, 2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31184653

RESUMO

Protein arginine (Arg) phosphorylation regulates stress responses and virulence in bacteria. With fluorescent activity probes, we show that McsB, a protein Arg kinase, can dephosphorylate phosphoarginine (pArg) residues to produce ATP from ADP, implicating the dynamic control of protein pArg levels by the kinase even without a phosphatase.


Assuntos
Arginina Quinase/metabolismo , Corantes Fluorescentes/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Arginina/análogos & derivados , Arginina/análise , Arginina/química , Arginina/metabolismo , Cromatografia Líquida de Alta Pressão , Compostos Organofosforados/análise , Fosforilação
19.
ACS Sens ; 4(4): 1055-1062, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30912641

RESUMO

Protein histidine phosphorylation plays a vital role in cell signaling and metabolic processes, and phosphohistidine (pHis) phosphatases such as protein histidine phosphatase 1 (PHPT1) and LHPP have been linked to cancer and diabetes, making them novel drug targets and biomarkers. Unlike the case for other classes of phosphatases, further studies of PHPT1 and other pHis phosphatases have been hampered by the lack of specific activity assays in complex biological mixtures. Previous methods relying on radiolabeling are hazardous and technically laborious, and small-molecule phosphatase probes are not selective toward pHis phosphatases. To address these issues, we herein report a fluorescent probe based on chelation-enhanced fluorescence (CHEF) to continuously measure the pHis phosphatase activity of PHPT1. Our probe exhibited excellent sensitivity and specificity toward PHPT1, enabling the first specific measurement of PHPT1 activity in cell lysates. Using this probe, we also obtained more physiologically relevant kinetic parameters of PHPT1, overcoming the limitations of previously used methods.


Assuntos
Corantes Fluorescentes/química , Monoéster Fosfórico Hidrolases/análise , Quinolinas/química , Sulfonamidas/química , Corantes Fluorescentes/síntese química , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Pirofosfatase Inorgânica/análise , Pirofosfatase Inorgânica/química , Cinética , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Quinolinas/síntese química , Espectrometria de Fluorescência/métodos , Sulfonamidas/síntese química
20.
Nat Commun ; 9(1): 4548, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30382085

RESUMO

Targeted drug delivery using nanoparticles can minimize the side effects of conventional pharmaceutical agents and enhance their efficacy. However, translating nanoparticle-based agents into clinical applications still remains a challenge due to the difficulty in regulating interactions on the interfaces between nanoparticles and biological systems. Here, we present a targeting strategy for nanoparticles incorporated with a supramolecularly pre-coated recombinant fusion protein in which HER2-binding affibody combines with glutathione-S-transferase. Once thermodynamically stabilized in preferred orientations on the nanoparticles, the adsorbed fusion proteins as a corona minimize interactions with serum proteins to prevent the clearance of nanoparticles by macrophages, while ensuring systematic targeting functions in vitro and in vivo. This study provides insight into the use of the supramolecularly built protein corona shield as a targeting agent through regulating the interfaces between nanoparticles and biological systems.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/química , Coroa de Proteína/química , Animais , Antineoplásicos/farmacologia , Proteínas Sanguíneas/química , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Ligação Proteica , Proteômica , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA