Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Oncol ; 13: 1117326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998455

RESUMO

Purpose: Ionizing radiation (IR) enhances the migratory capacity of cancer cells. Here we investigate in non-small-cell-lung-cancer (NSCLC) cells a novel link between IR-enhanced ADAM17 activity and the non-canonical pathway of EphA2 in the cellular stress response to irradiation. Methods: Cancer cell migration in dependence of IR, EphA2, and paracrine signaling mediated by ADAM17 was determined using transwell migration assays. Changes of EphA2 pS897 and mRNA expression levels upon different ADAM17-directed treatment strategies, including the small molecular inhibitor TMI-005, the monoclonal antibody MEDI3622, and shRNAs, were mechanistically investigated. ADAM17-mediated release and cleavage of the EphA2 ligand ephrin-A1 was measured using ELISA and an acellular cleavage assay. Results: Irradiation with 5 Gy enhanced tumor cell migration of NSCLC NCI-H358 cells in dependence of EphA2. At the same time, IR increased growth factor-induced EphA2 S897 phosphorylation via auto- and paracrine signaling. Genetic and pharmaceutical downregulation of ADAM17 activity abrogated growth factor (e.g. amphiregulin) release, which reduced MAPK pathway-mediated EphA2 S897 phosphorylation in an auto- and paracrine way (non-canonical EphA2-pathway) in NCI-H358 and A549 cells. These signaling processes were associated with reduced cell migration towards conditioned media derived from ADAM17-deficient cells. Interestingly, ADAM17 inhibition with the small molecular inhibitor TMI-005 led to the internalization and proteasomal degradation of EphA2, which was rescued by amphiregulin or MG-132 treatment. In addition, ADAM17 inhibition also abrogated ephrin-A1 cleavage and thereby interfered with the canonical EphA2-pathway. Conclusion: We identified ADAM17 and the receptor tyrosine kinase EphA2 as two important drivers for (IR-) induced NSCLC cell migration and described a unique interrelation between ADAM17 and EphA2. We demonstrated that ADAM17 influences both, EphA2 (pS897) and its GPI-anchored ligand ephrin-A1. Using different cellular and molecular readouts, we generated a comprehensive picture of how ADAM17 and IR influence the EphA2 canonical and non-canonical pathway in NSCLC cells.

2.
Cancers (Basel) ; 13(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208595

RESUMO

Radiomics supposes an alternative non-invasive tumor characterization tool, which has experienced increased interest with the advent of more powerful computers and more sophisticated machine learning algorithms. Nonetheless, the incorporation of radiomics in cancer clinical-decision support systems still necessitates a thorough analysis of its relationship with tumor biology. Herein, we present a systematic review focusing on the clinical evidence of radiomics as a surrogate method for tumor molecular profile characterization. An extensive literature review was conducted in PubMed, including papers on radiomics and a selected set of clinically relevant and commonly used tumor molecular markers. We summarized our findings based on different cancer entities, additionally evaluating the effect of different modalities for the prediction of biomarkers at each tumor site. Results suggest the existence of an association between the studied biomarkers and radiomics from different modalities and different tumor sites, even though a larger number of multi-center studies are required to further validate the reported outcomes.

3.
Mol Cancer Res ; 19(6): 1051-1062, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33619227

RESUMO

Placental growth factor (PlGF) is a pro-angiogenic, N-glycosylated growth factor, which is secreted under pathologic situations. Here, we investigated the regulation of PlGF in response to ionizing radiation (IR) and its role for tumor angiogenesis and radiosensitivity. Secretion and expression of PlGF was induced in multiple tumor cell lines (medulloblastoma, colon and lung adenocarcinoma) in response to irradiation in a dose- and time-dependent manner. Early upregulation of PlGF expression and secretion in response to irradiation was primarily observed in p53 wild-type tumor cells, whereas tumor cells with mutated p53 only showed a minimal or delayed response. Mechanistic investigations with genetic and pharmacologic targeting of p53 corroborated regulation of PlGF by the tumor suppressor p53 in response to irradiation under normoxic and hypoxic conditions, but with so far unresolved mechanisms relevant for its minimal and delayed expression in tumor cells with a p53-mutated genetic background. Probing a paracrine role of IR-induced PlGF secretion in vitro, migration of endothelial cells was specifically increased towards irradiated PlGF wild type but not towards irradiated PlGF-knockout (PIGF-ko) medulloblastoma cells. Tumors derived from these PlGF-ko cells displayed a reduced growth rate, but similar tumor vasculature formation as in their wild-type counterparts. Interestingly though, high-dose irradiation strongly reduced microvessel density with a concomitant high rate of complete tumor regression only in the PlGF-ko tumors. IMPLICATIONS: Our study shows a strong paracrine vasculature-protective role of PlGF as part of a p53-regulated IR-induced resistance mechanism and suggest PlGF as a promising target for a combined treatment modality with RT.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Comunicação Parácrina/efeitos da radiação , Fator de Crescimento Placentário/genética , Tolerância a Radiação/genética , Radiação Ionizante , Proteína Supressora de Tumor p53/genética , Células A549 , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/efeitos da radiação , Técnicas de Inativação de Genes , Células HCT116 , Humanos , Camundongos Nus , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/radioterapia , Comunicação Parácrina/genética , Fator de Crescimento Placentário/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
4.
Int J Radiat Oncol Biol Phys ; 110(4): 1222-1233, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33587991

RESUMO

PURPOSE: Tumor hypoxia is a major limiting factor for successful radiation therapy outcomes, with hypoxic cells being up to 3-fold more radiation resistant than normoxic cells; tumor hypoxia creates a tumor microenvironment that is hostile to immune response. Thus, pharmaceutical-induced tumor oxygenation before radiation therapy represents an interesting method to enhance the efficacy of radiation therapy. Myo-inositol trispyrophosphate (ITPP) triggers a decrease in the affinity of oxygen to hemoglobin, which leads to an increased release of oxygen upon tissue demand, including in hypoxic tumors. METHODS AND MATERIALS: The combined treatment modality of high-dose bolus ITPP with a single high-dose fraction of ionizing radiation (IR) was investigated for its mechanics and efficacy in multiple preclinical animal tumor models in immunocompromised and immunocompetent mice. The dynamics of tumor oxygenation were determined by serial hypoxia-oriented bioimaging. Initial and residual DNA damage and the integrity of the tumor vasculature were quantified on the immunohistochemical level in response to the different treatment combinations. RESULTS: ITPP application did not affect tumor growth as a single treatment modality, but it rapidly induced tumor oxygenation, as demonstrated by in vivo imaging, and significantly reduced tumor growth when combined with IR. An immunohistochemical analysis of γH2AX foci demonstrated increased initial and residual IR-induced DNA damage as the primary mechanism for radiosensitization within initially hypoxic but ITPP-oxygenated tumor regions. Scheduling experiments revealed that ITPP increases the efficacy of ionizing radiation only when applied before radiation therapy. Irradiation alone damaged the tumor vasculature and increased tumor hypoxia, which were both prevented by combined treatment with ITPP. Interestingly, the combined treatment modality also promoted increased immune cell infiltration. CONCLUSIONS: ITPP-mediated tumor oxygenation and vascular protection triggers immediate and delayed processes to enhance the efficacy of ionizing radiation for successful radiation therapy.


Assuntos
Fosfatos de Inositol/farmacologia , Oxigênio/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Hipóxia Tumoral/efeitos dos fármacos
5.
Cancer Res Commun ; 1(3): 164-177, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-36860547

RESUMO

The cellular response to ionizing radiation (IR) depends on tumor cell and microenvironmental factors. Here, we investigated the role of IR-induced ADAM17 matrix metalloproteinase activity for the intercellular communication between tumor cells and the tumor vasculature in non-small cell lung cancer (NSCLC) tumor models. Factors shed by ADAM17 from NSCLC tumor cells (A549, H358) and relevant for endothelial cell migration were investigated using transwell migration assays, ELISA, and flow cytometry. Tumor angiogenesis-related endpoints were analyzed with the chorio-allantoic membrane assay and in murine NSCLC tumor models. Efficacy-oriented experiments were performed in a murine orthotopic NSCLC tumor model using irradiation with an image-guided small-animal radiotherapy platform alone and in combination with the novel ADAM17-directed antibody MEDI3622. In vitro, VEGF was identified as the major factor responsible for IR-induced and ADAM17-dependent endothelial cell migration toward attracting tumor cells. IR strongly enhanced tumor cell-associated ADAM17 activity, released VEGF in an ADAM17-dependent manner, and thereby coordinated the communication between tumor and endothelial cells. In vivo, tumor growth and microvessel size and density were strongly decreased in response to the combined treatment modality of IR and MEDI3622 but not by either treatment modality alone and thus suggest that the supra-additive effect of the combined treatment modality is in part due to abrogation of the ADAM17-mediated IR-induced protective effect on the tumor vasculature. Furthermore, we demonstrate that the novel ADAM17-inhibitory antibody MEDI3622 potently improves the radiotherapy response of NSCLC. Significance: The tumor response to radiotherapy is influenced by several factors of the tumor microenvironment. We demonstrate that inhibition of the sheddase ADAM17 by the novel antibody MEDI3622 reduces IR-induced VEGF release from tumor cells relevant for endothelial cell migration and vasculature protection, thereby enhancing radiotherapy treatment outcome of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neoplasias Pulmonares/radioterapia , Células Endoteliais/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
6.
Phys Med Biol ; 65(22): 22NT02, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33179609

RESUMO

In contrast to conventional radiotherapy, spatiotemporal fractionation (STF) delivers a distinct dose distribution in each fraction. The aim is to increase the therapeutic window by simultaneously achieving partial hypofractionation in the tumour along with near uniform fractionation in normal tissues. STF has been studied in silico under the assumption that different parts of the tumour can be treated in different fractions. Here, we develop an experimental setup for testing this key assumption on the preclinical level using high-precision partial tumour irradiation in an experimental animal model. We further report on an initial proof-of-concept experiment. We consider a reductionist model of STF in which the tumour is divided in half and treated with two complementary partial irradiations separated by 24 h. Precise irradiation of both tumour halves is facilitated by the image-guided small animal radiation research platform X-RAD SmART. To assess the response of tumours to partial irradiations, tumour growth experiments are conducted using mice carrying syngeneic subcutaneous tumours derived from MC38 colorectal adenocarcinoma cells. Tumour volumes were determined daily by calliper measurements and validated by CT-volumetry. We compared the growth of conventionally treated tumours, where the whole tumour was treated in one fraction, to the reductionist model of STF. We observed no difference in growth between the two groups. Instead, a reduction in the irradiated volume (where only one half of the tumour was irradiated) resulted in an intermediate response between full irradiation and unirradiated control. The results obtained by CT-volumetry supported the findings of the calliper-derived measurements. An experimental setup for precise partial tumour irradiation in small animals was developed, which is suited to test the assumption of STF that complementary parts of the tumour can be treated in different fractions on the preclinical level. An initial experiment supports this assumption, however, further experiments with longer follow-up and varying fractionation schemes are needed to provide additional support for STF.


Assuntos
Fracionamento da Dose de Radiação , Adenocarcinoma/patologia , Adenocarcinoma/radioterapia , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Neoplasias Colorretais/radioterapia , Humanos , Camundongos , Tomografia Computadorizada por Raios X
7.
Br J Radiol ; 93(1107): 20190494, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31687835

RESUMO

Clinical parameters and empirical evidence are the primary determinants for current treatment planning in radiation oncology. Personalized medicine in radiation oncology is only at the very beginning to take the genetic background of a tumor entity into consideration to define an individual treatment regimen, the total dose or the combination with a specific anticancer agent. Likewise, stratification of patients towards proton radiotherapy is linked to its physical advantageous energy deposition at the tumor site with minimal healthy tissue being co-irradiated distal to the target volume. Hence, the fact that photon and proton irradiation also induce different qualities of DNA damages, which require differential DNA damage repair mechanisms has been completely neglected so far. These subtle differences could be efficiently exploited in a personalized treatment approach and could be integrated into personalized treatment planning. A differential requirement of the two major DNA double-strand break repair pathways, homologous recombination and non-homologous end joining, was recently identified in response to proton and photon irradiation, respectively, and subsequently influence the mode of ionizing radiation-induced cell death and susceptibility of tumor cells with defects in DNA repair machineries to either quality of ionizing radiation.This review focuses on the differential DNA-damage responses and subsequent biological processes induced by photon and proton irradiation in dependence of the genetic background and discusses their impact on the unicellular level and in the tumor microenvironment and their implications for combined treatment modalities.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Fótons/uso terapêutico , Medicina de Precisão , Terapia com Prótons , Eficiência Biológica Relativa , Absorção de Radiação , Animais , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral/efeitos da radiação , Terapia Combinada , Reparo do DNA por Junção de Extremidades , Humanos , Transferência Linear de Energia , Neoplasias/genética , Neoplasias/radioterapia , Órgãos em Risco/efeitos da radiação , Tolerância a Radiação/genética , Radiação Ionizante , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA