Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37158597

RESUMO

The amoeba-resistant bacterium Legionella pneumophila causes Legionnaires' disease and employs a type IV secretion system (T4SS) to replicate in the unique, ER-associated Legionella-containing vacuole (LCV). The large fusion GTPase Sey1/atlastin is implicated in ER dynamics, ER-derived lipid droplet (LD) formation, and LCV maturation. Here, we employ cryo-electron tomography, confocal microscopy, proteomics, and isotopologue profiling to analyze LCV-LD interactions in the genetically tractable amoeba Dictyostelium discoideum. Dually fluorescence-labeled D. discoideum producing LCV and LD markers revealed that Sey1 as well as the L. pneumophila T4SS and the Ran GTPase activator LegG1 promote LCV-LD interactions. In vitro reconstitution using purified LCVs and LDs from parental or Δsey1 mutant D. discoideum indicated that Sey1 and GTP promote this process. Sey1 and the L. pneumophila fatty acid transporter FadL were implicated in palmitate catabolism and palmitate-dependent intracellular growth. Taken together, our results reveal that Sey1 and LegG1 mediate LD- and FadL-dependent fatty acid metabolism of intracellular L. pneumophila.


Assuntos
Dictyostelium , Legionella pneumophila , Legionella , Doença dos Legionários , Humanos , Legionella pneumophila/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Macrófagos/metabolismo , Dictyostelium/metabolismo , Gotículas Lipídicas/metabolismo , Vacúolos/metabolismo , Legionella/metabolismo , Doença dos Legionários/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
Cell Microbiol ; 23(5): e13318, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33583106

RESUMO

Dictyostelium discoideum Sey1 is the single ortholog of mammalian atlastin 1-3 (ATL1-3), which are large homodimeric GTPases mediating homotypic fusion of endoplasmic reticulum (ER) tubules. In this study, we generated a D. discoideum mutant strain lacking the sey1 gene and found that amoebae deleted for sey1 are enlarged, but grow and develop similarly to the parental strain. The ∆sey1 mutant amoebae showed an altered ER architecture, and the tubular ER network was partially disrupted without any major consequences for other organelles or the architecture of the secretory and endocytic pathways. Macropinocytic and phagocytic functions were preserved; however, the mutant amoebae exhibited cumulative defects in lysosomal enzymes exocytosis, intracellular proteolysis, and cell motility, resulting in impaired growth on bacterial lawns. Moreover, ∆sey1 mutant cells showed a constitutive activation of the unfolded protein response pathway (UPR), but they still readily adapted to moderate levels of ER stress, while unable to cope with prolonged stress. In D. discoideum ∆sey1 the formation of the ER-associated compartment harbouring the bacterial pathogen Legionella pneumophila was also impaired. In the mutant amoebae, the ER was less efficiently recruited to the "Legionella-containing vacuole" (LCV), the expansion of the pathogen vacuole was inhibited at early stages of infection and intracellular bacterial growth was reduced. In summary, our study establishes a role of D. discoideum Sey1 in ER architecture, proteolysis, cell motility and intracellular replication of L. pneumophila.


Assuntos
Dictyostelium/fisiologia , Retículo Endoplasmático/ultraestrutura , GTP Fosfo-Hidrolases/metabolismo , Legionella pneumophila/fisiologia , Proteínas de Protozoários/metabolismo , Vacúolos/microbiologia , Dictyostelium/crescimento & desenvolvimento , Dictyostelium/microbiologia , Dictyostelium/ultraestrutura , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Retículo Endoplasmático Rugoso/microbiologia , Retículo Endoplasmático Rugoso/fisiologia , GTP Fosfo-Hidrolases/genética , Homeostase , Interações Hospedeiro-Patógeno , Legionella pneumophila/crescimento & desenvolvimento , Movimento , Muramidase/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Protozoários/genética , Vacúolos/fisiologia
3.
mBio ; 11(2)2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209684

RESUMO

Legionella pneumophila governs its interactions with host cells by secreting >300 different "effector" proteins. Some of these effectors contain eukaryotic domains such as the RCC1 (regulator of chromosome condensation 1) repeats promoting the activation of the small GTPase Ran. In this report, we reveal a conserved pattern of L. pneumophila RCC1 repeat genes, which are distributed in two main clusters of strains. Accordingly, strain Philadelphia-1 contains two RCC1 genes implicated in bacterial virulence, legG1 (Legionella eukaryotic gene 1), and ppgA, while strain Paris contains only one, pieG The RCC1 repeat effectors localize to different cellular compartments and bind distinct components of the Ran GTPase cycle, including Ran modulators and the small GTPase itself, and yet they all promote the activation of Ran. The pieG gene spans the corresponding open reading frames of legG1 and a separate adjacent upstream gene, lpg1975legG1 and lpg1975 are fused upon addition of a single nucleotide to encode a protein that adopts the binding specificity of PieG. Thus, a point mutation in pieG splits the gene, altering the effector target. These results indicate that divergent evolution of RCC1 repeat effectors defines the Ran GTPase cycle targets and that modulation of different components of the cycle might fine-tune Ran activation during Legionella infection.IMPORTANCELegionella pneumophila is a ubiquitous environmental bacterium which, upon inhalation, causes a life-threatening pneumonia termed Legionnaires' disease. The opportunistic pathogen grows in amoebae and macrophages by employing a "type IV" secretion system, which secretes more than 300 different "effector" proteins into the host cell, where they subvert pivotal processes. The function of many of these effector proteins is unknown, and their evolution has not been studied. L. pneumophila RCC1 repeat effectors target the small GTPase Ran, a molecular switch implicated in different cellular processes such as nucleocytoplasmic transport and microtubule cytoskeleton dynamics. We provide evidence that one or more RCC1 repeat genes are distributed in two main clusters of L. pneumophila strains and have divergently evolved to target different components of the Ran GTPase activation cycle at different subcellular sites. Thus, L. pneumophila employs a sophisticated strategy to subvert host cell Ran GTPase during infection.


Assuntos
Proteínas de Bactérias/genética , Evolução Molecular , Interações Hospedeiro-Patógeno , Legionella pneumophila/genética , Proteína ran de Ligação ao GTP/genética , Células A549 , Animais , Dictyostelium/microbiologia , Células HEK293 , Humanos , Legionella pneumophila/patogenicidade , Macrófagos/microbiologia , Camundongos , Células RAW 264.7 , Proteína ran de Ligação ao GTP/metabolismo
4.
Front Immunol ; 11: 25, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117224

RESUMO

Legionella pneumophila is the causative agent of a severe pneumonia called Legionnaires' disease. The environmental bacterium replicates in free-living amoebae as well as in lung macrophages in a distinct compartment, the Legionella-containing vacuole (LCV). The LCV communicates with a number of cellular vesicle trafficking pathways and is formed by a plethora of secreted bacterial effector proteins, which target host cell proteins and lipids. Phosphoinositide (PI) lipids are pivotal determinants of organelle identity, membrane dynamics and vesicle trafficking. Accordingly, eukaryotic cells tightly regulate the production, turnover, interconversion, and localization of PI lipids. L. pneumophila modulates the PI pattern in infected cells for its own benefit by (i) recruiting PI-decorated vesicles, (ii) producing effectors acting as PI interactors, phosphatases, kinases or phospholipases, and (iii) subverting host PI metabolizing enzymes. The PI conversion from PtdIns(3)P to PtdIns(4)P represents a decisive step during LCV maturation. In this review, we summarize recent progress on elucidating the strategies, by which L. pneumophila subverts host PI lipids to promote LCV formation and intracellular replication.


Assuntos
Interações Hospedeiro-Patógeno , Legionella pneumophila/enzimologia , Doença dos Legionários/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Fosfatidilinositóis/metabolismo , Vacúolos/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/microbiologia , Humanos , Doença dos Legionários/microbiologia , Vesículas Secretórias/metabolismo , Vesículas Transportadoras/metabolismo
5.
Methods Mol Biol ; 1921: 221-238, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30694495

RESUMO

Legionella pneumophila is a facultative intracellular bacterium, which grows in amoebae as well as in macrophages and epithelial cells. Depletion of genes of interest by RNA interference (RNAi) has proven to be a robust and economic technique to study L. pneumophila-host cell interactions. Predesigned and often validated double-stranded (ds) RNA oligonucleotides that silence specific genes are commercially available. RNAi results in a reduced level of distinct proteins, which allows studying the specific role of host cell components involved in L. pneumophila infection. Here, we describe how to assess RNAi-mediated protein depletion efficiency and cytotoxic effects in human A549 lung epithelial cells and murine RAW 264.7 macrophages. Moreover, we demonstrate how RNAi can be used to screen for novel host cell proteins involved in the formation of the Legionella-containing vacuole and intracellular replication of the pathogen.


Assuntos
Interações Hospedeiro-Patógeno/genética , Legionella/fisiologia , Legionelose/genética , Legionelose/microbiologia , Interferência de RNA , Animais , Linhagem Celular , Sobrevivência Celular , Citometria de Fluxo , Expressão Gênica , Genes Reporter , Humanos , Legionella pneumophila/fisiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Sistemas de Secreção Tipo IV , Vacúolos/metabolismo , Vacúolos/microbiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-29552544

RESUMO

Environmental bacteria of the genus Legionella naturally parasitize free-living amoebae. Upon inhalation of bacteria-laden aerosols, the opportunistic pathogens grow intracellularly in alveolar macrophages and can cause a life-threatening pneumonia termed Legionnaires' disease. Intracellular replication in amoebae and macrophages takes place in a unique membrane-bound compartment, the Legionella-containing vacuole (LCV). LCV formation requires the bacterial Icm/Dot type IV secretion system, which translocates literally hundreds of "effector" proteins into host cells, where they modulate crucial cellular processes for the pathogen's benefit. The mechanism of LCV formation appears to be evolutionarily conserved, and therefore, amoebae are not only ecologically significant niches for Legionella spp., but also useful cellular models for eukaryotic phagocytes. In particular, Acanthamoeba castellanii and Dictyostelium discoideum emerged over the last years as versatile and powerful models. Using genetic, biochemical and cell biological approaches, molecular interactions between amoebae and Legionella pneumophila have recently been investigated in detail with a focus on the role of phosphoinositide lipids, small and large GTPases, autophagy components and the retromer complex, as well as on bacterial effectors targeting these host factors.


Assuntos
Acanthamoeba/microbiologia , Dictyostelium/microbiologia , Modelos Animais de Doenças , Legionella/metabolismo , Doença dos Legionários/microbiologia , Doença dos Legionários/veterinária , Acanthamoeba castellanii/microbiologia , Amoeba/microbiologia , Animais , Autofagia , Proteínas de Bactérias/metabolismo , Avaliação Pré-Clínica de Medicamentos , Evolução Molecular , GTP Fosfo-Hidrolases , Interações Hospedeiro-Patógeno/fisiologia , Legionella/patogenicidade , Legionella pneumophila/metabolismo , Macrófagos/microbiologia , Fosfatidilinositóis/metabolismo , Proteômica , Sistemas de Secreção Tipo IV/metabolismo , Vacúolos/metabolismo , Vacúolos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA