Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(13): 10928-10945, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38812379

RESUMO

A series of novel Ru(II)/Ir(III)/Re(I)-based organometallic complexes [Ru2L1, Ru2L2, Ir2L1, Ir2L2, Re2L1, and Re2L2] have been synthesized to assess their potency and selectivity against multiple cancer cells A549, HCT-116, and HCT-116 colon CSCs. The cytotoxic screening of the synthesized complexes has revealed that complex Ru2L1 and Ir2L2 are two proficient complexes among all, but Ru2L1 is the most potent complex. A significant binding constant value was observed for DNA and BSA in all complexes. Significant lipophilic properties allow them to penetrate cancer cell membranes, and substantial quantum yield (ϕf) values support bioimaging potential. Again, these complexes are particular for mitochondrial localization and produce a profuse amount of ROS to damage the mitochondrial DNA and then G1 phase cell-cycle arrest. Protein expression analysis unveiled that pro-apoptotic Bax protein overexpressed in Ru2L1-treated cells, whereas antiapoptotic Bcl-2 protein was expressed twofold in Ir2L2-treated cells, which correlated with autophagy reticence.


Assuntos
Antineoplásicos , Complexos de Coordenação , Mitocôndrias , Células-Tronco Neoplásicas , Fenantrolinas , Rutênio , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Fenantrolinas/química , Fenantrolinas/farmacologia , Rutênio/química , Rutênio/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Irídio/química , Irídio/farmacologia , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade
2.
Artigo em Inglês | MEDLINE | ID: mdl-37360910

RESUMO

Objectives: The outbreak of monkeypox virus (MPXV) is an emerging epidemic of medical concern with 65353 confirmed cases of infection and a fatality of 115 worldwide. Since May 2022, MPXV has been rapidly disseminating across the globe through various modes of transmission, including direct contact, respiratory droplets, and consensual sex. Because of the limited medical countermeasures available to treat MPXV, the present study aimed to identify potential phytochemicals (limonoids, triterpenoids, and polyphenols) as antagonists to target the DNA polymerase protein of MPXV with the ultimate goal to inhibit the viral DNA replication mechanism and immune-mediated responses. Methods: The protein-DNA and protein-ligand molecular docking were performed with the help of computational programs AutoDock Vina, iGEMDOCK and HDOCK server. The BIOVIA Discovery studio and ChimeraX were used to evaluate the protein-ligand interactions. The GROMACS 2021 was used for the molecular dynamics simulations. The ADME and toxicity properties were computed by using online servers SwissADME and pKCSM. Results: Molecular docking of 609 phytochemicals and molecular dynamics simulations of lead phytochemicals glycyrrhizinic acid and apigenin-7-O-glucuronide generated useful data that supported the ability of phytochemicals to obstruct the DNA polymerase activity of the monkeypox virus. Conclusions: The computational results supported that appropriate phytochemicals can be used to formulate an adjuvant therapy for the monkeypox virus.

3.
ACS Omega ; 8(13): 12283-12297, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37033791

RESUMO

Triple-negative breast cancer (TNBC) is an extremely vicious subtype of human breast cancer having the worst prognosis along with strong invasive and metastatic competency. Hence, it can easily invade into blood vessels, and presently, no targeted therapeutic approach is available to annihilate this type of cancer. Metal complexes have successfully stepped into the anticancer research and are now being applauded due to their anticancer potency after the discovery of cisplatin. Many of these metal complexes are also well recognized for their activity toward breast cancer. As the TNBC is a very dangerous subtype and has long been a challenging ailment to treat, we have intended to develop a few brand new mixed metallic Ru(II)/Ir(III)/Re(I)-2,2'-bipyrimidine complexes [L'Re2], [L'RuRe], and [L'IrRe] to abate the unbridled proliferation of TNBC cells. The potency of the complexes against TNBC cells has been justified using MDA-MB-468 TNBC cell lines where complex [L'IrRe] has displayed significant potency among all the three complexes with an IC50 value of 24.12 µM. The complex [L'IrRe] has been competent to cause apoptosis of TNBC cells through inhibition of the G2/M phase in the cell cycle in association with a profuse amount of ROS generation and mitochondrial depolarization.

4.
ACS Appl Bio Mater ; 6(2): 410-424, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36638050

RESUMO

Due to a number of unpleasant considerations, marketed drugs have steadily lost their importance in the treatment of cancer. In order to find a viable cancer cell diagnostic agent, we therefore focused on metal complexes that displayed target adequacy, permeability to cancer cells, high standard water solubility, cytoselectivity, and luminescent behavior. In this aspect, luminescent 11-{naphthalen-1-yl} dipyrido [3,2-a:2',3'-c] phenazine based Ru(II)/Ir(III)/Re(I) complexes have been prepared for HCT-116 colorectal cancer stem cell therapy. Our study successfully established the possible cytotoxicity of IrL complex at different doses on HCT-116 colorectal cancer stem cells (CRCSCs). Additionally, an immunochemistry analysis of the complex IrL showed that the molecule was subcellularly localized in the nucleus and other regions of the cytoplasm, where it caused nuclear DNA damage and mitochondrial dysfunction. The level of BAX and Bcl-2 was further quantified by qRT-PCR. The expression of proapoptotic BAX showed increased expression in the complex IrL-treated cell compared to the control, indicating the potential of complex IrL for apoptotic induction. Upon further validation, complex IrL was developed as an inhibitor of autophagy for the eradication of cancer stem cells.


Assuntos
Neoplasias Colorretais , Complexos de Coordenação , Células-Tronco Neoplásicas , Fenazinas , Humanos , Proteína X Associada a bcl-2/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , DNA/química , Fenazinas/química , Fenazinas/metabolismo , Luminescência , Células HCT116 , Células-Tronco Neoplásicas/efeitos dos fármacos
5.
Phytochem Anal ; 34(7): 800-815, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36606391

RESUMO

INTRODUCTION: The SARS-CoV-2 Omicron variant BA.2 is spreading widely across the globe. The World Health Organization (WHO) designated BA.2 as a variant of concern due to its high transmission rate and pathogenicity. To elucidate the structural changes caused by mutations, we conducted a comparative analysis of BA.2 with variants BA.1 and BA.3. OBJECTIVE: In the present study, we aimed to investigate the interactions of the spike glycoprotein receptor-binding domain (SGp RBD) of Omicron variants BA.1, BA.2, and BA.3 with the human receptor hACE2. Further, a library of 233 polyphenols was screened by molecular docking with the SGp RBDs of Omicron variants BA.1, BA.2, and BA.3. METHODS: Protein-protein and protein-ligand molecular docking simulations were performed with AutoDock Vina and the ClusPro 2.0 server, respectively. The protein-ligand interactions were evaluated by BIOVIA Discovery Studio and ChimeraX 1.4. The molecular dynamics simulations for 100 ns were performed using GROMACS 2021. RESULTS: Compared to other variants of concern, the structural changes in Omicron caused by mutations at key positions improved its ability to cause infection. Despite multiple mutations, many important polyphenols bind effectively at the RBDs of Omicron variants, with the required pharmacokinetic and ADME features and obeying the Lipinski rule. CONCLUSION: Even though Omicron variants have multiple mutations and their transmission rate is relatively high, the computed binding affinities of lead polyphenols like epigallocatechin-3-O-gallate (EGCG) and luteolin-7-O-glucuronide (L7G) indicate that traditional medicines and proper immunity booster diets may be useful in the long-term fight against SARS-CoV-2.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Polifenóis , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/química , Ligantes , Simulação de Acoplamento Molecular , SARS-CoV-2/genética , Polifenóis/química
6.
Dalton Trans ; 51(14): 5494-5514, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35293923

RESUMO

Herein, we have introduced a series of iridium(III)-Cp*-(imidazo[4,5-f][1,10]phenanthrolin-2-yl)phenol complexes via a convenient synthetic methodology, which act as hypoxia active and glutathione-resistant anticancer metallotherapeutics. The [IrIII(Cp*)(L5)(Cl)](PF6) (IrL5) complex exhibited the best cytoselectivity, GSH resistance and hypoxia effectivity in HeLa and Caco-2 cells among the synthesized complexes. IrL5 also exhibited highly cytotoxic effects on the HCT-116 CSC cell line. This complex was localized in the mitochondria and subsequent mitochondrial dysfunction was observed via MMP alteration and ROS generation on colorectal cancer stem cells. Cell cycle analysis also established the potential of this complex in mediating G2/M phase cell cycle arrest.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose , Células CACO-2 , Linhagem Celular Tumoral , Proliferação de Células , Complexos de Coordenação/metabolismo , Complexos de Coordenação/farmacologia , Glutationa/metabolismo , Humanos , Hipóxia/metabolismo , Irídio/farmacologia , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fenol
7.
J Tradit Complement Med ; 12(1): 6-15, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33868970

RESUMO

BACKGROUND AND AIM: The year 2020 begins with the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that cause the disease COVID-19, and continue till today. As of March 23, 2021, the outbreak has infected 124,313,054 worldwide with a total death of 2,735,707. The use of traditional medicines as an adjuvant therapy with western drugs can lower the fatality rate due to the COVID-19. Therefore, in silico molecular docking study was performed to search potential phytochemicals and drugs that can block the entry of SARS-CoV-2 into host cells by inhibiting the proteolytic cleavage activity of furin and TMPRSS2. EXPERIMENTAL PROCEDURE: The protein-protein docking of the host proteases furin and TMPRSS2 was carried out with the virus spike (S) protein to examine the conformational details and residues involved in the complex formation. Subsequently, a library of 163 ligands containing phytochemicals and drugs was virtually screened to propose potential hits that can inhibit the proteolytic cleavage activity of furin and TMPRSS2. RESULTS AND CONCLUSION: The phytochemicals like limonin, gedunin, eribulin, pedunculagin, limonin glycoside and betunilic acid bind at the active site of both furin and TMPRSS2. Limonin and gedunin found mainly in the citrus fruits and neem showed the highest binding energy at the active site of furin and TMPRSS2, respectively. The polyphenols found in green tea can also be useful in suppressing the furin activity. Among the drugs, the drug nafamostat may be more beneficial than the camostat in suppressing the activity of TMPRSS2.

8.
Dalton Trans ; 50(34): 11725-11729, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34612310

RESUMO

To unearth suitable complexes that are capable of inhibiting the growth of MDA-MB-468 and Caco-2 cells, 2,2'-bipyrimidine-based luminescent Ru(ii)/Ir(iii)-arene monometallic and homo- and hetero-bimetallic complexes were synthesized. The complex [(η6-p-cymene)(η5-Cp*)RuIIIrIIICl2(K2-N,N-bipyrimidine)](PF6)2 [LRuIr] exhibited the best potency in both cells along with good GSH stability and strong binding efficacy with the biomolecules. The apoptotic event occurred in MDA-MB-468 cancer cells via cell cycle arrest.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA