Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38908367

RESUMO

Insufficient telomerase activity, stemming from low telomerase reverse transcriptase (TERT) gene transcription, contributes to telomere dysfunction and aging pathologies. Besides its traditional function in telomere synthesis, TERT acts as a transcriptional co-regulator of genes pivotal in aging and age-associated diseases. Here, we report the identification of a TERT activator compound (TAC) that upregulates TERT transcription via the MEK/ERK/AP-1 cascade. In primary human cells and naturally aged mice, TAC-induced elevation of TERT levels promotes telomere synthesis, blunts tissue aging hallmarks with reduced cellular senescence and inflammatory cytokines, and silences p16INK4a expression via upregulation of DNMT3B-mediated promoter hypermethylation. In the brain, TAC alleviates neuroinflammation, increases neurotrophic factors, stimulates adult neurogenesis, and preserves cognitive function without evident toxicity, including cancer risk. Together, these findings underscore TERT's critical role in aging processes and provide preclinical proof of concept for physiological TERT activation as a strategy to mitigate multiple aging hallmarks and associated pathologies.

2.
Dev Cell ; 59(11): 1475-1486.e5, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38574731

RESUMO

Telomere dynamics are linked to aging hallmarks, and age-associated telomere loss fuels the development of epithelial cancers. In Apc-mutant mice, the onset of DNA damage associated with telomere dysfunction has been shown to accelerate adenoma initiation via unknown mechanisms. Here, we observed that Apc-mutant mice engineered to experience telomere dysfunction show accelerated adenoma formation resulting from augmented cell competition and clonal expansion. Mechanistically, telomere dysfunction induces the repression of EZH2, resulting in the derepression of Wnt antagonists, which causes the differentiation of adjacent stem cells and a relative growth advantage to Apc-deficient telomere dysfunctional cells. Correspondingly, in this mouse model, GSK3ß inhibition countered the actions of Wnt antagonists on intestinal stem cells, resulting in impaired adenoma formation of telomere dysfunctional Apc-mutant cells. Thus, telomere dysfunction contributes to cancer initiation through altered stem cell dynamics, identifying an interception strategy for human APC-mutant cancers with shortened telomeres.


Assuntos
Proteína da Polipose Adenomatosa do Colo , Células-Tronco , Telômero , Animais , Camundongos , Telômero/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Células-Tronco/metabolismo , Células-Tronco/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Adenoma/patologia , Adenoma/genética , Adenoma/metabolismo , Intestinos/patologia , Diferenciação Celular , Humanos , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Dano ao DNA , Camundongos Endogâmicos C57BL , Via de Sinalização Wnt
3.
Cancer Discov ; 13(12): 2652-2673, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-37768068

RESUMO

Oncogenic KRAS (KRAS*) contributes to many cancer hallmarks. In colorectal cancer, KRAS* suppresses antitumor immunity to promote tumor invasion and metastasis. Here, we uncovered that KRAS* transforms the phenotype of carcinoma-associated fibroblasts (CAF) into lipid-laden CAFs, promoting angiogenesis and tumor progression. Mechanistically, KRAS* activates the transcription factor CP2 (TFCP2) that upregulates the expression of the proadipogenic factors BMP4 and WNT5B, triggering the transformation of CAFs into lipid-rich CAFs. These lipid-rich CAFs, in turn, produce VEGFA to spur angiogenesis. In KRAS*-driven colorectal cancer mouse models, genetic or pharmacologic neutralization of TFCP2 reduced lipid-rich CAFs, lessened tumor angiogenesis, and improved overall survival. Correspondingly, in human colorectal cancer, lipid-rich CAF and TFCP2 signatures correlate with worse prognosis. This work unveils a new role for KRAS* in transforming CAFs, driving tumor angiogenesis and disease progression, providing an actionable therapeutic intervention for KRAS*-driven colorectal cancer. SIGNIFICANCE: This study identified a molecular mechanism contributing to KRAS*-driven colorectal cancer progression via fibroblast transformation in the tumor microenvironment to produce VEGFA driving tumor angiogenesis. In preclinical models, targeting the KRAS*-TFCP2-VEGFA axis impaired tumor progression, revealing a potential novel therapeutic option for patients with KRAS*-driven colorectal cancer. This article is featured in Selected Articles from This Issue, p. 2489.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias do Colo , Proteínas Proto-Oncogênicas p21(ras) , Animais , Humanos , Camundongos , Angiogênese , Fibroblastos Associados a Câncer/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Neoplasias Colorretais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/metabolismo , Lipídeos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fatores de Transcrição/metabolismo , Microambiente Tumoral/genética
4.
Nature ; 619(7970): 632-639, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37344599

RESUMO

Sex exerts a profound impact on cancer incidence, spectrum and outcomes, yet the molecular and genetic bases of such sex differences are ill-defined and presumptively ascribed to X-chromosome genes and sex hormones1. Such sex differences are particularly prominent in colorectal cancer (CRC) in which men experience higher metastases and mortality. A murine CRC model, engineered with an inducible transgene encoding oncogenic mutant KRASG12D and conditional null alleles of Apc and Trp53 tumour suppressors (designated iKAP)2, revealed higher metastases and worse outcomes specifically in males with oncogenic mutant KRAS (KRAS*) CRC. Integrated cross-species molecular and transcriptomic analyses identified Y-chromosome gene histone demethylase KDM5D as a transcriptionally upregulated gene driven by KRAS*-mediated activation of the STAT4 transcription factor. KDM5D-dependent chromatin mark and transcriptome changes showed repression of regulators of the epithelial cell tight junction and major histocompatibility complex class I complex components. Deletion of Kdm5d in iKAP cancer cells increased tight junction integrity, decreased cell invasiveness and enhanced cancer cell killing by CD8+ T cells. Conversely, iAP mice engineered with a Kdm5d transgene to provide constitutive Kdm5d expression specifically in iAP cancer cells showed an increased propensity for more invasive tumours in vivo. Thus, KRAS*-STAT4-mediated upregulation of Y chromosome KDM5D contributes substantially to the sex differences in KRAS* CRC by means of its disruption of cancer cell adhesion properties and tumour immunity, providing an actionable therapeutic strategy for metastasis risk reduction for men afflicted with KRAS* CRC.


Assuntos
Neoplasias Colorretais , Histona Desmetilases , Antígenos de Histocompatibilidade Menor , Caracteres Sexuais , Animais , Feminino , Humanos , Masculino , Camundongos , Linfócitos T CD8-Positivos/imunologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Camundongos Transgênicos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Regulação para Cima
5.
Nat Cancer ; 4(1): 62-80, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36585453

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is considered non-immunogenic, with trials showing its recalcitrance to PD1 and CTLA4 immune checkpoint therapies (ICTs). Here, we sought to systematically characterize the mechanisms underlying de novo ICT resistance and to identify effective therapeutic options for PDAC. We report that agonist 41BB and antagonist LAG3 ICT alone and in combination, increased survival and antitumor immunity, characterized by modulating T cell subsets with antitumor activity, increased T cell clonality and diversification, decreased immunosuppressive myeloid cells and increased antigen presentation/decreased immunosuppressive capability of myeloid cells. Translational analyses confirmed the expression of 41BB and LAG3 in human PDAC. Since single and dual ICTs were not curative, T cell-activating ICTs were combined with a CXCR1/2 inhibitor targeting immunosuppressive myeloid cells. Triple therapy resulted in durable complete responses. Given similar profiles in human PDAC and the availability of these agents for clinical testing, our findings provide a testable hypothesis for this lethal disease.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Células Mieloides/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia , Receptores de Interleucina-8A/imunologia , Neoplasias Pancreáticas
6.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34475205

RESUMO

Prostate cancer is a leading cause of cancer-related mortality in men. The widespread use of androgen receptor (AR) inhibitors has generated an increased incidence of AR-negative prostate cancer, triggering the need for effective therapies for such patients. Here, analysis of public genome-wide CRISPR screens in human prostate cancer cell lines identified histone demethylase JMJD1C (KDM3C) as an AR-negative context-specific vulnerability. Secondary validation studies in multiple cell lines and organoids, including isogenic models, confirmed that small hairpin RNA (shRNA)-mediated depletion of JMJD1C potently inhibited growth specifically in AR-negative prostate cancer cells. To explore the cooperative interactions of AR and JMJD1C, we performed comparative transcriptomics of 1) isogenic AR-positive versus AR-negative prostate cancer cells, 2) AR-positive versus AR-negative prostate cancer tumors, and 3) isogenic JMJD1C-expressing versus JMJD1C-depleted AR-negative prostate cancer cells. Loss of AR or JMJD1C generates a modest tumor necrosis factor alpha (TNFα) signature, whereas combined loss of AR and JMJD1C strongly up-regulates the TNFα signature in human prostate cancer, suggesting TNFα signaling as a point of convergence for the combined actions of AR and JMJD1C. Correspondingly, AR-negative prostate cancer cells showed exquisite sensitivity to TNFα treatment and, conversely, TNFα pathway inhibition via inhibition of its downstream effector MAP4K4 partially reversed the growth defect of JMJD1C-depleted AR-negative prostate cancer cells. Given the deleterious systemic side effects of TNFα therapy in humans and the viability of JMJD1C-knockout mice, the identification of JMJD1C inhibition as a specific vulnerability in AR-negative prostate cancer may provide an alternative drug target for prostate cancer patients progressing on AR inhibitor therapy.


Assuntos
Histona Desmetilases com o Domínio Jumonji/genética , Oxirredutases N-Desmetilantes/genética , Neoplasias da Próstata/genética , Receptores Androgênicos/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Bases de Dados Genéticas , Histona Desmetilases/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Oxirredutases N-Desmetilantes/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Próstata/patologia , Proteínas Serina-Treonina Quinases/genética , Receptores Androgênicos/genética , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
7.
Cancer Discov ; 10(9): 1374-1387, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32385075

RESUMO

Genetic inactivation of PTEN is common in prostate cancer and correlates with poorer prognosis. We previously identified CHD1 as an essential gene in PTEN-deficient cancer cells. Here, we sought definitive in vivo genetic evidence for, and mechanistic understanding of, the essential role of CHD1 in PTEN-deficient prostate cancer. In Pten and Pten/Smad4 genetically engineered mouse models, prostate-specific deletion of Chd1 resulted in markedly delayed tumor progression and prolonged survival. Chd1 deletion was associated with profound tumor microenvironment (TME) remodeling characterized by reduced myeloid-derived suppressor cells (MDSC) and increased CD8+ T cells. Further analysis identified IL6 as a key transcriptional target of CHD1, which plays a major role in recruitment of immunosuppressive MDSCs. Given the prominent role of MDSCs in suppressing responsiveness to immune checkpoint inhibitors (ICI), our genetic and tumor biological findings support combined testing of anti-IL6 and ICI therapies, specifically in PTEN-deficient prostate cancer. SIGNIFICANCE: We demonstrate a critical role of CHD1 in MDSC recruitment and discover CHD1/IL6 as a major regulator of the immunosuppressive TME of PTEN-deficient prostate cancer. Pharmacologic inhibition of IL6 in combination with immune checkpoint blockade elicits robust antitumor responses in prostate cancer.This article is highlighted in the In This Issue feature, p. 1241.


Assuntos
Proteínas de Ligação a DNA/metabolismo , PTEN Fosfo-Hidrolase/genética , Neoplasias da Próstata/genética , Evasão Tumoral/genética , Microambiente Tumoral/imunologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Masculino , Camundongos Transgênicos , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Proteína Smad4/genética , Microambiente Tumoral/genética
8.
Nat Commun ; 11(1): 2124, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358507

RESUMO

Penile squamous cell carcinoma (PSCC) accounts for over 95% of penile malignancies and causes significant mortality and morbidity in developing countries. Molecular mechanisms and therapies of PSCC are understudied, owing to scarcity of laboratory models. Herein, we describe a genetically engineered mouse model of PSCC, by co-deletion of Smad4 and Apc in the androgen-responsive epithelium of the penis. Mouse PSCC fosters an immunosuppressive microenvironment with myeloid-derived suppressor cells (MDSCs) as a dominant population. Preclinical trials in the model demonstrate synergistic efficacy of immune checkpoint blockade with the MDSC-diminishing drugs cabozantinib or celecoxib. A critical clinical problem of PSCC is chemoresistance to cisplatin, which is induced by Pten deficiency on the backdrop of Smad4/Apc co-deletion. Drug screen studies informed by targeted proteomics identify a few potential therapeutic strategies for PSCC. Our studies have established what we believe to be essential resources for studying PSCC biology and developing therapeutic strategies.


Assuntos
Carcinoma de Células Escamosas/terapia , Imunoterapia/métodos , Neoplasias Penianas/terapia , Animais , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular , Cisplatino/farmacologia , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Células Supressoras Mieloides/citologia , Células Supressoras Mieloides/metabolismo , Neoplasias Penianas/metabolismo , Proteômica , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Análise Serial de Tecidos , Transcriptoma/genética
9.
Cancer Discov ; 10(4): 608-625, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32046984

RESUMO

A hallmark of pancreatic ductal adenocarcinoma (PDAC) is an exuberant stroma comprised of diverse cell types that enable or suppress tumor progression. Here, we explored the role of oncogenic KRAS in protumorigenic signaling interactions between cancer cells and host cells. We show that KRAS mutation (KRAS*) drives cell-autonomous expression of type I cytokine receptor complexes (IL2rγ-IL4rα and IL2rγ-IL13rα1) in cancer cells that in turn are capable of receiving cytokine growth signals (IL4 or IL13) provided by invading Th2 cells in the microenvironment. Early neoplastic lesions show close proximity of cancer cells harboring KRAS* and Th2 cells producing IL4 and IL13. Activated IL2rγ-IL4rα and IL2rγ-IL13rα1 receptors signal primarily via JAK1-STAT6. Integrated transcriptomic, chromatin occupancy, and metabolomic studies identified MYC as a direct target of activated STAT6 and that MYC drives glycolysis. Thus, paracrine signaling in the tumor microenvironment plays a key role in the KRAS*-driven metabolic reprogramming of PDAC. SIGNIFICANCE: Type II cytokines, secreted by Th2 cells in the tumor microenvironment, can stimulate cancer cell-intrinsic MYC transcriptional upregulation to drive glycolysis. This KRAS*-driven heterotypic signaling circuit in the early and advanced tumor microenvironment enables cooperative protumorigenic interactions, providing candidate therapeutic targets in the KRAS* pathway for this intractable disease.


Assuntos
Citocinas/metabolismo , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Reprogramação Celular/genética , Humanos , Camundongos , Oncogenes , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transfecção , Microambiente Tumoral
10.
Adv Sci (Weinh) ; 6(22): 1901874, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31763157

RESUMO

Intracellular detection is highly desirable for biological research and clinical diagnosis, yet its quantitative analysis with noninvasivity, sensitivity, and accuracy remains challenging. Herein, a near-infrared (NIR) dual-excitation strategy is reported for ratiometric intracellular detection through the design of dye-sensitized upconversion probes and employment of a purpose-built NIR dual-laser confocal microscope. NIR dye IR808, a recognizer of intracellular analyte hypochlorite, is introduced as energy donor and Yb,Er-doped NaGdF4 upconversion nanoparticles are adopted as energy acceptor in the as-designed nanoprobes. The efficient analyte-dependent energy transfer and low background luminescence endow the nanoprobes with ultrahigh sensitivity. In addition, with the nonanalyte-dependent upconversion luminescence (UCL) excited by 980 nm as a self-calibrated signal, the interference from environmental fluctuation can be alleviated. Furthermore, the dual 808/980 nm excited ratiometric UCL is demonstrated for the quantification of the level of intracellular hypochlorite. Particularly, the intrinsic hypochlorite with only nanomolar concentration in live MCF-7 cells in the absence of exogenous stimuli is determined. Such an NIR dual-excitation ratiometric strategy based on dye-sensitized UCL probes can be easily extended to detect various intracellular analytes through tailoring the reactive NIR dyes, which provides a promising tool for probing biochemical processes in live cells and diagnosing diseases.

11.
Angew Chem Int Ed Engl ; 58(52): 18981-18986, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31603623

RESUMO

The synthesis of hydrophilic lanthanide-doped nanocrystals (Ln3+ -NCs) with molecular recognition ability for bioimaging currently remains a challenge. Herein, we present an effective strategy to circumvent this bottleneck by encapsulating Ln3+ -NCs in graphene oxide (NCs@GO). Monodisperse NCs@GO was prepared by optimizing GO size and core-shell structure of NaYF4 :Yb,Er@NaYF4 , thus combining the intense visible/near-infrared II (NIR-II) luminescence of NCs and the unique surface properties and biomedical functions of GO. Such nanostructures not only feature broad solvent dispersibility, efficient cell uptake, and excellent biocompatibility but also enable further modifications with various agents such as DNA, proteins, or nanoparticles without tedious procedures. Moreover, we demonstrate in proof-of-concept experiments that NCs@GO can realize simultaneous intracellular tracking and microRNA-21 visualization, as well as highly sensitive in vivo tumor-targeted NIR-II imaging at 1525 nm.


Assuntos
Grafite/química , Elementos da Série dos Lantanídeos/química , Nanopartículas/química , Luminescência
12.
Chem Sci ; 10(21): 5452-5460, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31293727

RESUMO

Near-infrared (NIR) photostimulated luminescence (PSL) nanocrystals (NCs) have recently evoked considerable interest in the field of biomedicine, but are currently limited by the controlled synthesis of efficient PSL NCs. Herein, we report for the first time the controlled synthesis of CaS:Eu2+,Sm3+ NIR PSL NCs through a high-temperature co-precipitation method. The role of Sm3+ co-doping and the effect of thermal annealing on the optical properties of the NCs as well as the charging and discharging processes, the trap depth distribution, and the underlying PSL mechanism are comprehensively surveyed by means of photoluminescence, persistent luminescence, thermoluminescence, and PSL spectroscopies. The as-prepared NCs exhibit intense PSL of Eu2+ at 650 nm with a fast response to stimulation in a broad NIR region from 800 nm to 1600 nm, a duration time longer than 2 h, and an extremely low power density threshold down to 10 mW cm-2 at 980 nm. Furthermore, by taking advantage of the intense NIR PSL, we demonstrate the application of CaS:Eu2+,Sm3+ NCs as sensitive luminescent nanoprobes for biotin receptor-targeted cancer cell imaging. These results reveal the great promise of CaS:Eu2+,Sm3+ nanoprobes for autofluorescence-free bioimaging, and also lay the foundation for future design of efficient NIR PSL nanoprobes towards versatile bioapplications.

13.
Cancer Cell ; 35(4): 559-572.e7, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30905761

RESUMO

The biological functions and mechanisms of oncogenic KRASG12D (KRAS∗) in resistance to immune checkpoint blockade (ICB) therapy are not fully understood. We demonstrate that KRAS∗ represses the expression of interferon regulatory factor 2 (IRF2), which in turn directly represses CXCL3 expression. KRAS∗-mediated repression of IRF2 results in high expression of CXCL3, which binds to CXCR2 on myeloid-derived suppressor cells and promotes their migration to the tumor microenvironment. Anti-PD-1 resistance of KRAS∗-expressing tumors can be overcome by enforced IRF2 expression or by inhibition of CXCR2. Colorectal cancer (CRC) showing higher IRF2 expression exhibited increased responsiveness to anti-PD-1 therapy. The KRAS∗-IRF2-CXCL3-CXCR2 axis provides a framework for patient selection and combination therapies to enhance the effectiveness of ICB therapy in CRC.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Fator Regulador 2 de Interferon/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Evasão Tumoral , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Movimento Celular , Quimiocinas CXC/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Fator Regulador 2 de Interferon/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Pessoa de Meia-Idade , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores de Interleucina-8B/metabolismo , Transdução de Sinais , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Adulto Jovem
14.
Nanoscale ; 10(24): 11477-11484, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29888369

RESUMO

Lanthanide (Ln3+)-doped NaREF4 (RE = rare earth) nanocrystals (NCs) are one of the most widely studied upconversion and downshifting luminescent nanoprobes. However, the size and optical performance of the Ln3+-doped NaREF4 NCs produced by the available lab-scale synthesis may vary from batch to batch, which inevitably limits their practical bioapplications. Herein, we report the synthesis of uniform Ln3+-doped NaREF4 NCs via a facile solid-liquid-thermal-decomposition (SLTD) method by directly employing NaHF2 powder as a fluoride and sodium precursor. The proposed SLTD strategy is easy to perform, time-saving and cost-effective, making it ideal for scale-up syntheses. Particularly, over 63 g of ß-NaGdF4:Yb,Er@NaYF4 core/shell NCs with narrow size variation (<7%) were synthesized via a one-pot reaction. By virtue of their superior upconversion and downshifting luminescence, we employed the synthesized core/shell nanoprobes for the in vitro detection of prostate-specific antigen with a limit of detection down to 1.8 ng mL-1, and for in vivo near-infrared imaging with a high signal-to-noise ratio of 12. These findings may pave the way for the commercialization of Ln3+-doped nanoprobes in bioassay kits for versatile clinical applications.

15.
Cancer Res ; 78(14): 3823-3833, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29769196

RESUMO

Advanced prostate cancer displays conspicuous chromosomal instability and rampant copy number aberrations, yet the identity of functional drivers resident in many amplicons remain elusive. Here, we implemented a functional genomics approach to identify new oncogenes involved in prostate cancer progression. Through integrated analyses of focal amplicons in large prostate cancer genomic and transcriptomic datasets as well as genes upregulated in metastasis, 276 putative oncogenes were enlisted into an in vivo gain-of-function tumorigenesis screen. Among the top positive hits, we conducted an in-depth functional analysis on Pygopus family PHD finger 2 (PYGO2), located in the amplicon at 1q21.3. PYGO2 overexpression enhances primary tumor growth and local invasion to draining lymph nodes. Conversely, PYGO2 depletion inhibits prostate cancer cell invasion in vitro and progression of primary tumor and metastasis in vivo In clinical samples, PYGO2 upregulation associated with higher Gleason score and metastasis to lymph nodes and bone. Silencing PYGO2 expression in patient-derived xenograft models impairs tumor progression. Finally, PYGO2 is necessary to enhance the transcriptional activation in response to ligand-induced Wnt/ß-catenin signaling. Together, our results indicate that PYGO2 functions as a driver oncogene in the 1q21.3 amplicon and may serve as a potential prognostic biomarker and therapeutic target for metastatic prostate cancer.Significance: Amplification/overexpression of PYGO2 may serve as a biomarker for prostate cancer progression and metastasis. Cancer Res; 78(14); 3823-33. ©2018 AACR.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Animais , Biomarcadores Tumorais/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Linfonodos/patologia , Masculino , Camundongos , Camundongos Nus , Gradação de Tumores/métodos , Oncogenes/genética , Células PC-3 , Ativação Transcricional/genética , Regulação para Cima/genética , Via de Sinalização Wnt/genética
16.
Neurosci Lett ; 670: 41-47, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29360503

RESUMO

OBJECTIVE: To investigate the role of LncRNA MALAT-1 in hypoxia-induced cell injury. METHODS: Pheochromocytoma-12 (PC12) cells were divided into seven groups: Control group, Hypoxia group (Cells treated with CoCl2), MALAT-1 group (Hypoxic cells treated with MALAT-1), NC group (Hypoxic cells treated with empty plasmid), MALAT-1 siRNA group (Hypoxic cells treated with siRNA MALAT-1), SB203580 group (Hypoxic cells treated with p38MAPK inhibitor), and MALAT-1 + SB20358 group. The content of reactive oxygen species (ROS), malondialdehyde (MDA), super oxide dismutase (SOD) and lactate dehydrogenase (LDH) was determined. Cell viability was detected by MTT assay. Apoptotic cells were observed by Hoechst 33258 and TUNEL staining assay. Mitochondrial membrane potential (MMP) was measured using JC1 vital dye. RESULTS: The decreased cell viability and increased expressions of MALAT-1 and p-p38 were observed in hypoxic PC12 cells time-dependently (P < 0.05). Besides, hypoxic PC12 cells had an elevation in p-p38, ROS, MDA and LDH with the increased apoptotic cells, but a reduction in SOD and MMP, and these similar changes were more obvious in those hypoxic cells treated with MALAT-1 when compared with Controls (all P < 0.05). However, the hypoxic PC12 cells treated with SB203580 and MALAT-1 siRNA led to opposite results compared with MALAT-1 group (all P < 0.05). Importantly, SB203580 could reverse the function of MALAT-1 in aggravating the hypoxia injury of PC12 cells. CONCLUSION: MALAT-1 can promote the apoptosis and oxidative stress of PC12 cells by activating p38MAPK pathway, thus aggravating the damage of PC12 cells induced by chemical hypoxia.


Assuntos
Hipóxia Celular/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , RNA Longo não Codificante/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cobalto/farmacologia , Malondialdeído/metabolismo , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo
18.
Nature ; 543(7647): 728-732, 2017 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-28321130

RESUMO

A significant fraction of patients with advanced prostate cancer treated with androgen deprivation therapy experience relapse with relentless progression to lethal metastatic castration-resistant prostate cancer (mCRPC). Immune checkpoint blockade using antibodies against cytotoxic-T-lymphocyte-associated protein 4 (CTLA4) or programmed cell death 1/programmed cell death 1 ligand 1 (PD1/PD-L1) generates durable therapeutic responses in a significant subset of patients across a variety of cancer types. However, mCRPC showed overwhelming de novo resistance to immune checkpoint blockade, motivating a search for targeted therapies that overcome this resistance. Myeloid-derived suppressor cells (MDSCs) are known to play important roles in tumour immune evasion. The abundance of circulating MDSCs correlates with prostate-specific antigen levels and metastasis in patients with prostate cancer. Mouse models of prostate cancer show that MDSCs (CD11b+Gr1+) promote tumour initiation and progression. These observations prompted us to hypothesize that robust immunotherapy responses in mCRPC may be elicited by the combined actions of immune checkpoint blockade agents together with targeted agents that neutralize MDSCs yet preserve T-cell function. Here we develop a novel chimaeric mouse model of mCRPC to efficiently test combination therapies in an autochthonous setting. Combination of anti-CTLA4 and anti-PD1 engendered only modest efficacy. Targeted therapy against mCRPC-infiltrating MDSCs, using multikinase inhibitors such as cabozantinib and BEZ235, also showed minimal anti-tumour activities. Strikingly, primary and metastatic CRPC showed robust synergistic responses when immune checkpoint blockade was combined with MDSC-targeted therapy. Mechanistically, combination therapy efficacy stemmed from the upregulation of interleukin-1 receptor antagonist and suppression of MDSC-promoting cytokines secreted by prostate cancer cells. These observations illuminate a clinical path hypothesis for combining immune checkpoint blockade with MDSC-targeted therapies in the treatment of mCRPC.


Assuntos
Imunoterapia/métodos , Neoplasias de Próstata Resistentes à Castração/imunologia , Neoplasias de Próstata Resistentes à Castração/terapia , Anilidas/farmacologia , Anilidas/uso terapêutico , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Quimera , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Humanos , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos , Terapia de Alvo Molecular , Células Supressoras Mieloides/citologia , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Inibidores de Fosfoinositídeo-3 Quinase , Neoplasias de Próstata Resistentes à Castração/patologia , Piridinas/farmacologia , Piridinas/uso terapêutico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
19.
Nature ; 542(7642): 484-488, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28166537

RESUMO

Synthetic lethality and collateral lethality are two well-validated conceptual strategies for identifying therapeutic targets in cancers with tumour-suppressor gene deletions. Here, we explore an approach to identify potential synthetic-lethal interactions by screening mutually exclusive deletion patterns in cancer genomes. We sought to identify 'synthetic-essential' genes: those that are occasionally deleted in some cancers but are almost always retained in the context of a specific tumour-suppressor deficiency. We also posited that such synthetic-essential genes would be therapeutic targets in cancers that harbour specific tumour-suppressor deficiencies. In addition to known synthetic-lethal interactions, this approach uncovered the chromatin helicase DNA-binding factor CHD1 as a putative synthetic-essential gene in PTEN-deficient cancers. In PTEN-deficient prostate and breast cancers, CHD1 depletion profoundly and specifically suppressed cell proliferation, cell survival and tumorigenic potential. Mechanistically, functional PTEN stimulates the GSK3ß-mediated phosphorylation of CHD1 degron domains, which promotes CHD1 degradation via the ß-TrCP-mediated ubiquitination-proteasome pathway. Conversely, PTEN deficiency results in stabilization of CHD1, which in turn engages the trimethyl lysine-4 histone H3 modification to activate transcription of the pro-tumorigenic TNF-NF-κB gene network. This study identifies a novel PTEN pathway in cancer and provides a framework for the discovery of 'trackable' targets in cancers that harbour specific tumour-suppressor deficiencies.


Assuntos
Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Genes Essenciais/genética , Neoplasias/metabolismo , Neoplasias/patologia , PTEN Fosfo-Hidrolase/deficiência , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina/genética , DNA Helicases/química , DNA Helicases/deficiência , DNA Helicases/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Histonas/metabolismo , Humanos , Lisina/metabolismo , Masculino , Metilação , Terapia de Alvo Molecular , NF-kappa B/metabolismo , Neoplasias/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteólise , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitinação , Proteínas Contendo Repetições de beta-Transducina/metabolismo
20.
Genes Dev ; 31(23-24): 2337-2342, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29352019

RESUMO

SMAD4 constrains progression of Pten-null prostate cancer and serves as a common downstream node of transforming growth factor ß (TGFß) and bone morphogenetic protein (BMP) pathways. Here, we dissected the roles of TGFß receptor II (TGFBR2) and BMP receptor II (BMPR2) using a Pten-null prostate cancer model. These studies demonstrated that the molecular actions of TGFBR2 result in both SMAD4-dependent constraint of proliferation and SMAD4-independent activation of apoptosis. In contrast, BMPR2 deletion extended survival relative to Pten deletion alone, establishing its promoting role in BMP6-driven prostate cancer progression. These analyses reveal the complexity of TGFß-BMP signaling and illuminate potential therapeutic targets for prostate cancer.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Neoplasias da Próstata/fisiopatologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Modelos Animais de Doenças , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genótipo , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PTEN Fosfo-Hidrolase/genética , Neoplasias da Próstata/genética , Receptor do Fator de Crescimento Transformador beta Tipo II , Proteína Smad4/genética , Proteína Smad4/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA