Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Mol Cell Biochem ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980592

RESUMO

Melanoma is a primary malignant tumor with high lethality, which occurs in the skin and eye tissues, while the molecular mechanisms of melanomagenesis remain largely unknown. Here, we show that death-associated protein-like 1 (DAPL1) expression is lower in melanoma tissues than in paracancerous tissues or nevus tissues, and Uveal melanoma patients with lower DAPL1 expression have a poorer survival rate than those with higher expression of DAPL1. Overexpression of DAPL1 inhibits proliferation of cultured melanoma cells, whereas knockdown of DAPL1 increases cell proliferation. Tumor transplantation experiment results also demonstrate that DAPL1 inhibits tumorigenesis of melanoma cells both in subretinal and subcutaneous tissues of nude mice in vivo. Finally, DAPL1 inhibits proliferation of melanoma cells by increasing the protein level of P21 via decreasing the ubiquitin mediated degradation of P21 and promoting its stability. Conversely, knockdown of P21 neutralizes the effects of inhibition of DAPL1 on melanoma cell proliferation and enhances the severity of melanoma tumorigenesis. These results suggest that DAPL1 is a novel melanoma tumor suppressor gene and thus a potential therapeutic target for melanoma.

2.
Stem Cell Rev Rep ; 20(6): 1459-1479, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38809490

RESUMO

Retinal degeneration (RD) is a leading cause of blindness worldwide and includes conditions such as retinitis pigmentosa (RP), age-related macular degeneration (AMD), and Stargardt's disease (STGD). These diseases result in the permanent loss of vision due to the progressive and irreversible degeneration of retinal cells, including photoreceptors (PR) and the retinal pigment epithelium (RPE). The adult human retina has limited abilities to regenerate and repair itself, making it challenging to achieve complete self-replenishment and functional repair of retinal cells. Currently, there is no effective clinical treatment for RD. Stem cell therapy, which involves transplanting exogenous stem cells such as retinal progenitor cells (RPCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs), or activating endogenous stem cells like Müller Glia (MG) cells, holds great promise for regenerating and repairing retinal cells in the treatment of RD. Several preclinical and clinical studies have shown the potential of stem cell-based therapies for RD. However, the clinical translation of these therapies for the reconstruction of substantial vision still faces significant challenges. This review provides a comprehensive overview of stem/progenitor cell-based therapy strategies for RD, summarizes recent advances in preclinical studies and clinical trials, and highlights the major challenges in using stem/progenitor cell-based therapies for RD.


Assuntos
Degeneração Retiniana , Transplante de Células-Tronco , Humanos , Degeneração Retiniana/terapia , Degeneração Retiniana/patologia , Animais , Células-Tronco/citologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Retina/citologia , Retina/patologia
3.
Nat Commun ; 15(1): 3700, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697989

RESUMO

Detecting early-stage esophageal squamous cell carcinoma (ESCC) and precancerous lesions is critical for improving survival. Here, we conduct whole-genome bisulfite sequencing (WGBS) on 460 cfDNA samples from patients with non-metastatic ESCC or precancerous lesions and matched healthy controls. We develop an expanded multimodal analysis (EMMA) framework to simultaneously identify cfDNA methylation, copy number variants (CNVs), and fragmentation markers in cfDNA WGBS data. cfDNA methylation markers are the earliest and most sensitive, detectable in 70% of ESCCs and 50% of precancerous lesions, and associated with molecular subtypes and tumor microenvironments. CNVs and fragmentation features show high specificity but are linked to late-stage disease. EMMA significantly improves detection rates, increasing AUCs from 0.90 to 0.99, and detects 87% of ESCCs and 62% of precancerous lesions with >95% specificity in validation cohorts. Our findings demonstrate the potential of multimodal analysis of cfDNA methylome for early detection and monitoring of molecular characteristics in ESCC.


Assuntos
Biomarcadores Tumorais , Variações do Número de Cópias de DNA , Metilação de DNA , Detecção Precoce de Câncer , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Lesões Pré-Cancerosas , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/diagnóstico , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/diagnóstico , Lesões Pré-Cancerosas/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/patologia , Masculino , Detecção Precoce de Câncer/métodos , Feminino , Biomarcadores Tumorais/genética , Pessoa de Meia-Idade , Idoso , Epigenoma , Ácidos Nucleicos Livres/genética , Ácidos Nucleicos Livres/sangue , Sequenciamento Completo do Genoma/métodos , Microambiente Tumoral/genética
4.
Cancer Gene Ther ; 31(4): 612-626, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38291129

RESUMO

Dysregulation of histone acetylation is widely implicated in tumorigenesis, yet its specific roles in the progression and metastasis of esophageal squamous cell carcinoma (ESCC) remain unclear. Here, we profiled the genome-wide landscapes of H3K9ac for paired adjacent normal (Nor), primary ESCC (EC) and metastatic lymph node (LNC) esophageal tissues from three ESCC patients. Compared to H3K27ac, we identified a distinct epigenetic reprogramming specific to H3K9ac in EC and LNC samples relative to Nor samples. This H3K9ac-related reprogramming contributed to the transcriptomic aberration of targeting genes, which were functionally associated with tumorigenesis and metastasis. Notably, genes with gained H3K9ac signals in both primary and metastatic lymph node samples (common-gained gene) were significantly enriched in oncogenes. Single-cell RNA-seq analysis further revealed that the corresponding top 15 common-gained genes preferred to be enriched in mesenchymal cells with high metastatic potential. Additionally, in vitro experiment demonstrated that the removal of H3K9ac from the common-gained gene MSI1 significantly downregulated its transcription, resulting in deficiencies in ESCC cell proliferation and migration. Together, our findings revealed the distinct characteristics of H3K9ac in esophageal squamous cell carcinogenesis and metastasis, and highlighted the potential therapeutic avenue for intervening ESCC through epigenetic modulation via H3K9ac.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Histonas/genética , Lisina/uso terapêutico , Neoplasias Esofágicas/patologia , Acetilação , Proliferação de Células/genética , Carcinogênese , Proteínas do Tecido Nervoso , Proteínas de Ligação a RNA
5.
MedComm (2020) ; 4(6): e437, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045830

RESUMO

The rapid advancement of tumor immunotherapies poses challenges for the tools used in cancer immunology research, highlighting the need for highly effective biomarkers and reproducible experimental models. Current immunotherapy biomarkers encompass surface protein markers such as PD-L1, genetic features such as microsatellite instability, tumor-infiltrating lymphocytes, and biomarkers in liquid biopsy such as circulating tumor DNAs. Experimental models, ranging from 3D in vitro cultures (spheroids, submerged models, air-liquid interface models, organ-on-a-chips) to advanced 3D bioprinting techniques, have emerged as valuable platforms for cancer immunology investigations and immunotherapy biomarker research. By preserving native immune components or coculturing with exogenous immune cells, these models replicate the tumor microenvironment in vitro. Animal models like syngeneic models, genetically engineered models, and patient-derived xenografts provide opportunities to study in vivo tumor-immune interactions. Humanized animal models further enable the simulation of the human-specific tumor microenvironment. Here, we provide a comprehensive overview of the advantages, limitations, and prospects of different biomarkers and experimental models, specifically focusing on the role of biomarkers in predicting immunotherapy outcomes and the ability of experimental models to replicate the tumor microenvironment. By integrating cutting-edge biomarkers and experimental models, this review serves as a valuable resource for accessing the forefront of cancer immunology investigation.

6.
Cancer Cell ; 41(11): 1852-1870.e9, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37832554

RESUMO

Neoadjuvant immune checkpoint blockade (ICB) demonstrates promise in operable esophageal squamous cell carcinoma (ESCC), but lacks available efficacy biomarkers. Here, we perform single-cell RNA-sequencing of tumors from patients with ESCC undergoing neoadjuvant ICB, revealing a subset of exhausted CD8+ T cells expressing SPRY1 (CD8+ Tex-SPRY1) that displays a progenitor exhausted T cell (Tpex) phenotype and correlates with complete response to ICB. We validate CD8+ Tex-SPRY1 cells as an ICB-specific predictor of improved response and survival using independent ICB-/non-ICB cohorts and demonstrate that expression of SPRY1 in CD8+ T cells enforces Tpex phenotype and enhances ICB efficacy. Additionally, CD8+ Tex-SPRY1 cells contribute to proinflammatory phenotype of macrophages and functional state of B cells, which thereby promotes antitumor immunity by enhancing CD8+ T cell effector functions. Overall, our findings unravel progenitor-like CD8+ Tex-SPRY1 cells' role in effective responses to ICB for ESCC and inform mechanistic biomarkers for future individualized immunotherapy.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1 , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Terapia Neoadjuvante , Biomarcadores , Microambiente Tumoral , Proteínas de Membrana/genética , Fosfoproteínas
7.
EBioMedicine ; 96: 104801, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37725855

RESUMO

BACKGROUND: DNA damage repair (DDR) is a critical process that maintains genomic integrity and plays essential roles at both the cellular and organismic levels. Here, we aimed to characterize the DDR profiling of esophageal squamous cell carcinoma (ESCC), investigate the prognostic value of DDR-related features, and explore their potential for guiding personalized treatment strategies. METHODS: We analyzed bulk and single-cell transcriptomics data from 377 ESCC cases from our institution and other publicly available cohorts to identify major DDR subtypes. The heterogeneity in cellular and functional properties, tumor microenvironment (TME) characteristics, and prognostic significance of these DDR subtypes were investigated using immunogenomic analysis and in vitro experiments. Additionally, we experimentally validated a combinatorial immunotherapy strategy using syngeneic mouse models of ESCC. FINDINGS: DDR alteration profiling enabled us to identify two distinct DDR subtypes, DDRactive and DDRsilent, which exhibited independent prognostic values in locoregional ESCC but not in metastatic ESCC. The DDRsilent subtype was characterized by an inflamed but immune-suppressed microenvironment with relatively high immune cell infiltration, abnormal immune checkpoint expression, T-cell exhaustion, and enrichment of cancer-related pathways. Moreover, DDR subtyping indicates that BRCA1 and HFM1 are robust and independent prognostic factors in locoregional ESCC. Finally, we proposed and verified that the concomitant triggering of GITR or blockade of BTLA with PD-1 blockade or cisplatin chemotherapy represents effective combination strategies for high-risk locoregional ESCC tumors. INTERPRETATION: Our discovery of DDR-based molecular subtypes will enhance our understanding of tumor heterogeneity and have significant clinical implications for the therapeutic and management strategies of locoregional ESCC. FUNDING: This study was supported by the National Key R&D Program of China (2021YFC2501000, 2022YFC3401003), National Natural Science Foundation of China (82172882), the Beijing Natural Science Foundation (7212085), the CAMS Innovation Fund for Medical Sciences (2021-I2M-1-018, 2021-I2M-1-067), the Fundamental Research Funds for the Central Universities (3332021091), and the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (2019PT310027).

8.
J Biol Chem ; 299(9): 105130, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37543366

RESUMO

Long noncoding RNAs (lncRNAs) are increasingly being recognized as modulators in various biological processes. However, due to their low expression, their systematic characterization is difficult to determine. Here, we performed transcript annotation by a newly developed computational pipeline, termed RNA-seq and small RNA-seq combined strategy (RSCS), in a wide variety of cellular contexts. Thousands of high-confidence potential novel transcripts were identified by the RSCS, and the reliability of the transcriptome was verified by analysis of transcript structure, base composition, and sequence complexity. Evidenced by the length comparison, the frequency of the core promoter and the polyadenylation signal motifs, and the locations of transcription start and end sites, the transcripts appear to be full length. Furthermore, taking advantage of our strategy, we identified a large number of endogenous retrovirus-associated lncRNAs, and a novel endogenous retrovirus-lncRNA that was functionally involved in control of Yap1 expression and essential for early embryogenesis was identified. In summary, the RSCS can generate a more complete and precise transcriptome, and our findings greatly expanded the transcriptome annotation for the mammalian community.


Assuntos
Anotação de Sequência Molecular , RNA Longo não Codificante , RNA-Seq , Animais , Desenvolvimento Embrionário/genética , Mamíferos/embriologia , Mamíferos/genética , Anotação de Sequência Molecular/métodos , Regiões Promotoras Genéticas/genética , Reprodutibilidade dos Testes , Retroviridae/genética , RNA Longo não Codificante/genética , RNA-Seq/métodos , Sítio de Iniciação de Transcrição , Transcriptoma/genética , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo
9.
MedComm (2020) ; 4(4): e329, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37492785

RESUMO

Over the past two decades, liquid biopsy has been increasingly used as a supplement, or even, a replacement to the traditional biopsy in clinical oncological practice, due to its noninvasive and early detectable properties. The detections can be based on a variety of features extracted from tumor­derived entities, such as quantitative alterations, genetic changes, and epigenetic aberrations, and so on. So far, the clinical applications of cancer liquid biopsy mainly aimed at two aspects, prediction (early diagnosis, prognosis and recurrent evaluation, therapeutic response monitoring, etc.) and intervention. In spite of the rapid development and great contributions achieved, cancer liquid biopsy is still a field under investigation and deserves more clinical practice. To better open up future work, here we systematically reviewed and compared the latest progress of the most widely recognized circulating components, including circulating tumor cells, cell-free circulating DNA, noncoding RNA, and nucleosomes, from their discovery histories to clinical values. According to the features applied, we particularly divided the contents into two parts, beyond epigenetics and epigenetic-based. The latter was considered as the highlight along with a brief overview of the advances in both experimental and bioinformatic approaches, due to its unique advantages and relatively lack of documentation.

10.
Nat Commun ; 14(1): 3799, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365153

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a deadly cancer with no clinically relevant biomarkers for early detection. Here, we comprehensively characterized the transcriptional landscape of long non-coding RNAs (lncRNAs) in paired tumor and normal tissue specimens from 93 ESCC patients, and identified six key malignancy-specific lncRNAs that were integrated into a Multi-LncRNA Malignancy Risk Probability model (MLMRPscore). The MLMRPscore performed robustly in distinguishing ESCC from normal controls in multiple in-house and external multicenter validation cohorts, including early-stage I/II cancer. In addition, five candidate lncRNAs were confirmed to have non-invasive diagnostic potential in our institute plasma cohort, showing superior or comparable diagnostic accuracy to current clinical serological markers. Overall, this study highlights the profound and robust dysregulation of lncRNAs in ESCC and demonstrates the potential of lncRNAs as non-invasive biomarkers for the early detection of ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , RNA Longo não Codificante , Humanos , Carcinoma de Células Escamosas do Esôfago/diagnóstico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , RNA Longo não Codificante/genética , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica
11.
Epigenetics Chromatin ; 16(1): 13, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37118755

RESUMO

BACKGROUND: IDH1/2 hotspot mutations are well known to drive oncogenic mutations in gliomas and are well-defined in the WHO 2021 classification of central nervous system tumors. Specifically, IDH mutations lead to aberrant hypermethylation of under-methylated regions (UMRs) in normal tissues through the disruption of TET enzymes. However, the chromatin reprogramming and transcriptional changes induced by IDH-related hypermethylation in gliomas remain unclear. RESULTS: Here, we have developed a precise computational framework based on Hidden Markov Model to identify altered methylation states of UMRs at single-base resolution. By applying this framework to whole-genome bisulfite sequencing data from 75 normal brain tissues and 15 IDH mutant glioma tissues, we identified two distinct types of hypermethylated UMRs in IDH mutant gliomas. We named them partially hypermethylated UMRs (phUMRs) and fully hypermethylated UMRs (fhUMRs), respectively. We found that the phUMRs and fhUMRs exhibit distinct genomic features and chromatin states. Genes related to fhUMRs were more likely to be repressed in IDH mutant gliomas. In contrast, genes related to phUMRs were prone to be up-regulated in IDH mutant gliomas. Such activation of phUMR genes is associated with the accumulation of active H3K4me3 and the loss of H3K27me3, as well as H3K36me3 accumulation in gene bodies to maintain gene expression stability. In summary, partial erosion on UMRs was accompanied by locus-specific changes in key chromatin marks, which may contribute to oncogene activation. CONCLUSIONS: Our study provides a computational strategy for precise decoding of methylation encroachment patterns in IDH mutant gliomas, revealing potential mechanistic insights into chromatin reprogramming that contribute to oncogenesis.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/genética , Cromatina/genética , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Metilação de DNA , Mutação , Oncogenes , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo
12.
Cell Prolif ; 56(11): e13477, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37057399

RESUMO

Although the cell atlas of the human ocular anterior segment of the human eye was revealed by single-nucleus RNA sequencing, whether subtypes of lens stem/progenitor cells exist among epithelial cells and the molecular characteristics of cell differentiation of the human lens remain unclear. Single-cell RNA sequencing is a powerful tool to analyse the heterogeneity of tissues at the single cell level, leading to a better understanding of the processes of cell differentiation. By profiling 18,596 cells in human lens superficial tissue through single-cell sequencing, we identified two subtypes of lens epithelial cells that specifically expressed C8orf4 and ADAMTSL4 with distinct spatial localization, a new type of fibre cells located directly adjacent to the epithelium, and a subpopulation of ADAMTSL4+ cells that might be lens epithelial stem/progenitor cells. We also found two trajectories of lens epithelial cell differentiation and changes of some important genes during differentiation.


Assuntos
Cristalino , Humanos , Cristalino/metabolismo , Epitélio , Células Epiteliais/metabolismo , Olho , Diferenciação Celular , Análise de Sequência de RNA
13.
Cancer Discov ; 13(3): 724-745, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455589

RESUMO

Nucleophosmin (NPM1) is a ubiquitously expressed nucleolar protein with a wide range of biological functions. In 30% of acute myeloid leukemia (AML), the terminal exon of NPM1 is often found mutated, resulting in the addition of a nuclear export signal and a shift of the protein to the cytoplasm (NPM1c). AMLs carrying this mutation have aberrant expression of the HOXA/B genes, whose overexpression leads to leukemogenic transformation. Here, for the first time, we comprehensively prove that NPM1c binds to a subset of active gene promoters in NPM1c AMLs, including well-known leukemia-driving genes-HOXA/B cluster genes and MEIS1. NPM1c sustains the active transcription of key target genes by orchestrating a transcription hub and maintains the active chromatin landscape by inhibiting the activity of histone deacetylases. Together, these findings reveal the neomorphic function of NPM1c as a transcriptional amplifier for leukemic gene expression and open up new paradigms for therapeutic intervention. SIGNIFICANCE: NPM1 mutation is the most common mutation in AML, yet the mechanism of how the mutant protein results in AML remains unclear. Here, for the first time, we prove mutant NPM1 directly binds to active chromatin regions and hijacks the transcription of AML-driving genes. See related article by Uckelmann et al., p. 746. This article is highlighted in the In This Issue feature, p. 517.


Assuntos
Leucemia Mieloide Aguda , Nucleofosmina , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Mutação , Cromatina/genética
14.
Comput Struct Biotechnol J ; 20: 2648-2656, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685368

RESUMO

Adenosine-to-inosine (A-to-I) RNA editing leads to functional change of neurotransmitter receptor which is essential for neurotransmission and normal neuronal development. As a highly accessible part of central nervous system, retina has been extensively studied, however, it remains largely unknown how RNA editing regulates its development. Here, a genome-wide screening of high-confidence RNA editing events were performed to decipher the dynamic transcriptome regulation by RNA editing during mouse retinal development. 2000 high-confidence editing sites across eight developmental stages of retina were called. Three unique patterns (RNA-editinghigh pattern, RNA-editingmedium pattern and RNA-editinglow pattern) were identified by clustering these editing sites based on their editing level during retinal development. Editing events from RNA-editinghigh pattern were significantly associated with glutamate receptors and regulated synaptic transmission. Interestingly, most non-synonymous high-editing sites were mapped to ion channel genes of glutamatergic synapse which were associated with neurotransmission by controlling ion channel permeability and affecting exocytosis. Meanwhile, these non-synonymous editing sites were evolutionarily conserved and exhibited a consistently increasing editing levels between mouse and human retinal development. Single-cell RNA-seq data analysis revealed that RNA editing events prefer to occur in two main cell types including bipolar and amacrine cells. Genes with non-synonymous high-editing sites were enriched in both bipolar cells and retina ganglion cells, which may mediate retina ganglion cell differentiation by altering channel ion permeability. Together, our results provide novel insights into mechanism of post-transcriptional regulation during retinal development and help to develop novel RNA editing-guided therapeutic strategies for retinal disorders.

15.
Genome Med ; 14(1): 21, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35209950

RESUMO

BACKGROUND: Identifying breast cancer patients with DNA repair pathway-related germline pathogenic variants (GPVs) is important for effectively employing systemic treatment strategies and risk-reducing interventions. However, current criteria and risk prediction models for prioritizing genetic testing among breast cancer patients do not meet the demands of clinical practice due to insufficient accuracy. METHODS: The study population comprised 3041 breast cancer patients enrolled from seven hospitals between October 2017 and 11 August 2019, who underwent germline genetic testing of 50 cancer predisposition genes (CPGs). Associations among GPVs in different CPGs and endophenotypes were evaluated using a case-control analysis. A phenotype-based GPV risk prediction model named DNA-repair Associated Breast Cancer (DrABC) was developed based on hierarchical neural network architecture and validated in an independent multicenter cohort. The predictive performance of DrABC was compared with currently used models including BRCAPRO, BOADICEA, Myriad, PENN II, and the NCCN criteria. RESULTS: In total, 332 (11.3%) patients harbored GPVs in CPGs, including 134 (4.6%) in BRCA2, 131 (4.5%) in BRCA1, 33 (1.1%) in PALB2, and 37 (1.3%) in other CPGs. GPVs in CPGs were associated with distinct endophenotypes including the age at diagnosis, cancer history, family cancer history, and pathological characteristics. We developed a DrABC model to predict the risk of GPV carrier status in BRCA1/2 and other important CPGs. In predicting GPVs in BRCA1/2, the performance of DrABC (AUC = 0.79 [95% CI, 0.74-0.85], sensitivity = 82.1%, specificity = 63.1% in the independent validation cohort) was better than that of previous models (AUC range = 0.57-0.70). In predicting GPVs in any CPG, DrABC (AUC = 0.74 [95% CI, 0.69-0.79], sensitivity = 83.8%, specificity = 51.3% in the independent validation cohort) was also superior to previous models in their current versions (AUC range = 0.55-0.65). After training these previous models with the Chinese-specific dataset, DrABC still outperformed all other methods except for BOADICEA, which was the only previous model with the inclusion of pathological features. The DrABC model also showed higher sensitivity and specificity than the NCCN criteria in the multi-center validation cohort (83.8% and 51.3% vs. 78.8% and 31.2%, respectively, in predicting GPVs in any CPG). The DrABC model implementation is available online at http://gifts.bio-data.cn/ . CONCLUSIONS: By considering the distinct endophenotypes associated with different CPGs in breast cancer patients, a phenotype-driven prediction model based on hierarchical neural network architecture was created for identification of hereditary breast cancer. The model achieved superior performance in identifying GPV carriers among Chinese breast cancer patients.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Reparo do DNA , Feminino , Predisposição Genética para Doença , Células Germinativas , Mutação em Linhagem Germinativa , Humanos , Mutação , Fenótipo
16.
Signal Transduct Target Ther ; 7(1): 53, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35210398

RESUMO

This study investigates aberrant DNA methylations as potential diagnosis and prognosis markers for esophageal squamous-cell carcinoma (ESCC), which if diagnosed at advanced stages has <30% five-year survival rate. Comparing genome-wide methylation sites of 91 ESCC and matched adjacent normal tissues, we identified 35,577 differentially methylated CpG sites (DMCs) and characterized their distribution patterns. Integrating whole-genome DNA and RNA-sequencing data of the same samples, we found multiple dysregulated transcription factors and ESCC-specific genomic correlates of identified DMCs. Using featured DMCs, we developed a 12-marker diagnostic panel with high accuracy in our dataset and the TCGA ESCC dataset, and a 4-marker prognostic panel distinguishing high-risk patients. In-vitro experiments validated the functions of 4 marker host genes. Together these results provide additional evidence for the important roles of aberrant DNA methylations in ESCC development and progression. Our DMC-based diagnostic and prognostic panels have potential values for clinical care of ESCC, laying foundations for developing targeted methylation assays for future non-invasive cancer detection methods.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Ilhas de CpG/genética , DNA , Metilação de DNA/genética , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Humanos , Prognóstico
17.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34663731

RESUMO

The genetic origins of nanoscale extracellular vesicles in our body fluids remains unclear. Here, we perform a tracking analysis of urinary exosomes via RNA sequencing, revealing that urine exosomes mostly express tissue-specific genes for the bladder and have close cell-genetic relationships to the endothelial cell, basal cell, monocyte, and dendritic cell. Tracking the differentially expressed genes of cancers and corresponding enrichment analysis show urine exosomes are intensively involved in immune activities, indicating that they may be harnessed as reliable biomarkers of noninvasive liquid biopsy in cancer genomic diagnostics and precision medicine.


Assuntos
Exossomos/metabolismo , Neoplasias/patologia , Urina , Humanos , Biópsia Líquida , Neoplasias/metabolismo
18.
Clin Epigenetics ; 13(1): 197, 2021 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-34689838

RESUMO

BACKGROUND: 5-Hydroxymethylcytosine (5hmC) is a significant DNA epigenetic modification. However, the 5hmC modification alterations in genomic regions encoding long non-coding RNA (lncRNA) and their clinical significance remain poorly characterized. RESULTS: A three-phase discovery-modeling-validation study was conducted to explore the potential of the plasma-derived 5hmC modification level in genomic regions encoding lncRNAs as a superior alternative biomarker for cancer diagnosis and surveillance. Genome-wide 5hmC profiles in the plasma circulating cell-free DNA of 1632 cancer and 1379 non-cancerous control samples from different cancer types and multiple centers were repurposed and characterized. A large number of altered 5hmC modifications were distributed at genomic regions encoding lncRNAs in cancerous compared with healthy subjects. Furthermore, most 5hmC-modified lncRNA genes were cancer-specific, with only a relatively small number of 5hmC-modified lncRNA genes shared by various cancer types. A 5hmC-LncRNA diagnostic score (5hLD-score) comprising 39 tissue-shared 5hmC-modified lncRNA gene markers was developed using elastic net regularization. The 5hLD-score was able to accurately distinguish tumors from healthy controls with an area under the curve (AUC) of 0.963 [95% confidence interval (CI) 0.940-0.985] and 0.912 (95% CI 0.837-0.987) in the training and internal validation cohorts, respectively. Results from three independent validations confirmed the robustness and stability of the 5hLD-score with an AUC of 0.851 (95% CI 0.786-0.916) in Zhang's non-small cell lung cancer cohort, AUC of 0.887 (95% CI 0.852-0.922) in Tian's esophageal cancer cohort, and AUC of 0.768 (95% CI 0.746-0.790) in Cai's hepatocellular carcinoma cohort. In addition, a significant association was identified between the 5hLD-score and the progression from hepatitis to liver cancer. Finally, lncRNA genes modified by tissue-specific 5hmC alteration were again found to be capable of identifying the origin and location of tumors. CONCLUSION: The present study will contribute to the ongoing effort to understand the transcriptional programs of lncRNA genes, as well as facilitate the development of novel invasive genomic tools for early cancer detection and surveillance.


Assuntos
5-Metilcitosina/análogos & derivados , Detecção Precoce de Câncer/métodos , Neoplasias/diagnóstico , 5-Metilcitosina/análise , Ácidos Nucleicos Livres/análise , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Progressão da Doença , Detecção Precoce de Câncer/estatística & dados numéricos , Humanos , Neoplasias/genética , RNA Longo não Codificante/análise , RNA Longo não Codificante/sangue , RNA Longo não Codificante/genética
20.
NPJ Genom Med ; 6(1): 65, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381055

RESUMO

Trimethylation of histone H3 lysine 27 trimethylation (H3K27me3) may be recruited by repressive Polycomb complexes to mediate gene silencing, which is critical for maintaining embryonic stem cell pluripotency and differentiation. However, the roles of aberrant H3K27me3 patterns in tumorigenesis are not fully understood. Here, we discovered that grand silencer domains (breadth > 50 kb) for H3K27me3 were significantly associated with epithelial cell differentiation and exhibited high gene essentiality and conservation in human esophageal epithelial cells. These grand H3K27me3 domains exhibited high modification signals involved in gene silencing, and preferentially occupied the entirety of topologically associating domains and interact with each other. We found that widespread loss of the grand H3K27me3 domains in of esophageal squamous cell carcinomas (ESCCs) were enriched in genes involved in epithelium and endothelium differentiation, which were significantly associated with overexpression with increase of active modifications of H3K4me3, H3K4me1, and H3K27ac marks, as well as DNA hypermethylation in the gene bodies. A total of 208 activated genes with loss of grand H3K27me3 domains in ESCC were identified, where the higher expression and mutation of T-box transcription factor 20 (TBX20) were associated with worse patients' outcomes. Our results showed that knockdown of TBX20 may have led to a striking defect in esophageal cancer cell growth and carcinogenesis-related pathway, including cell cycle and homologous recombination. Together, our results reveal that loss of grand H3K27me3 domains represent a catalog of remarkable activating regulators involved in carcinogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA