Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Commun Signal ; 21(1): 242, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723559

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) are critically involved in tumor progression by maintaining extracellular mesenchyma (ECM) production and improving tumor development. Cyclooxygenase-2 (COX-2) has been proved to promote ECM formation and tumor progression. However, the mechanisms of COX-2 mediated CAFs activation have not yet been elucidated. Therefore, we conducted this study to identify the effects and mechanisms of COX-2 underlying CAFs activation by tumor-derived exosomal miRNAs in lung adenocarcinoma (LUAD) progression. METHODS: As measures of CAFs activation, the expressions of fibroblasts activated protein-1 (FAP-1) and α-smooth muscle actin (α-SMA), the main CAFs markers, were detected by Western blotting and Immunohistochemistry. And the expression of Fibronectin (FN1) was used to analyze ECM production by CAFs. The exosomes were extracted by ultracentrifugation and exo-miRNAs were detected by qRT-PCR. Herein, we further elucidated the implicated mechanisms using online prediction software, luciferase reporter assays, co-immunoprecipitation, and experimental animal models. RESULTS: In vivo, a positive correlation was observed between the COX-2 expression levels in parenchyma and α-SMA/FN1 expression levels in mesenchyma in LUAD. However, PGE2, one of major product of COX-2, did not affect CAFs activation directly. COX-2 overexpression increased exo-miR-1290 expression, which promoted CAFs activation. Furthermore, Cullin3 (CUL3), a potential target of miR-1290, was found to suppress COX-2/exo-miR-1290-mediated CAFs activation and ECM production, consequently impeding tumor progression. CUL3 is identified to induce the Nuclear Factor Erythroid 2-Related Factor 2 (NFE2L2, Nrf2) ubiquitination and degradation, while exo-miR-1290 can prevent Nrf2 ubiquitination and increase its protein stability by targeting CUL3. Additionally, we identified that Nrf2 is direcctly bound with promoters of FAP-1 and FN1, which enhanced CAFs activation by promoting FAP-1 and FN1 transcription. CONCLUSIONS: Our data identify a new CAFs activation mechanism by exosomes derived from cancer cells that overexpress COX-2. Specifically, COX-2/exo-miR-1290/CUL3 is suggested as a novel signaling pathway for mediating CAFs activation and tumor progression in LUAD. Consequently, this finding suggests a novel strategy for cancer treatment that may tackle tumor progression in the future. Video Abstract.


Assuntos
Adenocarcinoma de Pulmão , Fibroblastos Associados a Câncer , Neoplasias Pulmonares , Animais , Ciclo-Oxigenase 2 , Fator 2 Relacionado a NF-E2 , Neoplasias Pulmonares/genética
2.
Mol Cell ; 81(16): 3368-3385.e9, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34375583

RESUMO

The mechanistic understanding of nascent RNAs in transcriptional control remains limited. Here, by a high sensitivity method methylation-inscribed nascent transcripts sequencing (MINT-seq), we characterized the landscapes of N6-methyladenosine (m6A) on nascent RNAs. We uncover heavy but selective m6A deposition on nascent RNAs produced by transcription regulatory elements, including promoter upstream antisense RNAs and enhancer RNAs (eRNAs), which positively correlates with their length, inclusion of m6A motif, and RNA abundances. m6A-eRNAs mark highly active enhancers, where they recruit nuclear m6A reader YTHDC1 to phase separate into liquid-like condensates, in a manner dependent on its C terminus intrinsically disordered region and arginine residues. The m6A-eRNA/YTHDC1 condensate co-mixes with and facilitates the formation of BRD4 coactivator condensate. Consequently, YTHDC1 depletion diminished BRD4 condensate and its recruitment to enhancers, resulting in inhibited enhancer and gene activation. We propose that chemical modifications of eRNAs together with reader proteins play broad roles in enhancer activation and gene transcriptional control.


Assuntos
Adenosina/análogos & derivados , Proteínas de Ciclo Celular/genética , Proteínas do Tecido Nervoso/genética , Fatores de Processamento de RNA/genética , RNA/genética , Fatores de Transcrição/genética , Adenosina/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica/genética , Humanos , Metilação , Elementos Reguladores de Transcrição/genética , Ativação Transcricional/genética
3.
Nature ; 595(7869): 735-740, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34040254

RESUMO

The functional engagement between an enhancer and its target promoter ensures precise gene transcription1. Understanding the basis of promoter choice by enhancers has important implications for health and disease. Here we report that functional loss of a preferred promoter can release its partner enhancer to loop to and activate an alternative promoter (or alternative promoters) in the neighbourhood. We refer to this target-switching process as 'enhancer release and retargeting'. Genetic deletion, motif perturbation or mutation, and dCas9-mediated CTCF tethering reveal that promoter choice by an enhancer can be determined by the binding of CTCF at promoters, in a cohesin-dependent manner-consistent with a model of 'enhancer scanning' inside the contact domain. Promoter-associated CTCF shows a lower affinity than that at chromatin domain boundaries and often lacks a preferred motif orientation or a partnering CTCF at the cognate enhancer, suggesting properties distinct from boundary CTCF. Analyses of cancer mutations, data from the GTEx project and risk loci from genome-wide association studies, together with a focused CRISPR interference screen, reveal that enhancer release and retargeting represents an overlooked mechanism that underlies the activation of disease-susceptibility genes, as exemplified by a risk locus for Parkinson's disease (NUCKS1-RAB7L1) and three loci associated with cancer (CLPTM1L-TERT, ZCCHC7-PAX5 and PVT1-MYC).


Assuntos
Fator de Ligação a CCCTC/genética , Elementos Facilitadores Genéticos , Predisposição Genética para Doença , Regiões Promotoras Genéticas , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/genética , Células Cultivadas , Cromatina , Proteínas Cromossômicas não Histona/genética , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Células MCF-7 , Neoplasias/genética , Células-Tronco Neurais , Oncogenes , Doença de Parkinson/genética , Coesinas
5.
Nucleic Acids Res ; 48(5): 2621-2642, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31863590

RESUMO

Transposable elements (TEs) comprise a large proportion of long non-coding RNAs (lncRNAs). Here, we employed CRISPR to delete a short interspersed nuclear element (SINE) in Malat1, a cancer-associated lncRNA, to investigate its significance in cellular physiology. We show that Malat1 with a SINE deletion forms diffuse nuclear speckles and is frequently translocated to the cytoplasm. SINE-deleted cells exhibit an activated unfolded protein response and PKR and markedly increased DNA damage and apoptosis caused by dysregulation of TDP-43 localization and formation of cytotoxic inclusions. TDP-43 binds stronger to Malat1 without the SINE and is likely 'hijacked' by cytoplasmic Malat1 to the cytoplasm, resulting in the depletion of nuclear TDP-43 and redistribution of TDP-43 binding to repetitive element transcripts and mRNAs encoding mitotic and nuclear-cytoplasmic regulators. The SINE promotes Malat1 nuclear retention by facilitating Malat1 binding to HNRNPK, a protein that drives RNA nuclear retention, potentially through direct interactions of the SINE with KHDRBS1 and TRA2A, which bind to HNRNPK. Losing these RNA-protein interactions due to the SINE deletion likely creates more available TDP-43 binding sites on Malat1 and subsequent TDP-43 aggregation. These results highlight the significance of lncRNA TEs in TDP-43 proteostasis with potential implications in both cancer and neurodegenerative diseases.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteostase/genética , RNA Longo não Codificante/genética , Elementos Nucleotídeos Curtos e Dispersos/genética , Apoptose , Linhagem Celular , Citoplasma/metabolismo , Dano ao DNA , Estresse do Retículo Endoplasmático , Ativação Enzimática , Dosagem de Genes , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Humanos , Mitose , Modelos Biológicos , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Deleção de Sequência/genética , eIF-2 Quinase
6.
J Exp Clin Cancer Res ; 38(1): 479, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31783879

RESUMO

BACKGROUND: Non small cell lung cancer (NSCLC) is one of the most common cancers in the world. DHA is known to be capable of suppressing NSCLC cell proliferation and metastasis. However, the mechanisms by which DHA exhibits its antitumor effects are unknown. Here we aimed to identify the effects and mechanisms of DHA and its metabolites on lung cancer cell growth and invasion. METHODS: As measures of cell proliferation and invasion ability, the cell viability and transwell assays were used in vitro. Transgenic mfat-1 mice, which convert ω-6 PUFAs to ω-3 PUFAs, were used to detect the effect of endogenous DHA on tumor transplantation. An LC - MS/MS analysis identified the elevation of several eicosanoid metabolites of DHA. By using qPCR miRNA microarray, online prediction software, luciferase reporter assays and Western blot analysis, we further elucidated the mechanisms. RESULTS: Addition of exogenous DHA inhibited the growth and invasion in NSCLC cells in vitro. Endogenously produced DHA attenuated LLC-derived tumor growth and metastasis in the transgenic mfat-1 mice. Among the elevation of DHA metabolites, resolvin D1 (RvD1) significantly contributed to the inhibition in cell growth and invasion. MiRNA microarray revealed that the level of miR-138-5p was significantly increased after RvD1 treatment. MiR-138-5p mimics decreased cell viability and invasion; while miR-138-5p inhibitor abolished RvD1-mediated suppression of cell viability and invasion. The expression of FOXC1 was significantly reduced upon overexpression of miR-138-5p while luciferase reporter assay showed that FOXC1 was a direct target of miR-138-5p. In vivo, endogenous DHA by the mfat-1 transgene enhanced miR-138-5p expression and decreased FOXC1 expression. Furthermore, overexpression of FOXC1 reversed the inhibition in cell viability and invasion induced by RvD1 treatment. CONCLUSIONS: These data identified the RvD1/miR-138-5p/FOXC1 pathway as a novel mechanism by DHA and its metabolite, RvD1, and the potential of targeting such pathway as a therapeutic strategy in treating NSCLC.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Fatores de Transcrição Forkhead/metabolismo , Neoplasias Pulmonares/genética , MicroRNAs/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Processos de Crescimento Celular/efeitos dos fármacos , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Ácidos Docosa-Hexaenoicos/metabolismo , Feminino , Fatores de Transcrição Forkhead/genética , Células HEK293 , Xenoenxertos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , Pessoa de Meia-Idade , Metástase Neoplásica , Transdução de Sinais , Transfecção , Regulação para Cima
7.
Genes (Basel) ; 9(11)2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30424545

RESUMO

Somatic mutations in 3'-untranslated regions (3'UTR) do not alter amino acids and are considered to be silent in cancers. We found that such mutations can promote tumor progression by altering microRNA (miRNA) targeting efficiency and consequently affecting miRNA⁻mRNA interactions. We identified 67,159 somatic mutations located in the 3'UTRs of messenger RNAs (mRNAs) which can alter miRNA⁻mRNA interactions (functional somatic mutations, funcMutations), and 69.3% of these funcMutations (the degree of energy change > 12 kcal/mol) were identified to significantly promote loss of miRNA-mRNA binding. By integrating mRNA expression profiles of 21 cancer types, we found that the expression of target genes was positively correlated with the loss of absolute affinity level and negatively correlated with the gain of absolute affinity level. Functional enrichment analysis revealed that genes carrying funcMutations were significantly enriched in the MAPK and WNT signaling pathways, and analysis of regulatory modules identified eighteen miRNA modules involved with similar cellular functions. Our findings elucidate a complex relationship between miRNA, mRNA, and mutations, and suggest that 3'UTR mutations may play an important role in tumor development.

8.
Sci Rep ; 7(1): 4296, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28655887

RESUMO

Caenorhabditis briggsae has emerged as a model for comparative biology against model organism C. elegans. Most of its cell fate specifications are completed during embryogenesis whereas its cell growth is achieved mainly in larval stages. The molecular mechanism underlying the drastic developmental changes is poorly understood. To gain insights into the molecular changes between the two stages, we compared the proteomes between the two stages using iTRAQ. We identified a total of 2,791 proteins in the C. briggsae embryos and larvae, 247 of which undergo up- or down-regulation between the two stages. The proteins that are upregulated in the larval stages are enriched in the Gene Ontology categories of energy production, protein translation, and cytoskeleton; whereas those upregulated in the embryonic stage are enriched in the categories of chromatin dynamics and posttranslational modification, suggesting a more active chromatin modification in the embryos than in the larva. Perturbation of a subset of chromatin modifiers followed by cell lineage analysis suggests their roles in controlling cell division pace. Taken together, we demonstrate a general molecular switch from chromatin modification to metabolism during the transition from C. briggsae embryonic to its larval stages using iTRAQ approach. The switch might be conserved across metazoans.


Assuntos
Caenorhabditis/metabolismo , Divisão Celular , Cromatina/metabolismo , Proteoma , Proteômica , Animais , Divisão Celular/genética , Biologia Computacional/métodos , Curadoria de Dados , Desenvolvimento Embrionário/genética , Ontologia Genética , Larva , Espectrometria de Massas , Peptídeos/metabolismo , Fenótipo , Proteômica/métodos , Interferência de RNA
9.
Sci Rep ; 6: 33823, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27654511

RESUMO

Cyclooxygenase-2 (COX-2) has been implicated in cell invasion in non-small-cell lung cancer (NSCLC). However, the mechanism is unclear. The present study investigated the effect of COX-2 on ß1-integrin expression and cell invasion in NSCLC. COX-2 and ß1-integrin were co-expressed in NSCLC tissues. COX-2 overexpression or Prostaglandin E2 (PGE2) treatment increased ß1-integrin expression in NSCLC cell lines. ß1-integrin silencing suppressed COX-2-mediated tumour growth and cancer cell invasion in vivo and in vitro. Prostaglandin E Receptor EP1 transfection or treatment with EP1 agonist mimicked the effect of PGE2 treatment. EP1 siRNA blocked PGE2-mediated ß1-integrin expression. EP1 agonist treatment promoted Erk1/2, p38 phosphorylation and E2F-1 expression. MEK1/2 and p38 inhibitors suppressed EP1-mediated ß1-integrin expression. E2F-1 silencing suppressed EP1-mediated FoxC2 and ß1-integrin upregulation. ChIP and Luciferase Reporter assays identified that EP1 agonist treatment induced E2F-1 binding to FoxC2 promotor directly and improved FoxC2 transcription. FoxC2 siRNA suppressed ß1-integrin expression and EP1-mediated cell invasion. Immunohistochemistry showed E2F-1, FoxC2, and EP1R were all highly expressed in the NSCLC cases. This study suggested that COX-2 upregulates ß1-integrin expression and cell invasion in NSCLC by activating the MAPK/E2F-1 signalling pathway. Targeting the COX-2/EP1/PKC/MAPK/E2F-1/FoxC2/ß1-integrin pathway might represent a new therapeutic strategy for the prevention and treatment of this cancer.

10.
Cell Biosci ; 5: 53, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26388988

RESUMO

Colorectal cancer (CRC) is a heterogeneous disease that is associated with a gradual accumulation of genetic and epigenetic alterations. Among all CRC stages, stage II tumors are highly heterogeneous with a high relapse rate in about 20-25 % of stage II CRC patients following surgery. Thus, a comprehensive analysis of gene signatures to identify aggressive and metastatic phenotypes in stage II CRC is desired for a more accurate disease classification and outcome prediction. By utilizing a Cancer Array, containing 440 oncogenes and tumor suppressors to profile mRNA expression, we identified a larger number of differentially expressed genes in poorly differentiated stage II colorectal adenocarcinoma tissues, compared to their matched normal tissues. Ontology and Ingenuity Pathway Analysis (IPA) indicated that these genes are involved in functional mechanisms associated with several transcription factors. Genomic alterations of these genes were also investigated through The Cancer Genome Atlas (TCGA) database, utilizing 195 published CRC specimens. The percentage of genomic alterations in these genes was ranked based on their mRNA expression, copy number variations and mutations. This data was further combined with published microarray studies from a large set of CRC tumors classified based on prognostic features. This led to the identification of eight candidate genes including RPN2, HMGB1, AARS, IGFBP3, STAT1, HYOU1, NQO1 and PEA15 that were associated with the progressive phenotype. In particular, RPN2 and HMGB1 displayed a higher genomic alteration frequency in CRC, compared to eight other major solid cancers. Immunohistochemistry was performed on additional 78 stage I-IV CRC samples, where RPN2 protein immunostaining exhibited a significant association with stage III/IV tumors, distant metastasis, and poor differentiation, indicating that RPN2 expression is associated with poor prognosis. Further, our study revealed significant transcriptional regulatory mechanisms, networks and gene signatures, underlying CRC malignant progression and phenotype warranting future clinical investigations.

11.
Zhonghua Zhong Liu Za Zhi ; 37(10): 759-63, 2015 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-26813595

RESUMO

OBJECTIVE: To identify SNPs in the miRNA genes in colorectal cancer (CRC) patients and to investigate their association with CRC. METHODS: DNAs were isolated from 30 CRC tumor tissues and 30 tumor-adjacent tissues, and subjected to target capture using a custom miRNA chip covering 685 miRNA genes from NimbleGen. The captured DNAs were then sequenced using the Illumina's sequencing technology, and the data were analyzed. RESULTS: We identified 64 SNPs in 43 miRNA genes and most of these SNPs are novel SNPs not reported previously. Prediction of functional consequences of the SNPs using TargetScan and miRSNP showed that SNPs of hsa-mir-1273-G/A, hsa-mir-548h-3-C/U, hsa-mir-1290-A/G, and hsa-mir-1273-C/U resulted in reduction of their mature miRNA abundance. SNPs of hsa-mir-376b-C/G, hsa-mir-604-T/C, hsa-mir-1268-T/G and hsa-mir-146a-C/G resulted in changes in their targeted genes. Finally, we focused on the analysis of SNPs in mir-146a and we found that mir-146a rs1052918 C>G was predicted to promote tumorigenesis via the Wnt signaling pathway. CONCLUSIONS: SNPs in the miRNA genes are important for tumorigenesis. The changes by hsa-mir-146a rs1052918 C>G may result in loss of Wnt, constant activation of the Wnt signaling pathway, and uncontrolled cell proliferation and tumor progression.


Assuntos
Neoplasias Colorretais/genética , MicroRNAs/fisiologia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Sequência de Bases , Proliferação de Células , Neoplasias Colorretais/patologia , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
12.
BMC Neurol ; 14: 207, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25366337

RESUMO

BACKGROUND: SOX4 is a transcription factor required for tissue development and differentiation in vertebrates. Overexpression of SOX4 has been reported in many cancers including glioblastoma multiforme (GBM), however, the underlying mechanism of actions has not been studied. In this study, we investigated the role of SOX4 in GBM. METHODS: Kaplan-Meier analysis was performed to assess the association between SOX4 expression levels and survival times in primary GBM samples. Cre/lox P system was used to generate gain or loss of SOX4 in GBM cells, and microarray analysis uncovered the regulation network of SOX4 in GBM cells. RESULTS: High SOX4 expression was significantly associated with good prognosis of primary GBMs. SOX4 inhibited the growth of GBM cell line LN229, A172G and U87MG, partly via the activation of p53-p21 signaling and down-regulation of phosphorylated AKT1. Gene expression profiling and subsequent gene ontology analysis showed that SOX4 influenced several key pathways including the Wnt/ beta-catenin and TGF-beta signaling pathways. CONCLUSIONS: Our study found that SOX4 acts as a tumor suppressor in GBM cells by induce cell cycle arrest and inhibiting cell growth.


Assuntos
Glioblastoma/patologia , Fatores de Transcrição SOXC/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Pontos de Checagem da Fase G1 do Ciclo Celular/fisiologia , Glioblastoma/genética , Humanos , Estimativa de Kaplan-Meier , Transdução de Sinais
13.
OMICS ; 18(10): 625-35, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25133581

RESUMO

Abstract Re-sequencing of target genes is a highly effective approach for identifying mutations in cancers. Mutations, including indels (insertions, deletions, and the combination of the two), play important roles in carcinogenesis. Combining genomic DNA capture using high-density oligonucleotide microarrays (NimbleGen, Inc.) with next-generation high-throughput sequencing, we identified approximately 1600 indels for colorectal cancers in the Chinese population. Among them, 5 indels were localized to exonic regions of genes, including the TFDP1 (transcription factor Dp-1) gene. TFDP1 is an important transcription factor that coordinates with E2F proteins, thereby promoting transcription of E2F target genes and regulating the cell cycle and differentiation. We report here the identification of a recurrent frame-shift indel mutation (named indel84) in the TFDP1 gene in colorectal cancers by next-generation sequencing. We found in a validation set that TFDP1 indel84 is present in 70% of colorectal cancer (CRC) tissues. Wild-type TFDP1 encodes a protein of 410 amino acids with a potential DNA binding site at its N-terminal followed by several functional protein domains. The TFDP1 indel cDNA would generate an alternative TFDP1 protein missing the first 120 amino acids and potentially affecting the DNA binding domain. We further demonstrated that the TFDP1 indel84 mutation generated a gain-of-function phenotype by increasing cell proliferation, migration, and invasion of CRC cells. Our study identified a key molecular event for CRC that might have great diagnostic and therapeutic potentials.


Assuntos
Neoplasias Colorretais/genética , Fator de Transcrição DP1/genética , Adulto , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular , China , Neoplasias Colorretais/patologia , Análise Mutacional de DNA , Mutação da Fase de Leitura , Estudos de Associação Genética , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação INDEL , Dados de Sequência Molecular , Invasividade Neoplásica
14.
Nucleic Acids Res ; 42(Web Server issue): W130-6, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24875471

RESUMO

Interactions among transcriptional factors (TFs), cofactors and other proteins or enzymes can affect transcriptional regulatory capabilities of eukaryotic organisms. Post-translational modifications (PTMs) cooperate with TFs and epigenetic alterations to constitute a hierarchical complexity in transcriptional gene regulation. While clearly implicated in biological processes, our understanding of these complex regulatory mechanisms is still limited and incomplete. Various online software have been proposed for uncovering transcriptional and epigenetic regulatory networks, however, there is a lack of effective web-based software capable of constructing underlying interactive organizations between post-translational and transcriptional regulatory components. Here, we present an open web server, post-translational hierarchical gene regulatory network (PTHGRN) to unravel relationships among PTMs, TFs, epigenetic modifications and gene expression. PTHGRN utilizes a graphical Gaussian model with partial least squares regression-based methodology, and is able to integrate protein-protein interactions, ChIP-seq and gene expression data and to capture essential regulation features behind high-throughput data. The server provides an integrative platform for users to analyze ready-to-use public high-throughput Omics resources or upload their own data for systems biology study. Users can choose various parameters in the method, build network topologies of interests and dissect their associations with biological functions. Application of the software to stem cell and breast cancer demonstrates that it is an effective tool for understanding regulatory mechanisms in biological complex systems. PTHGRN web server is publically available at web site http://www.byanbioinfo.org/pthgrn.


Assuntos
Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Mapeamento de Interação de Proteínas , Software , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Diferenciação Celular/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Internet , Células MCF-7 , Camundongos , Processamento de Proteína Pós-Traducional , Ratos , Fatores de Transcrição/metabolismo
15.
PLoS One ; 8(9): e73656, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24069219

RESUMO

In head and neck squamous cell carcinoma (HNSCC), mutations of p53 usually coexist with aberrant activation of NF-kappaB (NF-κB), other transcription factors and microRNAs, which promote tumor pathogenesis. However, how these factors and microRNAs interact to globally modulate gene expression and mediate oncogenesis is not fully understood. We devised a novel bioinformatics method to uncover interactive relationships between transcription factors or microRNAs and genes. This approach is based on matrix decomposition modeling under the joint constraints of sparseness and regulator-target connectivity, and able to integrate gene expression profiling and binding data of regulators. We employed this method to infer the gene regulatory networks in HNSCC. We found that the majority of the predicted p53 targets overlapped with those for NF-κB, suggesting that the two transcription factors exert a concerted modulation on regulatory programs in tumor cells. We further investigated the interrelationships of p53 and NF-κB with five additional transcription factors, AP1, CEBPB, EGR1, SP1 and STAT3, and microRNAs mir21 and mir34ac. The resulting gene networks indicate that interactions among NF-κB, p53, and the two miRNAs likely regulate progression of HNSCC. We experimentally validated our findings by determining expression of the predicted NF-κB and p53 target genes by siRNA knock down, and by examining p53 binding activity on promoters of predicted target genes in the tumor cell lines. Our results elucidating the cross-regulations among NF-κB, p53, and microRNAs provide insights into the complex regulatory mechanisms underlying HNSCC, and shows an efficient approach to inferring gene regulatory programs in biological complex systems.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Carcinoma de Células Escamosas/genética , Linhagem Celular , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/genética , Humanos , NF-kappa B/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço , Proteína Supressora de Tumor p53/genética
16.
PLoS One ; 8(8): e70307, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23940558

RESUMO

Recent studies have demonstrated the power of deep re-sequencing of the whole genome or exome in understanding cancer genomes. However, targeted capture of selected genomic whole gene-body regions, rather than the whole exome, have several advantages: 1) the genes can be selected based on biology or a hypothesis; 2) mutations in promoter and intronic regions, which have important regulatory roles, can be investigated; and 3) less expensive than whole genome or whole exome sequencing. Therefore, we designed custom high-density oligonucleotide microarrays (NimbleGen Inc.) to capture approximately 1.7 Mb target regions comprising the genomic regions of 28 genes related to colorectal cancer including genes belonging to the WNT signaling pathway, as well as important transcription factors or colon-specific genes that are over expressed in colorectal cancer (CRC). The 1.7 Mb targeted regions were sequenced with a coverage ranged from 32× to 45× for the 28 genes. We identified a total of 2342 sequence variations in the CRC and corresponding adjacent normal tissues. Among them, 738 were novel sequence variations based on comparisons with the SNP database (dbSNP135). We validated 56 of 66 SNPs in a separate cohort of 30 CRC tissues using Sequenom MassARRAY iPLEX Platform, suggesting a validation rate of at least 85% (56/66). We found 15 missense mutations among the exonic variations, 21 synonymous SNPs that were predicted to change the exonic splicing motifs, 31 UTR SNPs that were predicted to occur at the transcription factor binding sites, 20 intronic SNPs located near the splicing sites, 43 SNPs in conserved transcription factor binding sites and 32 in CpG islands. Finally, we determined that rs3106189, localized to the 5' UTR of antigen presenting tapasin binding protein (TAPBP), and rs1052918, localized to the 3' UTR of transcription factor 3 (TCF3), were associated with overall survival of CRC patients.


Assuntos
Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neoplasias Colorretais/genética , Proteínas de Membrana Transportadoras/genética , Exoma/genética , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética
17.
OMICS ; 17(3): 136-49, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23421905

RESUMO

Alternative polyadenylation (APA) is widely present in the human genome and plays a key role in carcinogenesis. We conducted a comprehensive analysis of the APA products in glioblastoma multiforme (GBM, one of the most lethal brain tumors) and normal brain tissues and further developed a computational pipeline, RNAelements (http://sysbio.zju.edu.cn/RNAelements/), using covariance model from known RNA binding protein (RBP) targets acquired by RNA Immunoprecipitation (RIP) analysis. We identified 4530 APA isoforms for 2733 genes in GBM, and found that 182 APA isoforms from 148 genes showed significant differential expression between normal and GBM brain tissues. We then focused on three genes with long and short APA isoforms that show inconsistent expression changes between normal and GBM brain tissues. These were myocyte enhancer factor 2D, heat shock factor binding protein 1, and polyhomeotic homolog 1 (Drosophila). Using the RNAelements program, we found that RBP binding sites were enriched in the alternative regions between the first and the last polyadenylation sites, which would result in the short APA forms escaping regulation from those RNA binding proteins. To the best of our knowledge, this report is the first comprehensive APA isoform dataset for GBM and normal brain tissues. Additionally, we demonstrated a putative novel APA-mediated mechanism for controlling RNA stability and translation for APA isoforms. These observations collectively lay a foundation for novel diagnostics and molecular mechanisms that can inform future therapeutic interventions for GBM.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Proteínas de Neoplasias/metabolismo , Precursores de RNA/metabolismo , RNA Neoplásico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Encéfalo/metabolismo , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Bases de Dados de Ácidos Nucleicos , Glioblastoma/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Fatores de Transcrição MEF2 , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Poliadenilação , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Precursores de RNA/genética , Estabilidade de RNA , RNA Neoplásico/genética , Software
18.
BMC Genomics ; 12: 11, 2011 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-21211035

RESUMO

BACKGROUND: SOX2 is a key gene implicated in maintaining the stemness of embryonic and adult stem cells. SOX2 appears to re-activate in several human cancers including glioblastoma multiforme (GBM), however, the detailed response program of SOX2 in GBM has not yet been defined. RESULTS: We show that knockdown of the SOX2 gene in LN229 GBM cells reduces cell proliferation and colony formation. We then comprehensively characterize the SOX2 response program by an integrated analysis using several advanced genomic technologies including ChIP-seq, microarray profiling, and microRNA sequencing. Using ChIP-seq technology, we identified 4883 SOX2 binding regions in the GBM cancer genome. SOX2 binding regions contain the consensus sequence wwTGnwTw that occurred 3931 instances in 2312 SOX2 binding regions. Microarray analysis identified 489 genes whose expression altered in response to SOX2 knockdown. Interesting findings include that SOX2 regulates the expression of SOX family proteins SOX1 and SOX18, and that SOX2 down regulates BEX1 (brain expressed X-linked 1) and BEX2 (brain expressed X-linked 2), two genes with tumor suppressor activity in GBM. Using next generation sequencing, we identified 105 precursor microRNAs (corresponding to 95 mature miRNAs) regulated by SOX2, including down regulation of miR-143, -145, -253-5p and miR-452. We also show that miR-145 and SOX2 form a double negative feedback loop in GBM cells, potentially creating a bistable system in GBM cells. CONCLUSIONS: We present an integrated dataset of ChIP-seq, expression microarrays and microRNA sequencing representing the SOX2 response program in LN229 GBM cells. The insights gained from our integrated analysis further our understanding of the potential actions of SOX2 in carcinogenesis and serves as a useful resource for the research community.


Assuntos
Glioblastoma/genética , MicroRNAs/genética , Fatores de Transcrição SOXB1/metabolismo , Imunoprecipitação da Cromatina , Humanos , MicroRNAs/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de DNA
19.
OMICS ; 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20726776

RESUMO

Abstract SOX2 is a high mobility group (HMG) box containing transcription factor that has been implicated in various types of cancer, but its role in colorectal cancers (CRC) has not been studied. Here we show that SOX2 is overexpressed in CRC tissues compared with normal adjacent tissues using immunohistochemical staining and RT-PCR. We also observed an increased SOX2 expression in nucleus of colorectal cancer tissues (46%, 14/30 cases vs. 7%, 2/30 adjacent tissues). Furthermore, knockdown of SOX2 in SW620 colorectal cancer cells decreased their growth rates in vitro cell line, and in vivo in xenograft models. ChIP-seq analysis of SOX2 revealed a consensus sequence of wwTGywTT. An integrated expression profiling and ChIP-seq analysis show that SOX2 is involved in the BMP signaling pathway, steroid metabolic process, histone modifications, and many receptor-mediated signaling pathways such as IGF1R and ITPR2 (Inositol 1,4,5-triphosphate receptor, type 2).

20.
OMICS ; 14(4): 369-84, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20726797

RESUMO

SOX2 is an HMG box containing transcription factor that has been implicated in various types of cancer, but its role in colorectal cancers (CRC) has not been studied. Here we show that SOX2 is overexpressed in CRC tissues compared with normal adjacent tissues using immunohistochemical staining and RT-PCR. We also observed an increased SOX2 expression in nucleus of colorectal cancer tissues (46%, 14/30 cases vs. 7%, 2/30 adjacent tissues). Furthermore, knockdown of SOX2 in SW620 colorectal cancer cells decreased their growth rates in vitro cell line, and in vivo in xenograft models. ChIP-Seq analysis of SOX2 revealed a consensus sequence of wwTGywTT. An integrated expression profiling and ChIP-seq analysis show that SOX2 is involved in the BMP signaling pathway, steroid metabolic process, histone modifications, and many receptor-mediated signaling pathways such as IGF1R and ITPR2 (Inositol 1,4,5-triphosphate receptor, type 2).


Assuntos
Imunoprecipitação da Cromatina/métodos , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição SOXB1/genética , Animais , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Análise em Microsséries , Dados de Sequência Molecular , Transplante de Neoplasias , Fatores de Transcrição SOXB1/metabolismo , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA