Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 125(37): 10494-10505, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34507491

RESUMO

In certain conditions, dye-conjugated icosahedral virus shells exhibit suppression of concentration quenching. The recently observed radiation brightening at high fluorophore densities has been attributed to coherent emission, i.e., to a cooperative process occurring within a subset of the virus-supported fluorophores. Until now, the distribution of fluorophores among potential conjugation sites and the nature of the active subset remained unknown. With the help of mass spectrometry and molecular dynamics simulations, we found which conjugation sites in the brome mosaic virus capsid are accessible to fluorophores. Reactive external surface lysines but also those at the lumenal interface where the coat protein N-termini are located showed virtually unrestricted access to dyes. The third type of labeled lysines was situated at the intercapsomeric interfaces. Through limited proteolysis of flexible N-termini, it was determined that dyes bound to them are unlikely to be involved in the radiation brightening effect. At the same time, specific labeling of genetically inserted cysteines on the exterior capsid surface alone did not lead to radiation brightening. The results suggest that lysines situated within the more rigid structural part of the coat protein provide the chemical environments conducive to radiation brightening, and we discuss some of the characteristics of these environments.


Assuntos
Bromovirus , Vírus , Capsídeo , Proteínas do Capsídeo , Corantes Fluorescentes
2.
Infect Genet Evol ; 85: 104527, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32898687

RESUMO

Fifteen hypermucoviscous isolates (13 blaNDM-1-positive) obtained from 11 oncology patients were analyzed by whole genome sequencing, and selected isolates were assessed in a murine model of sepsis. ST395/K2 isolates harboring rmpA, rmpA2, peg-344, aerobactin, enterobactin, yersiniabactin, type I fimbriae, etc. displayed maximal virulence in the mouse lethality assay (LD50 = 102 CFU). ST147/K20 isolates lacking yersiniabactins were relatively less virulent (LD50 = 104 CFU), ST395/K2 isolates lacking rmpA, rmpA2, peg-344, and aerobactin, but harboring yersiniabactin demonstrated minimal virulence (LD50 = 105 CFU). Isolates represent various paths and stages of evolution directed towards convergence of multidrugresistant classical Klebsiella pneumoniae and hypervirulent K. pneumoniae.


Assuntos
Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidade , Virulência/genética , beta-Lactamases/genética , Animais , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Modelos Animais , Tipagem de Sequências Multilocus , Sepse/genética , Sepse/microbiologia , Sequenciamento Completo do Genoma
3.
ACS Nano ; 13(10): 11401-11408, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31335115

RESUMO

Concentration quenching is a well-known challenge in many fluorescence imaging applications. Here, we show that the optical emission from hundreds of chromophores confined onto the surface of a 28 nm diameter virus particle can be recovered under pulsed irradiation. We have found that as one increases the number of chromophores tightly bound to the virus surface, fluorescence quenching ensues at first, but when the number of chromophores per particle is nearing the maximum number of surface sites allowable, a sudden brightening of the emitted light and a shortening of the excited-state lifetime are observed. This radiation brightening occurs only under short pulse excitation; steady-state excitation is characterized by conventional concentration quenching for any number of chromophores per particle. The observed suppression of fluorescence quenching is consistent with efficient, collective relaxation at room temperature. Interestingly, radiation brightening disappears when the emitters' spatial and/or dynamic heterogeneity is increased, suggesting that the template structural properties may play a role that could be instrumental in developing virus-enabled imaging vectors that have optical properties qualitatively different than those of state-of-the-art biophotonic agents.


Assuntos
Nanotecnologia/métodos , Radiação , Vírus , Espectrometria de Fluorescência
4.
Sci Rep ; 6: 31596, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27530098

RESUMO

Circulating endothelial microparticles (EMPs) are emerging as biomarkers of chronic obstructive pulmonary disease (COPD) in individuals exposed to cigarette smoke (CS), but their mechanism of release and function remain unknown. We assessed biochemical and functional characteristics of EMPs and circulating microparticles (cMPs) released by CS. CS exposure was sufficient to increase microparticle levels in plasma of humans and mice, and in supernatants of primary human lung microvascular endothelial cells. CS-released EMPs contained predominantly exosomes that were significantly enriched in let-7d, miR-191; miR-126; and miR125a, microRNAs that reciprocally decreased intracellular in CS-exposed endothelium. CS-released EMPs and cMPs were ceramide-rich and required the ceramide-synthesis enzyme acid sphingomyelinase (aSMase) for their release, an enzyme which was found to exhibit significantly higher activity in plasma of COPD patients or of CS-exposed mice. The ex vivo or in vivo engulfment of EMPs or cMPs by peripheral blood monocytes-derived macrophages was associated with significant inhibition of efferocytosis. Our results indicate that CS, via aSMase, releases circulating EMPs with distinct microRNA cargo and that EMPs affect the clearance of apoptotic cells by specialized macrophages. These targetable effects may be important in the pathogenesis of diseases linked to endothelial injury and inflammation in smokers.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Fumaça , Produtos do Tabaco , Animais , Estudos de Casos e Controles , Endotélio Vascular/fisiopatologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Células THP-1
5.
Virus Res ; 177(2): 138-46, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23916968

RESUMO

Fluorescent proteins (FPs) are widely used in real-time single virus particle studies to visualize, track and quantify the spatial and temporal parameters of viral pathways. However, potential functional differences between the wild type and the FP-tagged virus may specifically affect particular stages in the virus life-cycle. In this work, we genetically modified the E2 spike protein of Sindbis virus (SINV) with two FPs. We inserted mApple, a red FP, or Venus, a yellow FP, at the N-terminus of the E2 protein of SINV to make SINV-Apple and SINV-Venus. Our results indicate that SINV-Apple and SINV-Venus have similar levels of infectivity and are morphologically similar to SINV-wild-type by negative stain transmission electron microscopy. Both mutants are highly fluorescent and have excellent single-particle tracking properties. However, despite these similarities, when measuring cell entry at the single-particle level, we found that SINV-Apple and SINV-Venus are different in their interaction with the cell surface and FPs are not always interchangeable. We went on to determine that the FP changes the net surface charge on the virus particles, the folding of the spike proteins, and the conformation of the spikes on the virus particle surface, ultimately leading to different cell-binding properties between SINV-Apple and SINV-Venus. Our results are consistent with recent findings that FPs may alter the biological and cellular localization properties of bacterial proteins to which they are fused.


Assuntos
Infecções por Alphavirus/virologia , Proteínas Luminescentes/metabolismo , Sindbis virus/fisiologia , Proteínas do Envelope Viral/metabolismo , Linhagem Celular , Humanos , Proteínas Luminescentes/genética , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sindbis virus/genética , Proteínas do Envelope Viral/genética , Internalização do Vírus
6.
Mol Pharm ; 10(1): 51-8, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-22876758

RESUMO

Viral nanoparticles used for biomedical applications must be able to discriminate between tumor or virus-infected host cells and healthy host cells. In addition, viral nanoparticles must have the flexibility to incorporate a wide range of cargo, from inorganic metals to mRNAs to small molecules. Alphaviruses are a family of enveloped viruses for which some species are intrinsically capable of systemic tumor targeting. Alphavirus virus-like particles, or viral nanoparticles, can be generated from in vitro self-assembled core-like particles using nonviral nucleic acid. In this work, we expand on the types of cargo that can be incorporated into alphavirus core-like particles and the molecular requirements for packaging this cargo. We demonstrate that different core-like particle templates can be further enveloped to form viral nanoparticles that are capable of cell entry. We propose that alphaviruses can be selectively modified to create viral nanoparticles for biomedical applications and basic research.


Assuntos
Alphavirus/fisiologia , Nanopartículas/administração & dosagem , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Montagem de Vírus , Alphavirus/química , Alphavirus/genética , Alphavirus/metabolismo , Glicoproteínas/metabolismo , Proteínas Luminescentes/metabolismo
7.
ACS Nano ; 5(5): 4037-45, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21452886

RESUMO

This article demonstrates the encapsulation of cubic iron oxide nanoparticles (NPs) by Brome mosaic virus capsid shells and the formation, for the first time, of virus-based nanoparticles (VNPs) with cubic cores. Cubic iron oxide NPs functionalized with phospholipids containing poly(ethylene glycol) tails and terminal carboxyl groups exhibited exceptional relaxivity in magnetic resonance imaging experiments, which opens the way for in vivo MRI studies of systemic virus movement in plants. Preliminary data on cell-to-cell and long-distance transit behavior of cubic iron oxide NPs and VNPs in Nicotiana benthamiana leaves indicate that VNPs have specific transit properties, i.e., penetration into tissue and long-distance transfer through the vasculature in N. benthamiana plants, even at low temperature (6 °C), while NPs devoid of virus protein coats exhibit limited transport by comparison. These particles potentially open new opportunities for high-contrast functional imaging in plants and for the delivery of therapeutic antimicrobial cores into plants.


Assuntos
Materiais Biomiméticos/química , Bromovirus/química , Bromovirus/ultraestrutura , Nanopartículas de Magnetita/química , Nicotiana/química , Agroquímicos , Biotecnologia/métodos , Saúde Ambiental , Projetos de Pesquisa
8.
Mol Plant Microbe Interact ; 23(11): 1433-47, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20923351

RESUMO

Brome mosaic virus (BMV) packages its genomic RNAs (RNA1, RNA2, and RNA3) and subgenomic RNA4 into three different particles. However, since the RNAs in the virions have distinct lengths and electrostatic charges, we hypothesize that subsets of the virions should have distinct properties. A glutamine to cysteine substitution at position 120 of the capsid protein (CP) was found to result in a mutant virus named QC that exhibited a dramatically altered ratio of the RNAs in virions. RNA2 was far more abundant than the other RNAs, although the ratios could be affected by the host plant species. RNAs with the QC mutation were competent for replication early in the infection, suggesting that they were either selectively packaged or degraded after packaging. In support of the latter idea, low concentrations of truncated RNA1 that co-migrated with RNA2 were found in the QC virions. Spectroscopic analysis and peptide fingerprinting experiments showed that the QC virus capsid interacted with the encapsidated RNAs differently than did the wild type. Furthermore, wild-type BMV RNA1 was found to be more susceptible to nuclease digestion relative to RNA2 as a function of the buffer pH. Other BMV capsid mutants also had altered ratios of packaged RNAs.


Assuntos
Substituição de Aminoácidos , Bromovirus/genética , Bromovirus/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , RNA Viral/fisiologia , Sequência de Aminoácidos , Regulação Viral da Expressão Gênica/fisiologia , Microscopia Eletrônica , Modelos Moleculares , Mutação , Conformação Proteica , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA