Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Biophys Chem ; 304: 107129, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37948788

RESUMO

Islet amyloid polypeptide (IAPP), also known as amylin, is a polypeptide hormone co-secreted with insulin by pancreatic ß-cells. In general, IAPP is soluble and lacks a defined structure. However, under certain conditions, these peptides tend to aggregate into soluble oligomers, eventually forming insoluble amyloid fibrils with typical cross-ß-sheet structures. Amylin aggregates, therefore, have been regarded as one of the hallmarks of type II diabetes (T2D). Among these aggregated species, oligomers were shown to exhibit significant cytotoxicity, leading to impaired ß-cell function and reduced ß-cell mass. Monitoring of oligomer appearance during IAPP fibrillation is of particular interest. In this study, we successfully grafted an aggregation-induced emission molecule, tetraphenylethylene (TPE), at the N-terminus of IAPP. By mixing a small amount of TPE-labeled IAPP with unlabeled IAPP, we were able to detect an increase in TPE fluorescence during the nucleation phase of IAPP aggregation in vitro. It may enable real-time monitoring of IAPP oligomer formation and is further applied in the diagnosis of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Amiloide/química , Insulina
2.
Int J Ophthalmol ; 16(12): 1942-1951, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111935

RESUMO

AIM: To investigate the effect of electroacupuncture (EA) on the mitochondria-dependent apoptotic signaling pathway in the ciliary muscle of guinea pigs with negative lens-induced myopia (LIM). METHODS: Guinea pigs were randomly divided into normal control (NC) group, LIM group, LIM+SHAM acupoint (LIM+SHAM) group, and LIM+EA group. Animals in the NC group received no intervention, while those in other three groups were covered with -6.0 diopter (D) lenses on right eyes. Meanwhile, animals in the LIM+EA group received EA at Hegu (LI4) combined with Taiyang (EX-HN5) acupoints, while those in the LIM+SHAM group were treated at sham points. After treatments for 1, 2, and 4wk, morphological changes in ciliary muscles were observed with hematoxylin and eosin (H&E) staining and nick end labeling (TUNEL), and the expression of the mitochondrial apoptotic signaling pathway-related molecules in ciliary muscles was measured by real-time quantitative polymerase chain reaction (qPCR) and Western blot. Additionally, the adenosine triphosphate (ATP) contents were also determined in ciliary muscles. RESULTS: Axial length increased significantly in the LIM and LIM+SHAM groups and decreased in the LIM+EA group. The ciliary muscle fibers were broken and destroyed in both LIM and LIM+SHAM groups, whereas those in the LIM+EA group improved significantly. TUNEL assay showed the number of apoptotic cells increased in the LIM and LIM+SHAM groups, whereas reduced in the LIM+EA group. ATP contents showed a significant decrease in the LIM and LIM+SHAM groups, whereas increased after EA treatment. Compared with the NC group, the dynamin-related protein 1 (DRP1), Caspase3, and apoptotic protease activator 1 (APAF1) levels were significantly increased in the LIM group and decreased in the LIM+EA group. CONCLUSION: The results provide evidence of EA inhibiting the development of myopia by regulating the mitochondrial apoptotic signaling pathway.

3.
Chem Commun (Camb) ; 59(71): 10660-10663, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37581279

RESUMO

Piperic acid derivatives were found to affect the islet amyloid polypeptide (IAPP) aggregation process. Structure-activity relationship studies revealed that PAD-13 was an efficient molecular modulator to accelerate IAPP fibril formation by promoting primary and secondary nucleation and reducing its antimicrobial activity.


Assuntos
Anti-Infecciosos , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Amiloide/química , Ácidos Graxos Insaturados , Anti-Infecciosos/farmacologia
4.
Protein Sci ; 32(8): e4711, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37354016

RESUMO

The irreversible aggregation of proteins or peptides greatly limits their bioavailability; therefore, effective inhibition using small molecules or biocompatible materials is very difficult. Human calcitonin (hCT), a hormone polypeptide with 32 residues, is secreted by the C-cells of the thyroid gland. The biological function of this hormone is to regulate calcium and phosphate concentrations in the blood via several different pathways. One of these is to inhibit the activity of osteoclasts; thus, calcitonin could be used to treat osteoporosis and Paget's disease of the bone. However, hCT is prone to aggregation in aqueous solution and forms amyloid fibrils. Salmon and eel calcitonin are currently used as clinical substitutes for hCT. In a previous study, we found that the replacement of two residues at positions 12 and 17 of hCT with amino acids that appear in the salmon sequence can greatly suppress peptide aggregation. The double mutations of hCT (DM hCT) also act as good inhibitors by disrupting wild-type hCT fibrillization, although the inhibition mechanism is not clear. More importantly, we demonstrated that DM hCT is biologically active in interacting with the calcitonin receptor. To further understand the inhibitory effect of DM hCT on hCT fibrillization, we created four relevant peptide fragments based on the DM hCT sequence. Our examination revealed that the formation of a helix of DM hCT was possibly a key component contributing to its inhibitory effect. This finding could help in the development of peptide-based inhibitors and in understanding the aggregation mechanism of hCT.


Assuntos
Calcitonina , Fragmentos de Peptídeos , Humanos , Calcitonina/genética , Calcitonina/farmacologia , Calcitonina/química , Mutação , Cálcio/metabolismo
5.
Prostaglandins Other Lipid Mediat ; 167: 106740, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37119935

RESUMO

Epoxyeicosatrienoic acids (EETs), which are synthesized from arachidonic acid by cytochrome P450 epoxygenases, function primarily as autocrine and paracrine effectors in the cardiovascular system. So far, most research has focused on the vasodilatory, anti-inflammatory, anti-apoptotic and mitogenic properties of EETs in the systemic circulation. However, whether EETs could suppress tissue factor (TF) expression and prevent thrombus formation remains unknown. Here we utilized in vivo and in vitro models to investigate the effects and underlying mechanisms of exogenously EETs on LPS induced TF expression and inferior vein cava ligation induced thrombosis. We observed that the thrombus formation rate and the size of the thrombus were greatly reduced in 11,12-EET treated mice,accompanied by decreased TF and inflammatory cytokines expression. Further in vitro studies showed that by enhancing p38 MAPK activation and subsequent tristetraprolin (TTP) phosphorylation, LPS strengthened the stability of TF mRNA and induced increased TF expression. However, by strengthening PI3K-dependent Akt phosphorylation, which acted as a negative regulator of p38-TTP signaling pathway,11,12-EET reduced LPS-induced TF expression in monocytes. In addition, 11,12-EET inhibited LPS-induced NF-κB nuclear translocation by activating the PI3K/Akt pathway. Further study indicated that the inhibitory effect of 11,12-EET on TF expression was mediated by antagonizing LPS-induced activation of thromboxane prostanoid receptor. In conclusion, our study demonstrated that 11,12-EET prevented thrombosis by reducing TF expression and targeting the CYP2J2 epoxygenase pathway may represent a novel approach to mitigate thrombosis related diseases.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Trombose , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lipopolissacarídeos/farmacologia , Tromboplastina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Transdução de Sinais , Citocromo P-450 CYP2J2 , Ácido 8,11,14-Eicosatrienoico/metabolismo , Trombose/tratamento farmacológico , Estabilidade de RNA
6.
Cancer Sci ; 114(5): 1972-1985, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36692143

RESUMO

The Brother of Regulator of Imprinted Sites (BORIS, gene symbol CTCFL) has previously been shown to promote colorectal cancer cell proliferation, inhibit cancer cell apoptosis, and resist chemotherapy. However, it is unknown whether Boris plays a role in the progression of in situ colorectal cancer. Here Boris knockout (KO) mice were constructed. The function loss of the cloned Boris mutation that was retained in KO mice was verified by testing its activities in colorectal cell lines compared with the Boris wild-type gene. Boris knockout reduced the incidence and severity of azoxymethane/dextran sulfate-sodium (AOM/DSS)-induced colon cancer. The importance of Boris is emphasized in the progression of in situ colorectal cancer. Boris knockout significantly promoted the phosphorylation of γH2AX and the DNA damage in colorectal cancer tissues and suppressed Wnt and MAPK pathways that are responsible for the callback of DNA damage repair. This indicates the strong inhibition of colorectal cancer in Boris KO mice. By considering that the DSS-promoted inflammation contributes to tumorigenesis, Boris KO mice were also studied in DSS-induced colitis. Our data showed that Boris knockout alleviated DSS-induced colitis and that Boris knockdown inhibited the NF-κB signaling pathway in RAW264.7 cells. Therefore Boris knockout eliminates colorectal cancer generation by inhibiting DNA damage repair in cancer cells and relieving inflammation in macrophages. Our findings demonstrate the importance of Boris in the development of in situ colorectal cancer and provide evidence for the feasibility of colorectal cancer therapy on Boris.


Assuntos
Colite , Neoplasias Colorretais , Animais , Masculino , Camundongos , Azoximetano/toxicidade , Colite/induzido quimicamente , Colite/genética , Colite/complicações , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/genética , Neoplasias Colorretais/tratamento farmacológico , Sulfato de Dextrana/toxicidade , Sulfato de Dextrana/uso terapêutico , Modelos Animais de Doenças , Dano ao DNA/genética , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
Talanta ; 254: 124130, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462286

RESUMO

The deposits of human islet amyloid polypeptide (IAPP), also called amylin, in the pancreas have been postulated to be a factor of pancreatic ß-cell dysfunction and is one of the common pathological hallmarks of type II diabetes mellitus (T2DM). Therefore, it is imperative to gain an in-depth understanding of the formation of these aggregates. In this study, we demonstrate a rationally-designed strategy of an environmentally sensitive near-infrared (NIR) molecular rotor utilizing thioflavin T (ThT) as a scaffold for IAPP deposits. We extended the π delocalized system not only to improve the viscosity sensitivity but also to prolong the emission wavelength to the NIR region. A naphthalene moiety was also introduced to adjust the sensitivity of our designed probes to differentiate the binding microenvironment polarity of different targeted proteins. As a result, a novel NIR fluorogenic probe toward IAPP aggregates, namely AmySP-4-Nap-Ene, was first developed. When attached to different protein aggregates, this probe exhibited distinct fluorescence emission profiles. In a comparison with ThT, the fluorescence emission of non-ionic AmySP-4-Nap-Ene exhibits a significant difference between the presence of non-fibrillar and fibrillar IAPP and displays a higher binding affinity toward IAPP fibrils. Further, the AmySP-4-Nap-Ene can be utilized to monitor IAPP accumulating process and image fibrils both in vitro and in living cells.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Diabetes Mellitus Tipo 2/metabolismo , Corantes Fluorescentes/química , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Amiloide/química , Amiloide/metabolismo
8.
ACS Omega ; 7(35): 31520-31528, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36092590

RESUMO

To date, more than 30 human peptides or proteins have been found to form amyloid fibrils, most of which are associated with human diseases. However, currently, no cure for amyloidosis exists. Therefore, development of therapeutic strategies to inhibit amyloid formation is urgently required. Although the role of some amyloidogenic proteins has not been identified in certain diseases, their self-assembling behavior largely affects their bioactivity. Human calcitonin (hCT) is a hormone peptide containing 32 amino acids and is secreted by the parafollicular cells of the thyroid gland in the human body. It can regulate the concentration of calcium ions in the blood and block the activity of osteoclasts. Therefore, calcitonin has also been considered a therapeutic peptide. However, the aggregation of hCT hinders this process, and hCT has been replaced by salmon calcitonin in drug formulations. Recently, iron oxide nanomaterials have been developed as potential materials for various applications owing to their high biocompatibility, low toxicity, and ease of functionalization. In this study, nanoparticles (NPs) were prepared using a simple chemical coprecipitation method. We first demonstrated that dopamine-conjugated Fe3O4 inhibited hCT aggregation, similar to what we found when carbon dots were used as core materials in the previous study. Later, we continued to simplify the preparation process, that is, the mixing of dihydrocaffeic acid (DCA) and iron oxide NPs, to maintain their stability and inhibitory effect against hCT aggregation. Furthermore, DCA-decorated Fe3O4 can dissociate preformed hCT amyloid fibrils. This appears to be one of the most promising ways to stabilize hCT in solution and may be helpful for amyloidosis treatment.

9.
Int J Nurs Stud ; 131: 104240, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35490453

RESUMO

OBJECTIVE: To evaluate the effectiveness of preoperative shaving and postoperative shampooing on the infection rate in neurosurgery. DESIGN: Meta-analysis. DATA SOURCE: We conducted a search of the Embase, CINAHL, Scopus and PubMed databases up until February 1, 2022. Comparative studies were included. No language restrictions were applied. REVIEW METHODS: Original articles that compared the infection rate of patients who had their hair shaved before neurosurgery to the infection rate of unshaven patients were included. Original articles comparing the infection rates of patients whose hair was early postoperative shampooing versus patients whose hair was not shampooed after neurosurgery were also included. The risk of bias was also evaluated using the Newcastle-Ottawa quality assessment scale by two authors independently. The meta-analyses were performed using Review Manager software (RevMan 5.3; Cochrane Collaboration). The odds ratios (ORs) and 95% confidence intervals (CIs) were assessed for dichotomous data (infection rate). The heterogeneity of the included studies was assessed using the I2 statistic (ranging from 0 to 100%). RESULTS: A total of 3451 studies were identified by searching the PubMed, Scopus, CINAHL and Embase databases. Fourteen studies met the inclusion criteria, however two studies did not provide data suitable for meta-analysis. Twelve studies were included in the review. Two historical control studies, four prospective studies, one clinical trial and five retrospective studies were identified. There were 4583 patients whose hair was not shaved and 4295 patients whose hair was shaved. Among them, there were 3874 patients whose hair was unshaved and was early postoperative shampooing. No significant difference in the infection rate was found between the unshaved group and shaved group (OR: 0.86, 95% CI [0.62, 1.19], P = 0.85, I2 = 0%). A significant difference in the infection rates in shunt surgery patients was found between the unshaved group and shaved group (OR: 0.43, 95% CI [0.19, 0.99], P = 0.89, I2 = 0%). No significant difference was found between the unshaved with early shampooing group and the shaved group (OR: 0.82, 95% CI [0.48, 1.41], P = 0.80, I2 = 0%). CONCLUSION: Hair preservation before neurosurgery and early shampooing after neurosurgery did not increase the infection rate.


Assuntos
Remoção de Cabelo , Neurocirurgia , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Infecção da Ferida Cirúrgica/prevenção & controle
10.
World J Clin Cases ; 9(30): 9236-9243, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34786410

RESUMO

BACKGROUND: Primary pulmonary enteric adenocarcinoma (PEAC) is a very rare subtype of invasive adenocarcinoma, and there have been no large studies on PEAC to date. Therefore, it is necessary to obtain much more information about the clinical and pathological features, diagnosis, differential diagnosis, and treatment of PEAC. CASE SUMMARY: All clinical data of six patients with confirmed PEAC from 2013 to 2018 were collected, and data on diagnosis, differential diagnosis, and treatment of PEAC are discussed combined with all the associated literature. The mean age of six patients was 64.0 ± 5.6 (59-73) years old. Their clinical manifestations were heterogeneous, and during their disease course, there were no gastrointestinal symptoms. There was no evidence from colonoscopy or imaging studies to suggest digestive tract tumors or new metastases. The most commonly mutated gene was KRAS (50.0%), and the pathological features of the six cases were similar to those of colorectal cancer. CDX2 (83.3%) and CK7 (66.7%) had the highest positive rates upon immunohistochemical examination. In the associated literature, 252 cases were identified, and the most commonly mutated gene was KRAS (42.9%). Additionally, CDX2 (68.3%) and CK7 (85.8%) had the highest positive rates. Patients mainly received surgery, chemotherapy, and radiotherapy, immunotherapy was not included. CONCLUSION: Positive results for CDX2 and CK7 play an important role in the diagnosis and differential diagnosis of PEAC, and immunotherapy or targeted therapy focused on KRAS needs to be further studied for the treatment of PEAC.

11.
Nanomaterials (Basel) ; 11(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34578556

RESUMO

The development of biocompatible nanomaterials has become a new trend in the treatment and prevention of human amyloidosis. Human calcitonin (hCT), a hormone peptide secreted from parafollicular cells, plays a major role in calcium-phosphorus metabolism. Moreover, it can be used in the treatment of osteoporosis and Paget's disease. Unfortunately, it tends to form amyloid fibrils irreversibly in an aqueous solution, resulting in a reduction of its bioavailability and therapeutic activity. Salmon calcitonin is the replacement of hCT as a widely therapeutic agent due to its lower propensity in aggregation and better bioactivity. Herein, we used citric acid to synthesize carbon dots (CDs) and modified their surface properties by a variety of chemical conjugations to provide different functionalized CDs. It was found that dopamine-conjugated CDs can effectively inhibit hCT aggregation especially in the fibril growth phase and dissociate preformed hCT amyloids. Although the decomposition mechanism of dopamine-conjugated CDs is not clear, it seems to be specific to hCT amyloids. In addition, we also tested dopamine-conjugated mesoporous silica nanoparticles in preventing hCT fibrillization. They also can work as inhibitors but are much less effective than CDs. Our studies emphasized the importance of the size and surface functionalization of core materials in the development of nanomaterials as emerging treatments for amyloidosis. On the other hand, proper functionalized CDs would be useful in hCT formulation.

12.
Am J Physiol Heart Circ Physiol ; 321(2): H353-H368, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34142887

RESUMO

Arterial stiffness, a consequence of smoking, is an underlying risk factor of cardiovascular diseases. Epoxyeicosatrienoic acids (EETs), hydrolyzed by soluble epoxide hydrolase (sEH), have beneficial effects against vascular dysfunction. However, the role of sEH knockout in nicotine-induced arterial stiffness was not characterized. We hypothesized that sEH knockout could prevent nicotine-induced arterial stiffness. In the present study, Ephx2 (the gene encodes sEH enzyme) null (Ephx2-/-) mice and wild-type (WT) littermate mice were infused with or without nicotine and administered with or without nicotinamide [NAM, sirtuin-1 (SIRT1) inhibitor] simultaneously for 4 wk. Nicotine treatment increased sEH expression and activity in the aortas of WT mice. Nicotine infusion significantly induced vascular remodeling, arterial stiffness, and SIRT1 deactivation in WT mice, which was attenuated in Ephx2 knockout mice (Ephx2-/- mice) without NAM treatment. However, the arterial protective effects were gone in Ephx2-/- mice with NAM treatment. In vitro, 11,12-EET treatment attenuated nicotine-induced matrix metalloproteinase 2 (MMP2) upregulation via SIRT1-mediated yes-associated protein (YAP) deacetylation. In conclusion, sEH knockout attenuated nicotine-induced arterial stiffness and vascular remodeling via SIRT1-induced YAP deacetylation.NEW & NOTEWORTHY We presently show that sEH knockout repressed nicotine-induced arterial stiffness and extracellular matrix remodeling via SIRT1-induced YAP deacetylation, which highlights that sEH is a potential therapeutic target in smoking-induced arterial stiffness and vascular remodeling.


Assuntos
Aorta/efeitos dos fármacos , Epóxido Hidrolases/genética , Niacinamida/farmacologia , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Sirtuína 1/metabolismo , Rigidez Vascular/efeitos dos fármacos , Complexo Vitamínico B/farmacologia , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Aorta/metabolismo , Aorta/fisiopatologia , Metaloproteinase 2 da Matriz/efeitos dos fármacos , Metaloproteinase 2 da Matriz/genética , Camundongos , Camundongos Knockout , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/efeitos dos fármacos , Rigidez Vascular/genética , Vasodilatadores/farmacologia , Proteínas de Sinalização YAP
13.
Mol Cell Endocrinol ; 523: 111149, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33387601

RESUMO

Studies have shown that epoxyeicosatrienoic acids (EETs) can regulate glucose homeostasis, but the specific mechanisms need further exploration. The sodium-glucose co-transporter 2 (SGLT2) is highly expressed in diabetic kidneys, which further promotes renal reabsorption of glucose to respond to the hyperglycemic state of diabetes. Herein, whether EETs can be a latent inhibitor of SGLT2 to regulate glucose homeostasis in diabetic state needs to be elucidated. Our study demonstrated that EETs attenuated the glucose reabsorption via renal tubular epithelial cells in diabetic mice, which partly accounted for the beneficial effects of EETs on glucose homeostasis. Moreover, 14,15-EET suppressed SGLT2 expression in both diabetic kidney and renal tubular epithelial cells. Further, inhibition of NF-κB with BAY 11-7082 decreased insulin-induced SGLT2 expression while NF-κB overexpression reversed the above effects. In addition, 14,15-EET attenuated SGLT2 expression via inactivating NF-κB. Mechanistically, 14,15-EET attenuated NF-κB mediated SGLT2 transcription at the -1821/-1812 P65-binding site. These results showed that EETs ameliorated glucose homeostasis via preventing NF-κB-mediated transcription of SGLT2 in renal tubular epithelial cells, providing a unique therapeutic strategy for insulin resistance and diabetes.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Células Epiteliais/metabolismo , Glucose/metabolismo , Homeostase , Túbulos Renais Proximais/citologia , NF-kappa B/metabolismo , Transportador 2 de Glucose-Sódio/genética , Transcrição Gênica , Ácido 8,11,14-Eicosatrienoico/farmacologia , Animais , Linhagem Celular , Diabetes Mellitus Experimental/patologia , Células Epiteliais/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Insulina/farmacologia , Camundongos Endogâmicos C57BL , Compostos de Fenilureia/administração & dosagem , Piperidinas/administração & dosagem , Transportador 2 de Glucose-Sódio/metabolismo , Transcrição Gênica/efeitos dos fármacos
14.
Clin Cardiol ; 43(12): 1478-1493, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33026120

RESUMO

BACKGROUD: The association between underlying comorbidities and cardiac injury and the prognosis in coronavirus disease 2019 (COVID-19) patients was assessed in this study. HYPOTHESIS: The underlying comorbidities and cardiac injury may be associated with the prognosis in COVID-19 patients. METHODS: A systematic search was conducted in PubMed, EMBASE, Web of science, and The Cochrane library from December 2019 to July 2020. The odds ratio (OR) and 95% confidence intervals (95% CI) were used to estimate the probability of comorbidities and cardiac injury in COVID-19 patients with or without severe type, or in survivors vs nonsurvivors of COVID-19 patients. RESULTS: A total of 124 studies were included in this analysis. A higher risk for severity was observed in COVID-19 patients with comorbidities. The pooled result in patients with hypertension (OR 2.57, 95% CI: 2.12-3.11), diabetes (OR 2.54, 95% CI: 1.89-3.41), cardiovascular diseases (OR 3.86, 95% CI: 2.70-5.52), chronic obstractive pulmonary disease (OR 2.71, 95% CI: 1.98-3.70), chronic kidney disease (OR 2.20, 95% CI: 1.27-3.80), and cancer (OR 2.42, 95% CI: 1.81-3.22) respectively. All the comorbidities presented a higher risk of mortality. Moreover, the prevalence of acute cardiac injury is higher in severe group than in nonsevere group, and acute cardiac injury is associated with an increased risk for in-hospital mortality. CONCLUSION: Comorbidities and acute cardiac injury are closely associated with poor prognosis in COVID-19 patients. It is necessary to continuously monitor related clinical indicators of organs injury and concern comorbidities in COVID-19 patients.


Assuntos
COVID-19/mortalidade , Índice de Gravidade de Doença , COVID-19/fisiopatologia , Doenças Cardiovasculares/mortalidade , Causas de Morte , Comorbidade , Diabetes Mellitus/mortalidade , Feminino , Humanos , Hipertensão/mortalidade , Masculino , Neoplasias/mortalidade , Pandemias/estatística & dados numéricos , Prognóstico , Insuficiência Renal Crônica/mortalidade
16.
Biochimie ; 177: 153-163, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32860895

RESUMO

The aggregation of islet amyloid polypeptide (IAPP) is implicated in the pathogenesis of type 2 diabetes (T2D). In T2D, this peptide aggregates to form amyloid fibrils; the mechanism responsible for islet amyloid formation is unclear. However, it is known that the aggregation propensity of IAPP is highly related to its primary sequence. Several residues have been suggested to be critical in modulating IAPP amyloid formation, but role of the sole lysine residue at position 1 (Lys-1) in IAPP has not been discussed. In our previous study, we found that glycated IAPP can form amyloid faster than normal IAPP and induce normal IAPP to expedite the aggregation process. To gain more insight into the contribution of Lys-1 in the kinetics of fibril formation, we synthesized another two IAPP variants, K1E-IAPP and K1Nle-IAPP, in which the Lys residue was mutated to glutamate and norleucine, respectively. Interestingly, we observed that the negative or neutral charged side chain at this position was preferred for amyloid formation. The findings suggested this residue may take part in the inter- or intra-molecular interaction during IAPP aggregation, even though it was proposed not to be in part of fibril core structure. Our data also revealed that the inhibitory mechanism of some inhibitors for IAPP aggregation require reaction with Lys-1. Modifications of Lys-1, such as protein glycation, may affect the effectiveness of the inhibitory action of some potential drugs in the treatment of amyloidosis.


Assuntos
Amiloide/biossíntese , Amiloidose/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Lisina/química , Lisina/metabolismo , Sequência de Aminoácidos , Amiloide/antagonistas & inibidores , Amiloide/ultraestrutura , Membrana Celular/metabolismo , Análise Mutacional de DNA , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/antagonistas & inibidores , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Cinética , Lipídeos de Membrana/metabolismo , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Polifenóis/farmacologia , Agregados Proteicos/efeitos dos fármacos , Ligação Proteica
17.
Mol Med Rep ; 22(3): 1859-1867, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32582979

RESUMO

Age-related alterations in the renin-angiotensin-aldosterone system (RAAS) have been reported in the cardiovascular system; however, the detailed mechanism of the RAAS component mineralocorticoid receptors (MR) has not been elucidated. The present study aimed to investigate the associations between MR and cardiac aging in rats, as well as the regulatory effects of oxidative stress and mitochondrial abnormalities in the aging process. MR expression in the hearts of male Sprague­Dawley rats aged 3 months (young rats) and 24 months (old rats) was evaluated in vivo. In addition, in vitro, H9C2 cells were treated with a specific MR antagonist, eplerenone, in order to investigate the molecular mechanism underlying the inhibition of myocyte aging process. The results demonstrated that MR expression was significantly higher in 24­month­old rat hearts compared with in 3­month­old rat hearts. These changes were accompanied by increased p53 expression, decreased peroxisome proliferator­activated receptor γ coactivator­1α expression, decreased mitochondrial renewal as assessed by electron microscopy, increased oxidative stress and decreased superoxide dismutase. In vitro, selective antagonism of MR partially blocked H2O2­induced myocardial aging as assessed by p16, p21 and p53 expression levels and excessive reactive oxygen species (ROS) accumulation. These results indicated that increased MR expression may drive age­related cardiac dysfunction via mitochondrial damage, increased ROS accumulation and an imbalanced redox state.


Assuntos
Envelhecimento/metabolismo , Eplerenona/farmacologia , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Miócitos Cardíacos/citologia , Receptores de Mineralocorticoides/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Peróxido de Hidrogênio/efeitos adversos , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima
18.
Biochemistry ; 59(15): 1482-1492, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32266809

RESUMO

Aggregation of polypeptides and proteins is commonly associated with human and other vertebrate diseases. For example, amyloid plaques consisting of amyloid-ß proteins are frequently identified in Alzheimer's disease and islet amyloid formed by islet amyloid polypeptide (IAPP, amylin) can be found in most patients with type 2 diabetes (T2D). Although many fluorescent dyes have been developed to stain amyloid fibrils, very few examples have been designed for IAPP. In this study, a series of environmentally sensitive fluorescent probes using flavonoid as a scaffold design are rationally designed and synthesized. One of these probes, namely 3-HF-ene-4'-OMe, can bind to IAPP fibrils but not nonfibrillar IAPP by exhibiting a much stronger fluorescent enhancement at 535 nm. In addition, this probe shows better detection sensitivity to IAPP fibrils compared with that of conventionally used thioflavin-T. We demonstrate that 3-HF-ene-4'-OMe can be used to monitor the kinetics of IAPP fibril formation in vitro even in the presence an amyloid inhibitor. To test the specificity of the probe, we attempt to incubate this probe with amyloid fibrils formed from other amyloidogenic proteins. Interestingly, this probe shows different responses when mixed with these fibrils, suggesting the mode of binding of this probe on these fibrils could be different. Moreover, we show that this probe is not toxic to pancreatic mouse ß-cells. Further structural optimization based on the structure of 3-HF-ene-4'-OMe may yield a specific probe for imaging islet amyloid in the pancreas. That would improve our understanding of the relationship between islet amyloid and T2D.


Assuntos
Desenho de Fármacos , Flavonoides/química , Corantes Fluorescentes/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Animais , Linhagem Celular Tumoral , Flavonoides/síntese química , Corantes Fluorescentes/síntese química , Humanos , Camundongos , Estrutura Molecular , Imagem Óptica
19.
Biochem Pharmacol ; 177: 113951, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32251672

RESUMO

Dipeptidyl peptidase-4 (DPP4) is elevated in numerous cardiovascular pathological processes and DPP4 inhibition is associated with reduced inflammation and oxidative stress. The aim of this study was to examine the role of DPP4 in endothelial senescence. Sprague-Dawley rats (24 months) were orally administrated saxagliptin (10 mg·kg-1·d-1), a DPP4 inhibitor, for 12 weeks in drinking water. Body weight, heart rate, blood glucose, and blood pressure were measured and vascular histological experiments were performed. In vitro studies were performed using H2O2-induced senescent human umbilical vein endothelial cells. Both in vivo and in vitro studies confirmed the elevation of DPP4 in senescent vascular endothelium, and inhibition or knockdown of DPP4 ameliorated endothelial senescence. In addition, DPP4 inhibition or silencing reduced endothelial oxidative stress levels in aging vasculature and senescent endothelial cells. Moreover, DPP4 inhibition or knockdown normalized the expression and phosphorylation of AMP-activated protein kinase-α (AMPKα) and sirtuin 1 (SIRT1) expression. Furthermore, the beneficial effects of DPP4 inhibition or knockdown on endothelial cell senescence were at least partly dependent on SIRT1 and Nrf2 activation. In conclusion, our study demonstrated that DPP4 inhibition or silencing ameliorated endothelial senescence both in vivo and in vitro by regulating AMPK/SIRT1/Nrf2. DPP4 may be a new therapeutic target to combat endothelial senescence.


Assuntos
Adamantano/análogos & derivados , Senescência Celular/efeitos dos fármacos , Dipeptídeos/farmacologia , Inibidores da Dipeptidil Peptidase IV/farmacologia , Células Endoteliais/efeitos dos fármacos , Proteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Adamantano/administração & dosagem , Adamantano/farmacologia , Animais , Células Cultivadas , Dipeptídeos/administração & dosagem , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/administração & dosagem , Células Endoteliais/metabolismo , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Interferência de RNA , Ratos Sprague-Dawley , Sirtuína 1/metabolismo
20.
Curr Med Sci ; 40(2): 313-319, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32337691

RESUMO

Ventricular septum defects (VSDs) are common types of congenital heart diseases caused by developmental defect; they contribute to 25%-30% of all adult congenital heart diseases. The peroxisome proliferator-activated receptor gamma (PPAR-γ) is widely expressed in mammalian tissues and in the immune system, regulating cell differentiation and immune and inflammatory responses. The PPAR-γ gene has recently been found crucial for heart development, but the mechanism of action is not clear. This study aims to investigate the effects of the PPAR-γ gene in the myocardium on the development of ventricular septation. In this study, we applied Cre-loxP recombination enzyme (CRE) technology to downregulate the expression of the PPAR-γ gene in different cardiac tissues, RT-PCR to examine the expression of the c-fos and TGF-ß1 genes, and histology staining to check the defect of embryonic heart at embryonic day 14.5 (E14.5). We found that the downregulation of the PPAR-γ gene resulted in a ventricular membranous septation defect of the embryonic heart at E14.5. Furthermore, only conversion of a Tnt:Cre, but not Mef2c:Cre, Tie2:Cre, or Wnt:Cre PPAR-γ floxed allele to a null allele resulted in VSD. PPAR-γTnt-Cre/+ embryos showed increases in atrioventricular (AV)-cushion cells and the expression of c-fos gene but no change in the expression of TGF-ß1 at E10.5. Our study demonstrates PPAR-γ in the myocardium is required for ventricular septation through regulation of AV-cushion cell proliferation by a Tnt/c-fos signal.


Assuntos
Comunicação Interventricular/genética , Coração/embriologia , PPAR gama/genética , Septo Interventricular/crescimento & desenvolvimento , Animais , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Camundongos , Gravidez , Proteínas Proto-Oncogênicas c-fos/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Septo Interventricular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA